Schlagworte:
- adversarial learning
- Automatic segmentation
- Challenge
- Classification
- Computer Vision and Pattern Recognition (cs.CV)
- concept vectors
- curriculum learning
- Deep convolutional neural network
- Deep Learning
- explainable AI (XAI)
- eye fundus images
- Feature ranking
- feature reuse
- finetuning
- FOS: Computer and information sciences
- glaucoma diagnosis
- Global explainability
- head and neck cancer
- Histopathology
- HPV status explanation. TNM explanation
- human-machine interaction
- interpretability
- Local explainability
- machine learning
- Machine Learning (cs.LG)
- medical imaging
- morphometric features
- multi-task learning
- Natural Language Processing
- Open access
- Oropharynx
- rule extraction
- wrong labels
Publikationen von Vincent Andrearczyk sortiert nach erstem Autor
| 1-50 | 51-86 |
A
Comparison of MR preprocessing strategies and sequences for radiomics-based MGMT prediction, in: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (MICCAI/BrainLes 2021), Cham, Seiten 367–380, Springer International Publishing, 2022 | , , , , , , , und ,
![]() [DOI] |
Rotational 3D Texture Classification Using Group Equivariant CNNs (2018), in: ArXiv | und ,
![]() [URL] |
Neural Network Training for Cross-Protocol Radiomic Feature Standardization in Computed Tomography (2019), in: Journal of Medical Imaging, 6:3(024008) | , und ,
![]() [URL] |
Learning Cross-Protocol Radiomics and Deep Feature Standardization from CT Images of Texture Phantoms, in: SPIE Medical Imaging 2019, International Society for Optics and Photonics, Seiten 109-116, SPIE, 2019 | , und ,
![]() |
Local Rotation Invariance in 3D CNNs (2020), in: Medical Image Analysis, 65(101756)
|
, , , und ,
![]() [DOI] [URL] |
Exploring local rotation invariance in 3D CNNs with steerable filters, in: Medical Imaging with Deep Learning, Seiten 15-26, Proceedings of Machine Learning Research, 2019
|
, , , und ,
![]() [URL] |
Multi-Task Deep Segmentation and Radiomics for Automatic Prognosis in Head and Neck Cancer, in: 4th Workshop on PRedictive Intelligence in MEdicine, Seiten 147-156, Springer LNCS, 2021 | , , , , , und ,
![]() [URL] |
Consistency of Scale Covariance in Internal Representations of CNNs, in: Irish Machine Vision and Image Processing Conference, 2020 | , , und ,
![]() |
Deep Multimodal Classification of Image Types in Biomedical Journal Figures, in: CLEF 2018, Avignon, France, Springer, 2018 | und ,
![]() |
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT, Seiten 1-30, Springer, Cham, 2023 | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und ,
![]() [DOI] [URL] |
Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images, in: Head and Neck Tumor Segmentation and Outcome Prediction, Seiten 1-37, 2022 | , , , , , , , , , und ,
![]() [DOI] [URL] |
Automatic Head and Neck Tumor Segmentation and Outcome Prediction Relying on FDG-PET/CT Images: Findings from the Second Edition of the HECKTOR Challenge (2023), in: Medical Image Analysis, 90:1(102972)
|
, , , , , , , , , , und ,
![]() [URL] |
Wide kernels and their DCT compression in convolutional networks for nuclei segmentation (2023), in: Informatics in Medicine Unlocked, 43(101403) | , und ,
![]() [DOI] [URL] |
Head and Neck Tumor Segmentation, Springer International Publishing, 2021 |
[URL] |
Oropharynx Detection in PET-CT for Tumor Segmentation, in: Irish Machine Vision and Image Processing Conference, 2020, 2020 | , und ,
![]() |
Solid Spherical Energy (SSE) CNNs for Efficient 3D Medical Image Analysis, in: Irish Machine Vision and Image Processing Conference, Seiten 37-44, 2019 | , , , und ,
![]() |
Head and Neck Tumor Segmentation and Outcome Prediction, Springer International Publishing, 2023 | , , und ,
[DOI] [URL] |
Head and Neck Tumor Segmentation and Outcome Prediction, Springer International Publishing, 2022 |
[DOI] [URL] |
HEad and neCK TumOR segmentation and outcome prediction using AI: lessons from three consecutive years of the HECKTOR challenge, in: European Head and Neck Society (EHNS) on Artificial Intelligence (AI) in Head & Neck Oncology, Lausanne and virtual, 2023 | , , , , , , und ,
![]() |
Segmentation and Classification of Head and Neck Nodal Metastases and Primary Tumors in PET/CT, in: 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Seiten 4731-4735, 2022 | , , , , und ,
![]() |
HEad and neCK TumOR segmentation and outcome prediction: The HECKTOR challenge, in: European Society of Radiology, 2022 | , , , , , , , und ,
![]() |
Overview of the HECKTOR Challenge at MICCAI 2020: Automatic Head and Neck Tumor Segmentation in PET/CT, Seiten 1-21, 2021 | , , , , , , und ,
![]() |
Automatic Segmentation of Head and Neck Tumors and Nodal Metastases in PET-CT scans, in: Medical Imaging with Deep Learning, Montréal, Canada, 2020 | , , , , , , , und ,
![]() [URL] |
Automatic Detection and Multi-Component Segmentation of Brain Metastases in Longitudinal MRI (2025), in: Nature Scientic Reports | , , , , , , , , und ,
![]() |
The value of AI for assessing longitudinal brain metastases treatment response (2025), in: Neuro-Oncology Advances | , , , , , , und ,
![]() |
Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods (2021), in: Journal of Personalized Medicine, 11:9 | , , , , , , , und ,
![]() [URL] |
B
Comparing various AI approaches to traditional quantitative assessment of the myocardial perfusion in [82Rb] PET for MACE prediction (2024), in: Nature Scientific Reports, 14:9644 | , , , , , , , , , und ,
![]() [DOI] |
C
A Bispectral 3D UNet for Rotation Robustness in Medical Segmentation, in: The First Workshop on Topology- and Graph-Informed Imaging Informatics at MICCAI, 2024 | , , , , und ,
Explanation Generation via Decompositional Rules Extraction for Head and Neck Cancer Classification, in: Explainable and Transparent AI and Multi-Agent Systems, 2023 | , , , , und ,
![]() |
D
Standardised convolutional filtering for radiomics, 2020 | , , , , , , und ,
[URL] |
Rotation Invariance and Directional Sensitivity: Spherical Harmonics versus Radiomics Features, in: Machine Learning in Medical Imaging (MLMI), Seiten 107--115, Springer International Publishing, 2018 | , , , und ,
![]() [URL] |
Exploiting the PubMed Central repository to mine out a large multimodal dataset of rare cancer studies, in: SPIE Medical Imaging, Houston, TX, USA, 2020 | , , , und ,
![]() |
E
Why is the winner the best?, in: CVPR, 2023 | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und ,
[URL] |
Biomedical image analysis competitions: The state of current participation practice (2022), in: arXiv | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und ,
[DOI] [URL] |
F
Cleaning Radiotherapy Contours for Radiomics Studies, is it Worth it? A Head and Neck Cancer Study (2022), in: Clinical and Translational Radiation Oncology, 33(153-158)
|
, , , , , , , , , und ,
![]() |
Fully Automatic Head and Neck Cancer Prognosis Prediction in PET/CT, in: Multimodal Learning for Clinical Decision Support, Seiten 59-68, Springer LNCS, 2021 | , , , , , und ,
![]() |
G
Overview of the ImageCLEF 2018 caption prediction tasks, in: CLEF working notes, CEUR, 2018 | , , und ,
![]() |
Deep learning interpretability: measuring the relevance of clinical concepts in convolutional neural networks features, Elsevier, Band 157-192, 2023 | , und ,
![]() |
Deep Learning Interpretability: Measureing the relevance of clinical concepts in CNN features, in: State of the art in neural networks, Elsevier, 2022 | , und ,
Visualizing and interpreting feature reuse of pretrained CNNs for histopathology, in: IMVIP 2019, Dublin, Ireland, 2019 | , und ,
![]() |
Regression Concept Vectors for Bidirectional Explanations in Histopathology (2018), in: Lecture Notes in Computer Science, Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2018(8)
|
, und ,
![]() |
Improved interpretability for computer-aided severity assessment of retinopathy of prematurity, in: SPIE Medical Imaging, San Diego, CA, USA, 2019 | , , , , , , , , und ,
![]() |
A Global Taxonomy of Interpretable AI: Unifying the Terminology for the Technical and Social Sciences (2022), in: Artificial Intelligence Review, 56(3473–3504) | , , , , , , , , , , , , , , und ,
![]() |
Breast Histopathology with High-Performance Computing and Deep Learning (2020), in: Computer and Informatics | , , , , und ,
![]() |
Evaluation and Comparison of CNN Visual Explanations for Histopathology, in: XAI-AAAI-21, 2021 | , , und ,
![]() |
On the Scale Invariance in State of the Art CNNs Trained on ImageNet (2021), in: Special Issue "Interpretable and Annotation-Efficient Learning for Medical Image Computing" in Machine Learning and Knowledge Extraction:3(374–391) | , , , und ,
![]() |
Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging, in: Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2020, 2020 | , , , und ,
![]() |
Concept attribution: Explaining CNN decisions to physicians (2020), in: Computers in Biology and Medicine | , und ,
![]() [DOI] |
| 1-50 | 51-86 |