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Abstract. Several recent PET/CT radiomics studies have shown promis-
ing results for the prediction of patient outcomes in Head and Neck
(H&N) cancer. These studies, however, are most often conducted on
relatively small cohorts (up to 300 patients) and using manually delin-
eated tumors. Recently, deep learning reached high performance in the
automatic segmentation of H&N primary tumors in PET/CT. The auto-
matic segmentation could be used to validate these studies on larger-scale
cohorts while obviating the burden of manual delineation. We propose
a complete PET/CT processing pipeline gathering the automatic seg-
mentation of primary tumors and prognosis prediction of patients with
H&N cancer treated with radiotherapy and chemotherapy. Automatic
contours of the primary Gross Tumor Volume (GTVt) are obtained from
a 3D UNet. A radiomics pipeline that automatically predicts the patient
outcome (Disease Free Survival, DFS) is compared when using either
the automatically or the manually annotated contours. In addition, we
extract deep features from the bottleneck layers of the 3D UNet to com-
pare them with standard radiomics features (first- and second-order as
well as shape features) and to test the performance gain when added to
them. The models are evaluated on the HECKTOR 2020 dataset con-
sisting of 239 H&N patients with PET, CT, GTVt contours and DFS
data available (five centers). Regarding the results, using Hand-Crafted
(HC) radiomics features extracted from manual GTVt achieved the best
performance and is associated with an average Concordance (C) index
of 0.672. The fully automatic pipeline (including deep and HC features
from automatic GTVt) achieved an average C index of 0.626, which is
lower but relatively close to using manual GTVt (p-value = 0.20). This
suggests that large-scale studies could be conducted using a fully au-
tomatic pipeline to further validate the current state of the art H&N
radiomics. The code will be shared publicly for reproducibility.
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1 Introduction

Radiomics allows quantitative analyses from radiological images with high through-
put extraction to obtain prognostic patient information [1]. Radiomics features,
including intensity-, texture-, and shape-based features, are generally extracted
from Volumes Of Interests (VOI) that delineate the tumor volume [2]. These
VOIs are often obtained from manual delineations made for treatment plan-
ning in radiotherapy [3, 4] or from a simple threshold on the Positron Emission
Tomography (PET) image [5]. This approach allowed researchers to perform var-
ious radiomics studies without the need for re-annotating the images specifically
for these tasks. The annotations made for radiotherapy are, however, very large
as compared to the true tumoral volumes and frequently include non-tumoral
tissues and parts of other organs such as the trachea. On the other hand, simple
PET thresholding may discard important hypo-metabolic parts of the tumoral
volume (e.g. necrosis) containing important information for outcome prediction.
For that reason, it seems important to clean delineations before using them
in a radiomics study. Unfortunately, this represents a tedious and error-prone
task when done manually, and usually entails poor inter-observer agreement [6].
Moreover, it is not scalable to large cohorts including thousands of patients,
which is urgently needed to validate the true value of radiomics-based prognos-
tic biomarkers when used in clinical routine.

Since the introduction of deep Convolutional Neural Network (CNN) seg-
mentation models and in particular of the UNet architecture [7], the automatic
segmentation of the tumoral volume in radiological and nuclear medicine images
has made tremendous progress during the past ten years. In particular for brain
tumor segmentation, expert-level performance was achieved in the context of the
Brain Tumor Segmentation (BraTS) challenge [8, 9]. The brain tumor segmenta-
tion models were further extended or used for prognostic prediction, allowing to
obtain fully automatic methods that do not require manual delineation of VOIs
for extracting the radiomics features. In particular, Baid et. al. [10] used a 3D
UNet for the segmentation task and then extracted radiomics features from the
automatically segmented tumor components in multi-sequence Magnetic Reso-
nance Imaging (MRI), achieving good performance for the prediction of overall
patient survival. More recently, the automatic segmentation of Head and Neck
(H&N) tumors from PET/CT imaging was investigated in the context of the
HECKTOR challenge [6], also achieving expert-level delineation performance of
the primary Gross Tumor Volume (GTVt). This opened avenues for scalable and
fully automatic prognosis prediction in Head and Neck (H&N) cancer as well as
their validation on large-scale cohorts.

In this paper, we propose a fully automatic pipeline for predicting patient
prognosis (i.e. Disease-Free Survival, DFS) in oropharyngeal H&N cancer. We
use a 3D UNet for segmenting the tumor contours and to extract deep ra-
diomics features from its encoder. We further extract Hand-Crafted (HC) ra-
diomics features from the automatically generated GTVt contours. Both PET
and CT modalities are used to characterize the metabolic and morphological
tumor tissue properties. Finally, we compare and combine the deep and HC
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radiomics features using either Cox Proportional Hazards (CPH) or Random
Survival Forest (RSF) models. This fully automatic approach is compared to
a classical radiomics approach based on HC features extracted from manually
annotated VOIs.

2 Methods

This section first introduces the dataset. Then, the proposed manual and fully
automatic radiomics pipelines are detailed. In particular, we compare the perfor-
mance between prognostic radiomics models using either manual or automatic
annotations of GTVt. We also compare the prognostic performance when us-
ing spatially aggregated activation maps from the bottleneck of the 3D UNet
(i.e. the bottom of the encoder, referred to as deep features) and even combine
these with HC radiomics features to investigate their complementarity for DFS
prediction.

2.1 Datasets

For this study, we use the entire dataset used in the context of the HECKTOR
2020 challenge [6] (training and test sets) including a total of 239 patient with
H&N cancer located in the oropharyngeal region (see Table 1). This dataset is
an extension of the data used in the study of Vallières et al. 2017 [3].

Table 1. Overview of the dataset. Hôpital Général Juif (HGJ), Montréal, CA;
Centre Hospitalier Universitaire de Sherbooke (CHUS), Sherbrooke, CA; Hôpital
Maisonneuve-Rosemont (HMR), Montréal, CA; Centre Hospitalier de l’Université de
Montréal (CHUM), Montréal; Centre Hospitalier Universitaire Vaudois (CHUV), CH.

Center #patients Gender Age (avg.) Follow-up (avg. days) #events (DFS)

HGJ 55
Male 43

Female 12
62 1418 11

CHUS 71
Male 50

Female 21
62 1274 13

HMR 18
Male 14
Female 4

69 1265 4

CHUM 55
Male 41

Female 14
64 1120 7

CHUV 40
Male 35
Female 5

63 705 7

FluoroDeoxyGlucose-PET and Computed Tomography (FDG-PET/CT) imag-
ing and manual GTVt contours are available for each patients. The latter (i.e.
manual) were cleaned from initial VOIs acquired in the context of pre-treatment
radiotherapy planning, i.e. re-annotated to specifically delineate the true tumoral
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volume. These manual GTVt are used both for the extraction of features in the
manual setting and to train a 3D UNet that will generate automatic contours.
The latter are generated for the entire dataset using a repeated 5-fold Cross-
Validation (CV) scheme.

2.2 UNet Architecture and Training

In this section, we describe the deep learning model used to obtain automatic
GTVt contours and deep features. We use a multi-modal 3D UNet developed
in [11]. The input images are first cropped to 144 × 144 × 144 voxels using the
bounding boxes provided in the HECKTOR challenge [12]. The images are then
resampled to 1mm3 with linear interpolation. The PET images are standardized
to zero mean, unit variance. The CT images clipped to [-1024,1024] and linearly
mapped to [-1,1]. Data augmentation is applied to the training data including
random shifts (maximum 30 voxels), sagittal mirroring and rotations (maximum
5°). The model is trained with an Adam optimizer with cosine decay learning
rate (initial learning rate 10−3) to minimize a soft Dice loss. The model is trained
for 600 epochs on the entire HECKTOR 2020 data (see Section 2.1). For each
of the five folds of the repeated CV, the training set is split into 80% training
and 20% validation. The best model according to the validation loss is used for
obtaining both automatic contours and deep features on the test data. Since we
do not have enough data to train the model on cases that are not present for
the subsequent prognostic prediction study, we use the repeated 5-fold CV to
mimic this scenario, ensuring that the automatic contours and deep features are
all obtained on held-out data.

2.3 Radiomics Workflow

In order to evaluate and compare the DFS prognosis performance when ex-
tracting HC radiomics features from either the manual or automatic GTVt, as
well as to evaluate the performance of the deep features, we develop a standard
radiomics workflow, as detailed in Fig. 1.

We first pre-process the images (CT and PET) with an iso-resampling of
2 × 2 × 2 mm using linear interpolation. This step is performed before feature
extraction except for the shape features, for which we extract only from the CT
with its initial resolution.

Then, we extract features from CT and PET images within either manual or
automatic GTVt. Table 2 details the parameters and the types of HC features
used. A total of 130 HC features are extracted per modality with additional 14
shape-based features. For each patient and for each annotation type, we therefore
have 274 features as detailed in the following4. From those two modalities per
patient (CT and PET), we extract features from the first-order family (18 fea-
tures) and second-order family (56 features). Regarding the second-order family,

4 We can unconventionally detail the number of HC features as follows: 274 =
2 modalities × (2 bin × 56 2ndorder + 18 1storder) + 14 shape (see Table 2).
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Fig. 1. Radiomics workflow inside one fold of the 5-fold CV and 1 repetition. The
univariate and multivariate steps are highlighted in green and grey, respectively.

we extract the 56 features using two different discretization parameters based
on Fixed Bin Number (FBN) and Fixed Bin Size (FBS) (see Table 2). Those
56 features are divided into three sub-families: Grey Level Co-occurence Matrix
(GLCM), Grey Level Run Length Matrix (GLRLM) and Grey Level Size Zone
Matrix (GLSZM). Finally, we extract 14 shape features.

Table 2. List of the different combinations of parameters and types for HC radiomics
features. FBN: Fixed Bin Number and FBS: Fixed Bin Size.

Image Preprocessing settings Features

CT
Iso-resampling
2x2x2mm
Linear interpolation

FBN = 64
FBS = 50

GLCM (24 features)
GLRLM (16 features)
GLSZM (16 features)

First Order (18 features)
Shape (14 features)

PET
Iso-resampling
2x2x2mm
Linear interpolation

FBN = 8
FBS = 1

GLCM (24 features)
GLRLM (16 features)
GLSZM (16 features)

First Order (18 features)

Regarding the deep features, we extract a total of 256 ReLU-activated feature
maps of size 9 × 9 × 9 at the UNet bottleneck, which are spatially averaged to
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obtain a collection of 256 scalar-valued features. The latter were directly used
in the CPH or RSF model, either alone or concatenated with the HC features.

After extracting features from PET and CT images with either the manual or
the automatic GTVt, we use those features in the pipeline detailed in Fig. 1. We
separate the training and the test set using a repeated 5-fold CV method with the
same folds as those used for the 3D UNet (see Section 2.2). Based on the training
dataset, we compute the univariate Concordance (C) index [13] of each feature.
We shift this value (|Cindex−0.5)|) to take into account both concordant and anti-
concordant features. The resulting top 20 features are kept. We further remove
correlated features using a Pearson product-moment correlation threshold t ∈
[0.6, 0.65, 0.70, 0.75, 0.80], optimized on the validation set using grid-search. This
feature selection approach is commonly used in the radiomics community [14, 15]
to avoid using highly correlated features as an input to either the CPH model [16]
or the RSF [17] model. The CPH and RSF are trained to predict the hazard score
and we further compute the average C-index to estimate the performance of DFS
estimation across the repeated 5-fold CV. We perform those experiments using
Python 3.9 the following libraries: SimpleITK [18] (V2.0.2), PyRadiomics [19]
(V3.0.1), scikit-learn [20] (V0.22.2) and scikit-survival [21] (V0.12.0).

3 Results

3.1 GTVt Segmentation

The estimated average Dice Score Coefficient (DSC) on the test sets of the re-
peated CV is 0.737±0.009. It is worth noting that the model yielded a tumor
contour for all patients in the dataset, i.e. at least one automatic GTV segmenta-
tion for each input. Fig. 2 shows a qualitative result of the 3D UNet segmentation
(automatic contour) compared with the manual contours.

Fig. 2. Example of a manual GTVt in blue and the UNet-generated automatic GTVt
in red on a fused PET/CT image.
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3.2 Prognosis Prediction

The DFS prediction performances are reported in Table 3 for the various ap-
proaches considered. For a baseline comparison, the performance of simple tumor
volume-based DFS prediction is associated with a C-index of 0.6 for both manual
and automatic GTVt.

Table 3. Comparison of prognosis performance (DFS) for the various approaches con-
sidered using either the CPH or the RSF model. We report the average C-index ±
standard-error across 5 folds and 10 repetitions of the CV. The best overall performance
is highlighted in bold and the best performance based on automatic segmentation is
shown in italic.

CPH RSF

HC from manual GTVt 0.672 ± 0.085 0.645 ± 0.096

HC from Automatic GTVt 0.623 ± 0.111 0.623 ± 0.095

deep features 0.560 ± 0.114 0.566 ± 0.108

deep ft. + HC from manual GTVt 0.648 ± 0.094 0.639 ± 0.096

deep ft. + HC from Automatic GTVt 0.606 ± 0.027 0.626 ± 0.028

4 Discussion and Conclusions

This work proposes a fully automatic processing pipeline for predicting patient
prognosis from PET/CT in the context of H&N cancer. It is based on a 3D
UNet providing automatic delineations of GTVt and deep features, as well as
additional HC features extracted from the generated GTVt. Deep and HC fea-
tures are compared and combined when used either by a CPH or RSF model
predicting patient hazard for DFS. This fully automatic pipeline is compared to
a classical approach based on manually delineated GTVt regions.

While being a secondary objective of our approach, the segmentation per-
formance of the 3D UNet was found to be consistent with the top-performing
models of the HECKTOR 2020 challenge [6]. While being close to the state of
the art in the field, we will investigate ways to improve the segmentation per-
formance in future work, which is expected to have a important impact on the
DFS prediction performance.

The performance of prognostic prediction is reported in Section 3.2. Accord-
ing to Table 3, the best performance for DFS prediction is obtained with HC
features from manual GTVt contours with a CPH model, which is associated
with an average C-index across the repeated 5 folds CV of 0.672. Using the same
HC features from automatic GTVt contours, results in a lower performance asso-
ciated with C-indices of 0.623 and 0.623 using CPH or RSF, respectively. When
used alone, the deep features obtain the worst prognosis performance with a C-
index of either 0.560 (CPH) or 0.566 (RSF). Combining the deep features with
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HC extracted from manual GTVt seems to deteriorate the performance when
compared to using HC features only in the manual VOIs (C-index of 0.648 versus
0.672 when based on CPH). By comparison, Andrearczyk et. al [22] developed
a fully end-to-end model (segmentation and prediction) which achieved a good
performance of 0.723 (C-index). Nevertheless, we can not directly compare this
result with ours due to the difference in the validation splits. However, combin-
ing the deep features with HC extracted from automatic GTVt in a RSF model
achieves a promising C-index of 0.626, where the rate of change is only 7.3%
lower than the best model based on manual contours (CPH and HC features
only) while being fully automatic. The statistical significance of this result (HC
from manual GTVt versus deep ft. + HC from automatic GTVt) was assessed
using a corrected r-repeated k-fold CV t-test as defined in Bouckaert et. al [23]
and is associated with a p-value of 0.20. This correction is needed to adapt to
underestimated variance related to dependent observations in repeated CVs. It
is worth noting that using the standard uncorrected student’s t-test yields a p-
value of 0.0026. We feel that reporting the latter is important as many studies in
the field are not using corrections when breaking the independance assumption
of the t-test. Therefore, the proposed fully automatic prognostic model based on
the combination of deep features with HC extracted from automatic GTVt with
RSF model seems most relevant to conduct large-scale radiomics studies, which
are crucial to further validate the clinical value of such image-based biomarkers.
For inferring the prognosis of one patient, the computational time of the fully
automatic pipeline (i.e. segmentation and deep feature extraction, HC features
computation and prognosis prediction), is approximately 3 minutes (assuming
that the 3D UNet is already trained). Moreover, the proposed approach allows
scalable and reproducible contouring, as opposed to manual contouring where
inter-observer agreement was reported to be low [24, 6]. We remind the reader
that we used a dataset originating from five distinct centers and including various
scanner manufacturers and image acquisition protocols.

One limitation of our study is that the deep features are pooled by averaging
the entire feature maps at the bottleneck of the UNet, which may explain the
poor performance given by those set of features either alone or concatenated
with the HC features. Future work will investigate feature pooling by averaging
inside the VOIs (e.g. automatic or manual). Other aggregation methods will
be investigated also for the HC features, as it was shown to have a strong in-
fluence on the prognosis predictive performance [25]. In addition, we plan to
include readily available clinical patient data (e.g. age, gender, smoking status,
tumor site, human papilloma virus status) [26] to further improve the prognosis
performance of the models.
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