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Abstract. This paper presents a robust method for the classification
of medical image types in figures of the biomedical literature using the
fusion of visual and textual information. A deep convolutional network
is trained to discriminate among 31 classes including compound figures,
diagnostic image types and generic illustrations, while another shallow
convolutional network is used for the analysis of the captions paired with
the images. Various fusion methods are analyzed as well as data augmen-
tation approaches. The proposed system is validated on the ImageCLEF
2013 classification task, largely improving the currently best performance
from 83.5% to 93.7% accuracy.

1 Introduction

The information contained in an image and the methods employed to extract
it largely differ depending on its modality, making the latter a crucial aspect
of medical image analysis and retrieval, particularly when images of the medi-
cal literature are used, where image type information is not available. An image
type classification is, therefore, a useful preliminary filtering step prior to further
analysis [11]. Besides, the modality is a relevant information to be determined
for medical image or document retrieval, allowing clinicians to filter their search
to a particular modality, often specific to a diagnosis or organ of interest. Various
modality classification tasks, among others, have been released through the Im-
ageCLEF challenges [4]. We focus this work on the 2013 ImageCLEF modality
classification task, as it offers multimodal text and image data. The database
is publicly available and the results fully reproducible. The database also orig-
inates from the PubMed Central database (it is a small subset), allowing us to
classify this large database for further processing and analysis. Much of medical
knowledge is stored in the medical literature, thus making the content, including
images, accessible for research could help in various tasks.

Multimodal analysis is commonly used to extract and fuse information from
multiple modalities [7]. In this work, images and captions contain complementary
information fused to boost the classification accuracy. Many methods have been
used to extract high-level features from text and images independently and to
fuse them. Convolutional Neural Networks (CNNs) have obtained the state of
the art in most computer vision and biomedical image analysis tasks. It is also
well suited for text analysis [8]. This paper, therefore, introduces several late
fusion methods to combine powerful visual and textual CNNs.
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2 Related Work

Multimodal textual and visual analysis has been widely studied for applications
including annotation and captioning [7], image generation from text, text and
image feature fusion for retrieval and classification [4]. A total of 51 runs from
eight groups were presented in [4] for the ImageCLEF 2013 modality classifi-
cation challenge. The best results (81.7% classification accuracy) were obtained
by visual and textual fusion from the IBM Multimedia Analytics group [1] (see
Table 1). A set of color and texture, local and global descriptors (including color
histogram, moments, wavelets, Local Binary Patterns (LPB) and Scale-Invariant
Feature Transform (SIFT)) were extracted as visual descriptors and fused with
multiple textual descriptors. The best results were obtained using a maximum
late fusion with a classifier built on top of modality tailored keywords (with a
hand-selected vocabulary that likely improved the performance) and a two-level
Support Vector Machine (SVM) classification. The methods developed by other
teams reported in [4] include various types of similar hand-crafted visual and
textual descriptors combined by multiple fusion methods.

In [3], the authors build upon [1] to develop a more complex system. An
ensemble of SVM models is trained on top of similar visual features, while the
text is analyzed by scoring based on the detection of manually-selected patterns
from the captions and from sentences in the body of the article. A weighted score
average trained on a subset of the training data was used for fusing the visual
and textual information. The best current system reached an accuracy of 83.5%.

Another set of hand-crafted visual and textual features are combined in [12].
The visual features include local and global texture and color features, while
Bag-of-Words (BoW) features are used to analyze the captions. More recently in
[11], modality images are classified by finetuning (only visual) pretrained deep
CNNs and combining their outputs in an ensemble classifier. A major drawback
of combining multiple CNNs is the increase of computational complexity and
redundancy of features to obtain only a limited accuracy improvement.

3 Methods

3.1 ImageCLEF 2013 Modality Dataset

The goal of this task is to classify the images into medical modalities and other
images types. Three main categories, namely compound figures, diagnostic im-
ages and generic illustrations are divided into 31 sub-categories [4]. The modality
hierarchy and more details on the dataset can be found in [4]. A total of 2879
training and 2570 test images are provided. The classes are highly imbalanced,
reflecting the distribution of the images in the data (PubMed Central1) contain-
ing a large proportion of compound figures.

The overview of the developed networks and fusion approaches is illustrated
in Figure 1. The components are described in more details in the following
sections.
1 https://www.ncbi.nlm.nih.gov/pmc/
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Fig. 1: Overview of the proposed deep learning visual and textual fusion method.

3.2 Visual Analysis

DenseNet [6] is a CNN having each layer connected to every other layer (within
a dense block, see Figure 1). This architecture obtained excellent results on var-
ious image classification datasets while reducing the number of parameters and
computation (floating point operations) as compared to other commonly used
networks (e.g. AlexNet, VGG, GoogleNet and ResNet). DenseNet169 obtained
the best results, as compared to DenseNet121, ResNet50 and 152, VGG19.

The training data is limited (2789 images without data augmentation) and
transfer learning is required to obtain a robust image classification. We use
networks pre-trained on ImageNet and replace the last fully connected softmax
activated dense layer by a layer of 31 neurons, equivalent to the number of classes
in the ImageCLEF 2013 dataset.

To increase the visual training data, we explore two complementary data
augmentation strategies. The first strategy is to use extra training images from
the ImageCLEF 2016 subfigure classification task [5] which are cropped from
compound figures. We also use images from the ImageCLEF 2016 compound
figure detection task as the compound class is not represented by the subfigure
classification set. We ensure that no image is present twice in the training set
or in both the training and test set. The second data augmentation strategy
is to apply a set of random transformations to the training images including
horizontal and vertical flips, width and height shift in the range of [0, 0.1] of the
total width and height respectively and a rotation in the range [0◦, 5◦].

3.3 Text Analysis

We develop a CNN on top of word embeddings as inspired by [8]. The words
are embedded into a low (300) dimensional space using fastText word embed-
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ding [2] pretrained on Wikipedia data2. Similar results were obtained with a
Global Vectors for word representation (GloVE) pretrained on Wikipedia 2014
and Gigaword 5, while pretraining on biomedical text performed worse.

A maximum number of tokens was set to 20,000 and the maximum length
of a caption was set to 200. The embedding layer is finetuned together with the
network in order to adapt the embedding to this particular caption classification
task and domain. Recurrent networks may seem more intuitive than CNNs and
better suited for natural language processing since local features captured by
convolution filters are not as evident in texts as they are in images. Captions,
however, offer a relatively structured and controlled domain in which words
are often organized into meaningful features. CNNs are also better at detecting
key phrases or combinations of words than RNNs, which is a useful asset for
the evaluated task since the modality is often described by a single sentence
or group of words. Besides this, the speed of convolution computations is an
important aspect in the choice of an architecture. We also experimented with a
1D convolutional network, a Long Short-Term Memory (LSTM) network and a
stacked LSTM network, resulting in a lower accuracy.

3.4 Decision-Level Fusion

The decision-level fusion combines the visual and textual predictions. We first
train the visual and textual networks independently, then combine the class prob-
abilities, i.e. outputs of the softmax layers. Simple fusions are used including (1)
a weighted sum, (2) a maximum probability decision and (3) a product of proba-
bilities (elementwise product of probability vectors). Equation 1 summarizes the
class prediction of these three fusion methods.

csum = amax(αyv + (1− α)yt),

cmax = amax(max(yv, yt)),

cprod = amax(yv ◦ yt),
(1)

where csum, cmax, cprod are the class predictions from (1), (2) and (3) respec-
tively, yv and yt are the probability vectors of the visual and textual networks
respectively. The weight α ∈ [0, 1] is used to balance the importance of the visual
and textual parts. Another fusion method is to train a single layer Multi-Layer
Perceptron (MLP) on top of the prediction layer. We freeze all previous lay-
ers to train only the last added layer. Using a two-layer MLP results in similar
performance, yet increases the complexity.

3.5 Feature-Level Fusion

The feature-level fusion fuses the outputs of intermediate layers from the visual
and textual networks. We first train the two networks independently, then add
one layer on top of the last layer before the softmax activated one and train
similarly to the decision-level MLP.

2 https://dumps.wikimedia.org
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4 Experimental Results

4.1 Network Setups

The networks are trained with an Adam [9] optimizer. The textual, visual and
fusion MLP networks are trained for N = 100, N = 25 and N = 50 iterations
respectively. The initial learning rate is set to 10−4 for finetuning the visual
network and 10−3 for the textual network and MLP from scratch, average decays
β1 and β2 are 0.9 and 0.999 respectively, the learning rate decay is 0.1

N and the
batch size 32. Due to the high class imbalance in the training set, class weights
are used during training for weighting the loss function as: wi = nmax/ni, where
nmax and ni are the number of training samples of the most represented class
and of class i respectively. For the visual network, class weights are not needed
when artificial data augmentation is used.

4.2 Classification Results

The results are reported and compared with the best current systems in Table 13.
Best results of the 51 runs submitted by eight groups [4] are reported as well
as the best results in the literature [3]. In [1, 3], vocabularies and text patterns
were manually selected, and in [3], the text in the body of the article was also
used.

Modality Method Accuracy

Textual
IBM modality run1 [1] 64.2%
IBM textual [3] 69.6%
textual CNN 71.9%

Visual

IBM modality run4 [1] 80.8%
IBM visual [3] 82.2%
DenseNet169 w/o data augm. w/o extra training 83.8%
DenseNet169 w/ data augm. w/o extra training 84.5%
DenseNet169 w/ data augm. w/ extra training 86.8%

Fusion

IBM modality run8 [1] 81.7%
IBM fusion [3] 83.5%
weighted average fusion w/ extra training 89.2%
maximum fusion w/ extra training 89.4%
product fusion w/ extra training 91.8%
Decision-level MLP fusion 86.0%
Feature-level MLP fusion 93.7%

Table 1: Comparison of our methods with the best runs in ImageCLEF 2013.

The best fusion results are obtained with the feature-level MLP (93.7%). The
confusion matrix of this best method is shown in Figure 2. MLPs are trained

3 34 images were removed from the dataset since the original submission due to their
presence in both training and test sets.
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without data augmentation as the visual augmented data is not paired with text
inputs. A solution can be sought in future work to overcome this basic limitation
and expect higher accuracy.

Fig. 2: Normalized confusion matrix (%) of the feature-level fusion method.

The most relevant classes are the diagnostic images as they offer more poten-
tial in clinical applications such as retrieval. The confusion matrices for the three
main categories (compound, diagnostic and generic illustrations) are illustrated
in Figure 3. It shows that our approach performs an excellent discrimination
between diagnostic (e.g. MRI, CT, histopathology) and other images with less
importance (e.g. compound figures, diagrams and maps).

In order to evaluate the complementarity of the visual and textual informa-
tion, we measured the overlap of correct classification. With the best method
previously described, the percentage of images correctly classified by both the
visual and textual networks is 64.3%. 22.5% of the test set is correctly classified
by the visual network but incorrectly classified by the textual and, vice-versa,
7.6% is correctly classified using the caption but incorrectly classified using visual
information. These results suggest, as confirmed by the fusion results in Table 1,
that the visual and textual analyses offer some degree of complementarity to
boost the final classification accuracy.
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(a) Textual (b) Visual (c) Feat.-level MLP

Fig. 3: Normalized confusion matrices for the three main categories: Compound,
Diagnostic and Generic illustrations.

The accuracy obtained with multiple values of α in Equation 1 is illustrated
in Figure 4. The best results with this weighted sum fusion are obtained with a
contribution of the visual analysis slightly larger than the textual one (α = 0.51),
although a gradually reducing, yet neat, improvement from the single modality
results is obtained with α values in the range [0.51, 0.99].

Fig. 4: Accuracy of the average fusion method for various weights α.

The networks are implemented in Keras with TensorFlow backend. The com-
putational training and test times are reported in Table 2 using a Titan Xp GPU.

Method Train time (nb. images) Test time (nb. images)

Textual CNN 1,079 s (2789) 1.1 s (2570)
DenseNet169 w/o extra training 3,233 s (2789) 14.6 s (2570)
DenseNet169 w/ extra training 22,510 s (25880) 14.6 s (2570)
Feat.-level MLP w/ extra training 2,626 s (25880) 15.2 s (2570)

Table 2: Computational time of the various networks.

5 Discussions and Future Work

As illustrated with the experiments, the proposed approach largely outperforms
the state of the art [3] (93.7% vs. 83.5%). The results demonstrated the major
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importance of the visual analysis in the developed method (86.8% accuracy), in
line with the results and conclusion from the literature [4, 10, 1, 3]. The visual
data augmentation had an expected positive impact on the results with an in-
crease of accuracy of 3%. The complementarity of textual and visual information
was demonstrated by the series of experiments and analyses.

The proposed robust image modality classification enables to classify the
large dataset from PubMed Central with over five million publicly available
images and captions in 2017 and to use it as training or semi-supervised data
for various medical image and text analysis tasks.
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