Keywords:
- adversarial learning
- Automatic segmentation
- Challenge
- Classification
- Computer Vision and Pattern Recognition (cs.CV)
- concept vectors
- curriculum learning
- Deep convolutional neural network
- Deep Learning
- explainable AI (XAI)
- eye fundus images
- Feature ranking
- feature reuse
- finetuning
- FOS: Computer and information sciences
- glaucoma diagnosis
- Global explainability
- head and neck cancer
- Histopathology
- HPV status explanation. TNM explanation
- human-machine interaction
- interpretability
- Local explainability
- machine learning
- Machine Learning (cs.LG)
- medical imaging
- morphometric features
- multi-task learning
- Natural Language Processing
- Open access
- Oropharynx
- rule extraction
- wrong labels
Publications of Vincent Andrearczyk sorted by title
| 1-50 | 51-86 |
3
3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis, 2020
|
, , , and ,
[URL] |
A
A Bispectral 3D UNet for Rotation Robustness in Medical Segmentation, in: The First Workshop on Topology- and Graph-Informed Imaging Informatics at MICCAI, 2024 | , , , , and ,
A Global Taxonomy of Interpretable AI: Unifying the Terminology for the Technical and Social Sciences (2022), in: Artificial Intelligence Review, 56(3473–3504) | , , , , , , , , , , , , , , and ,
|
A systematic comparison of deep learning strategies for weakly supervised Gleason grading,, in: SPIE Medical Imaging, Houstonm, TX, USA, 2020 | , , , , and ,
|
An Exploration of Uncertainty Information for Segmentation Quality Assessment, in: SPIE Medical Imaging 2020: Image Processing, Houston, TX, USA, pages 381-390, SPIE, 2020 | , , , , , , and ,
|
Automated Tumor Segmentation in Radiotherapy (2022), in: Seminars in Radiation Oncology, 32:4(319-329) | , , , , and ,
[DOI] [URL] |
Automatic Detection and Multi-Component Segmentation of Brain Metastases in Longitudinal MRI (2024), in: Nature Scientic Reports | , , , , , , , , and ,
Automatic Head and Neck Tumor Segmentation and Outcome Prediction Relying on FDG-PET/CT Images: Findings from the Second Edition of the HECKTOR Challenge (2023), in: Medical Image Analysis, 90:1(102972)
|
, , , , , , , , , , and ,
[URL] |
Automatic Segmentation of Head and Neck Tumors and Nodal Metastases in PET-CT scans, in: Medical Imaging with Deep Learning, Montréal, Canada, 2020 | , , , , , , , and ,
[URL] |
B
Biomedical image analysis competitions: The state of current participation practice (2022), in: arXiv | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and ,
[DOI] [URL] |
Breast Histopathology with High-Performance Computing and Deep Learning (2020), in: Computer and Informatics | , , , , and ,
|
C
Cleaning Radiotherapy Contours for Radiomics Studies, is it Worth it? A Head and Neck Cancer Study (2022), in: Clinical and Translational Radiation Oncology, 33(153-158)
|
, , , , , , , , , and ,
|
Comparing various AI approaches to traditional quantitative assessment of the myocardial perfusion in [82Rb] PET for MACE prediction (2024), in: Nature Scientific Reports, 14:9644 | , , , , , , , , , and ,
[DOI] |
Comparison of MR preprocessing strategies and sequences for radiomics-based MGMT prediction, in: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (MICCAI/BrainLes 2021), Cham, pages 367–380, Springer International Publishing, 2022 | , , , , , , , and ,
[DOI] |
Concept attribution: Explaining CNN decisions to physicians (2020), in: Computers in Biology and Medicine | , and ,
[DOI] |
Concept discovery and Dataset exploration with Singular Value Decomposition, ICLR Workshop on Trustworthy ML, 2023 | , , , and ,
|
Consistency of Scale Covariance in Internal Representations of CNNs, in: Irish Machine Vision and Image Processing Conference, 2020 | , , and ,
|
D
Deep Learning Interpretability: Measureing the relevance of clinical concepts in CNN features, in: State of the art in neural networks, Elsevier, 2022 | , and ,
Deep learning interpretability: measuring the relevance of clinical concepts in convolutional neural networks features, Elsevier, volume 157-192, 2023 | , and ,
|
Deep Multimodal Classification of Image Types in Biomedical Journal Figures, in: CLEF 2018, Avignon, France, Springer, 2018 | and ,
|
Disentangling Neuron Representations with Concept Vectors, in: Proceedings of the 2nd Explainable AI for Computer Vision (XAI4CV) Workshop at CVPR 2023, 2023 | , , and ,
|
E
Evaluation and Comparison of CNN Visual Explanations for Histopathology, in: XAI-AAAI-21, 2021 | , , and ,
|
Explainability in automatic Paramagnetic Rim Lesion classification, in: 40th Congress Of The European Committee For Treatment And Research In Multiple Sclerosis (ECTRIMS), 2024 | , , , , , , , , , , , and ,
|
Explanation Generation via Decompositional Rules Extraction for Head and Neck Cancer Classification, in: Explainable and Transparent AI and Multi-Agent Systems, 2023 | , , , , and ,
|
Exploiting the PubMed Central repository to mine out a large multimodal dataset of rare cancer studies, in: SPIE Medical Imaging, Houston, TX, USA, 2020 | , , , and ,
|
Exploiting XAI maps to improve MS lesion segmentation and detection in MRI, in: Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI, 2024 | , , , , , , and ,
|
Exploring local rotation invariance in 3D CNNs with steerable filters, in: Medical Imaging with Deep Learning, pages 15-26, Proceedings of Machine Learning Research, 2019
|
, , , and ,
[URL] |
F
Fast Rotational Sparse Coding (2018)(arXiv:1806.04374) | , , and ,
[URL] |
FLAIR vs MPRAGE contribution to white matter lesion automatic segmentation in MS using localized saliency maps, in: Bern Interpretable AI Symposium (BIAS), 2023 | , , , , , , , and ,
|
Fully Automatic Head and Neck Cancer Prognosis Prediction in PET/CT, in: Multimodal Learning for Clinical Decision Support, pages 59-68, Springer LNCS, 2021 | , , , , , and ,
|
G
Generalizing Convolution Neural Networks on Stain Color Heterogeneous Data for Computational Pathology, in: SPIE Medical Imaging, Houston, TX, USA,, 2020 | , , and ,
|
Glaucoma Diagnosis from Eye Fundus Images Based on Deep Morphometric Feature Estimation, in: OMIA at MICCAI, Granada, Spain, 2018 | , , , and ,
|
Guiding CNNs towards Relevant Concepts by Multi-task and Adversarial Learning, arxiv, 2020 | , , and ,
[URL] |
H
Head and Neck Tumor Segmentation, Springer International Publishing, 2021 |
[URL] |
Head and Neck Tumor Segmentation and Outcome Prediction, Springer International Publishing, 2022 |
[DOI] [URL] |
Head and Neck Tumor Segmentation and Outcome Prediction, Springer International Publishing, 2023 | , , and ,
[DOI] [URL] |
HEad and neCK TumOR segmentation and outcome prediction using AI: lessons from three consecutive years of the HECKTOR challenge, in: European Head and Neck Society (EHNS) on Artificial Intelligence (AI) in Head & Neck Oncology, Lausanne and virtual, 2023 | , , , , , , and ,
|
HEad and neCK TumOR segmentation and outcome prediction: The HECKTOR challenge, in: European Society of Radiology, 2022 | , , , , , , , and ,
|
Head and Neck Tumor Segmentation in PET/CT: The HECKTOR Challenge (2022), in: Medical Image Analysis, 77(102336)
|
, , , , , , , , , , , , , , , , , , , , , , , , , and ,
[URL] |
I
Identification of paramagnetic rim lesions using conventional MRI - a deep learning approach, in: 39th Congress Of The European Committee For Treatment And Research In Multiple Sclerosis (ECTRIMS), 2023 | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and ,
|
Image Magnification Regression Using DenseNet for Exploiting Histopathology Open Access Content, in: MICCAI 2018 - Computational Pathology Workshop (COMPAY), Granada, Spain, 2018 | , , and ,
|
ImageCLEF 2019: Multimedia Retrieval in Medical Nature, Security and Lifelogging Applications, in: ECIR 2019, Cologne, Germany, 2019 | , , , , , , , , , , , , , , , , , , , , , , , , and ,
|
Improved interpretability for computer-aided severity assessment of retinopathy of prematurity, in: SPIE Medical Imaging, San Diego, CA, USA, 2019 | , , , , , , , , and ,
|
Instance-level explanations in multiple sclerosis lesion segmentation: a novel localized saliency map, in: ISMRM 2024, 2024 | , , , , , , , and ,
Instance-level quantitative saliency in multiple sclerosis lesion segmentation (2024), in: arxiv | , , , , , , , and ,
[URL] |
Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging, in: Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2020, 2020 | , , , and ,
|
Interpreting intentionally flawed models with linear probes, in: ICCV workshop on statistical deep learning in computer vision, Seoul, Korea, 2019 | , and ,
|
| 1-50 | 51-86 |