An Exploration of Uncertainty Information for Segmentation
Quality Assessment

Katharina Hoebel®?, Vincent Andrearczyk®, Andrew Beers?, Jay Patel®?, Ken Chang®®,
Adrien Depeursinge®?, Henning Miiller®®, and Jayashree Kalpathy-Cramer?®

#Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
PHarvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
“University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland

dCentre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
¢University of Geneva, Switzerland

ABSTRACT

Including uncertainty information in the assessment of a segmentation of pathologic structures on medical images,
offers the potential to increase trust into deep learning algorithms for the analysis of medical imaging. Here, we
examine options to extract uncertainty information from deep learning segmentation models and the influence
of the choice of cost functions on these uncertainty measures. To this end we train conventional UNets without
dropout, deep UNet ensembles, and Monte-Carlo (MC) dropout UNets to segment lung nodules on low dose
CT using either soft Dice or weighted categorical cross-entropy (wcc) as loss functions. We extract voxel-wise
uncertainty information from UNet models based on softmax maximum probability and from deep ensembles
and MC dropout UNets using mean voxel-wise entropy. Upon visual assessment, areas of high uncertainty
are localized in the periphery of segmentations and are in good agreement with incorrectly labelled voxels.
Furthermore, we evaluate how well uncertainty measures correlate with segmentation quality (Dice score). Mean
uncertainty over the segmented region (Uapelieq) derived from conventional UNet models does not show a strong
quantitative relationship with the Dice score (Spearman correlation coefficient of -0.45 for the soft Dice vs -0.64
for the wece model respectively). By comparison, image-level uncertainty measures derived from soft Dice as
well as wec MC UNet and deep UNet ensemble models correlate well with the Dice score. In conclusion, using
uncertainty information offers ways to assess segmentation quality fully automatically without access to ground
truth. Models trained using weighted categorical cross-entropy offer more meaningful uncertainty information
on a voxel-level.
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1. INTRODUCTION

As part of developing trust in artificial intelligence models and to pave the way for their eventual adoption into
the clinical workflow, it is important to understand how a model comes to its decisions and how reliable these
are. To date, most deep learning methods for the automatic segmentation of target structures from medical
imaging treat the problem as a supervised mapping between the input image and a binary output. However, due
to the absence of clearly defined boundaries of targets such as tumors, manual outlines used as the ground truth
suffer from high inter- and intra-rater variability''? As a consequence, training data for algorithm development
resembles weak labels rather than an absolute ground truth, increasing the model’s uncertainty. If a segmentation
algorithm in the clinic or in a research setting provided information about its confidence in its output, trust in
the model and the downstream analysis would be greatly improved.

A model’s uncertainty can be divided into aleatoric and epistemic uncertainties. While epistemic uncertainty,
the uncertainty over the true values of a model’s weights, decreases with increasing number of training data,
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aleatoric uncertainty represents an intrinsic measure of the noise in the data, e.g. inter-rater variability, and is
unaffected by the amount of available data.?

Recent work by Hu et al., has leveraged datasets with multiple annotations per training sample to model
aleatoric and epistemic uncertainty separately.* However, even in the absence of multiple annotations, we are
still able to extract the overall uncertainty of a model in its predictions by using uncertainty maps provided as
a natural measure of uncertainty by Bayesian deep networks. In multi-stage models these uncertainty estimates
can be propagated and used in downstream analysis steps to improve the overall performance of a pipeline e.g.
for segmentation or pulmonary nodule detection.’® Furthermore, recent work by Roy et al. and DeVries et al.
has shown that image-level uncertainty estimates derived from a model’s uncertainty maps correlate with the
quality of a segmentation.”®

Here, we explore the use of uncertainty measures on 3D segmentation of lung nodules. We compare three
methods for uncertainty estimation: Maximum softmax probability derived from the output of a UNet,? and
two methods that approximate Bayesian neural networks: deep ensembling'® and Monte-Carlo (MC) dropout
UNet.!'1!2 Furthermore, we assess how the choice of cost function influences the uncertainty estimates derived
from these models.

2. METHODS
2.1 Data set

The data set used for this study consists of a subset of the American National Lung Screening Trial (NLST) of
low dose CT scans of the thorax.!? The lung nodules were manually segmented by radiologists at the University
Hospitals of Geneva (HUG).' A total of 484 (244 benign/240 malignant, determined on histology) of 450
individual patients’ nodules were annotated (one nodule per study). The data set is split on the patient level
into training, validation and test data sets containing 316 (166 benign/150 malignant), 67 (30/37), and 101
(48/53) cases respectively.

Table 1. data set composition

Data set N patients ‘ N cases (benign/malignant) ‘

Training 316 316 (166/150)
Validation 67 67 (30/37)
Test 67 101 (48/53)

2.2 Lung Nodule Segmentation

The cropped volumes are windowed between -1000 and 400 HU and each volume is standardized (zero mean,
unit variance). We train 3D segmentation models on patches of size 32x32x16 and additional data augmentation
is implemented through sagittal flipping.

We explore the uncertainty information derived from three different models: maximum softmax probability
from standard UNet models,” '® deep UNet ensembles,'? and MC dropout UNets.'»'? Deep ensembles consist of
five separate UNet semgentation models, all randomly initialized and trained on the full training dataset. Each
network is intended to produce slightly varying segmentations. These predictions can successively be treated as
independent samples similar to samples derived from Bayesian networks. The third variation of segmentation
models are Monte Carlo dropout UNets. By applying dropout after each convolutional layer during training and
test time, the MC dropout UNet approximates probabilistic neuron connectivity similar to a Bayesian neural
network.

As cost functions, we use either soft Dice
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or weighted categorical cross-entropy
wee(p, g) = Y (—ag(x)logp(x) + (1 — g(x))log(1 — p(x))),
x

where p(x) denotes the model’s output for each pixel to belong to a lung nodule z, g(z) the ground truth, D(p, g)
the Dice score between p and g, b the binarization function with threshold 0.5, and o = 3.0, 8 = 0.1 are the
weighting factors to up-weight the foreground class () and down-weight the background class ().

The deep learning models were implemented in DeepNeuro'® (Keras with Tensorflow backend) and trained
on an NVIDIA K80 graphics processing unit.

We sample Neypsembie=5 times from deep ensembles consisting of 5 models, and Np;¢=20 from MC dropout
UNets. To generate a final segmentation result for deep ensembles and MC dropout models, we generate N
slightly different samples for each input, average the voxelwise probability over these samples to generate a final
segmentation probability map and then binarize this map.

2.3 Quantification of Uncertainty Information

For the conventional UNet models, we derive voxel-wise segmentation uncertainty Uy y.t(x) based on the distance
between the output of the softmax activation function and the binarization threshold ¢t = 0.5:

Uunet(z) =1 — |1 — 2p(x)|

(referred to as maximum softmax uncertainty). For deep ensembles and MC dropout models, the voxel-wise
segmentation uncertainty is estimated as the mean entropy over all N samples:

Ucnscmblc MC - Zpl IOg pl ))
Image-level uncertainty is described by mean uncertalnty over a segmentation:

Ulabelled = S op(@)) b Z Uz

p(x)>0.5

for the output of conventional UNet, deep UNet ensemble, and MC dropout UNet models. Additionally, we
derive two more uncertainty measures for the output of deep UNet ensembles and MC dropout UNet models.
The following uncertainty measures are computed based on the IV samples drawn for each input as described by
Roy et al.” coefficient of variation:
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2.4 Segmentation quality prediction

and mean pairwise Dice:

A linear regression model is developed to predict segmentation quality by means of Dice score between segmen-
tation and ground truth based on the three ground truth independent uncertainty measures, C'V, D, and
Ulabelied, using the python scikit-learn package.

3. RESULTS
3.1 Lung Nodule Segmentation Models

We developed a total of six lung nodule segmentation models using a combination of three different techniques:
UNet, deep UNet ensembles, and MC dropout UNets and two different cost functions: soft Dice and wce. The
best performance for MC dropout UNets was achieved using a dropout rate of pp;c = 0.2. The final segmentation
prediction for deep ensembles and MC dropout models was generated as described in Section 2.2. The average
Dice scores for the predictions on the test data set range from 0.70 (Dice UNet) to 0.77 (wce deep UNet ensemble)
and are listed in Table 2. For all three methods, the models trained using wcc perform better than the ones
trained with soft Dice. Rows 1, 3, and 5 in Figure 1 illustrate the segmentation results of some exemplary cases.



Table 2. Segmentation performance of the six developed lung nodule segmentation models (conventional UNet, deep
ensemble, and MC dropout UNet each trained using soft Dice or wcc as cost function) on the independent test dataset.

Model soft Dice | wcc
UNet 0.70 0.71
Deep UNet ensemble 0.74 0.77
MC dropout UNet 0.70 0.74

3.2 Qualitative Assessment of the Segmentation Uncertainty Distribution

Voxelwise uncertainty maps for all models are generated as described in 2.3. On visual assessment, the uncertainty
maps based on the maximum softmax probability of both UNet models as well as the uncertainty maps for deep
UNet ensembles and MC dropout UNets show high uncertainties in the periphery of the segmentations (Figure
1, row 2, 4, and 6 with their respective segmentation results above). Across all three methods, the uncertainty
maps derived from models trained using soft Dice have a steep uncertainty gradient at the margins, whereas
the wce models’ uncertainty maps have a larger area of high uncertainty in the periphery of the segmentations
with a less steep gradient between areas of high and low uncertainty. Especially in the case depicted in the
first and second row of Figure 1, areas of high uncertainty correspond to areas that are false positive or false
negative (yellow and red labels in row 1). This effect seems to be even more pronounced for models trained using
wee (columns 3, 5, and 7). However, in many cases, false positive areas are associated with low uncertainties,
comparable with these of true positive areas. This effect appears more distinct for models trained with soft Dice.
Comparing the different methods visually, uncertainty maps derived from MC dropout models appear to be less
noisy than the ones from UNets and deep UNet ensembles (especially for models trained using wec).

3.3 Quantitative Assessment of Segmentation Uncertainty

To obtain more quantitative information about the relationship between the quality of a predicted segmentation
and the uncertainty distribution, we assessed the correlation between the Dice score of a segmentation (as image
quality metric) and different image level uncertainty measures computed from voxelwise uncertainty maps or
variation between samples (for deep ensembles and MC dropout) as a surrogate for predictive uncertainty.

UNet The only ground truth independent uncertainty measure derivable from the maximum softmax uncer-
tainty maps is the mean uncertainty over all voxels of the predicted segmentation (p(x) > .5), Ulabelled- On
the test data set, however, Ul.peed did not show good correlation with the Dice score between ground truth
and the binarized segmentation map (Spearman correlation coefficient -0.45/-0.64 for the Dice and wcc UNet
respectively).

In addition to the ground truth independent mean uncertainty over the segmented region, we examined
whether the mean uncertainty over true positive (Uirue pos) areas differs from false positive/false negative areas
(Utaise poss Utalse neg) (green/yellow/red labels in Figure 1). Indeed, for the models trained using soft Dice,
Ulrue pos shows a stronger relationship with the segmentation Dice (-0.46) compared to Ugalse pos (-0.27) and
Utalse neg (0.16). In contrast, the maximum softmax uncertainty derived from the wee UNet model shows overall
a stronger correlation between the uncertainty over the labelled region. Here, this relationship is driven by a high
correlation coefficient with true positive labelled regions (—0.74), while there is no evident connection between
segmentation quality and Ufaise pos and a moderately strong correlation with Utaise neg-

Deep UNet ensemble and Monte Carlo dropout UNet For the developed deep UNet ensembles and
MC dropout UNet models, we examined the usability of three image-level uncertainty measures: coefficient
of variation (C'V'), mean pairwise Dice score between the N predictions (Dp),and mean uncertainty of the
segmentation (Ulapelled) described in 2.3. The correlation coefficients for all uncertainty measures and models
are listed in Table 4. Comparing the strength of the relationship between segmentation quality and the different
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Figure 1. Segmentation predictions (green: true positive, yellow: false positive, red: false negative) and spatial uncertainty
maps (brighter areas correspond to higher uncertainty) for the six developed lung nodule segmentation models.

Table 3. Spearman correlation coefficient between segmentation Dice score and measures of uncertainty for the UNet
models on the test data set, p values in parentheses.

Model all labelled true positive false positive | false negative
Dice UNet | -0.46 (5.6e-06) | -0.46 (4.5e-06) | -0.27 (9.9e-03) 0.16 (0.13)
wee UNet | -0.64 (9.2e-12) | -0.74 (1.1e-16) 0.01 (0.95) 0.56 (9.7¢-09)

uncertainty measures extracted from deep UNet ensembles and MC dropout UNets (separately for Dice and
wce), the correlations with uncertainty measures derived from MC dropout models are stronger than for deep
ensembles. This effect is also present in the same magnitude between the coefficients from our deep ensembles
with uncertainty measures computed from only five MC dropout samples (data not shown). While CV and D,,,
show comparable (if slightly higher for Dice) correlations with the segmentation quality for all deep ensemble
and MC dropout models, there is a clear advantage for models trained using wee for Upapeliea (-0.43/-0.49 vs
-0.74/-0.82 for Dice vs wce deep ensemble/MC dropout models).

Dependence of Uncertainty Metrics on the Target Size As described in the previous section, the areas
of highest uncertainty are concentrated around the margins of the predicted segmentation. Accordingly, we
examined whether there is a confounding dependence between the described three uncertainty metrics and the
surface area or volume of a segmentation. The Spearman correlation coeflicients between uncertainty metrics



Table 4. Spearman correlation coefficient between segmentation Dice score and measures of uncertainty, p values in
parentheses

Model CV D,y Ulabelled

Dice deep UNet ensemble | -0.61 (2.0e-11) | 0.70 (1.7e-15) | -0.43 (9.4e-06)
wce deep UNet ensemble | -0.68 (1.2e-14)) | 0.74 (1.4e-18) | -0.74 (3.7e-18)
Dice MC dropout UNet -0.78 (1.56e-21) | 0.83 (4.4e-27) | -0.49 (1.48e-07)

—~

—~ |

wce MC dropout UNet -0.75 (1.3e-19) | 0.79 (1.2e-22) | -0.82 (1.0e-25)
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Figure 2. Correlation between segmentation quality (Dice score) and uncertainty measures for deep UNet ensembles
(row 1 and 2) and MC dropout UNet (row 3 and 4) models trained using (soft) Dice or wcc as cost function (training,
validation, and test data set)

derived from the wee MC dropout UNet and segmentation surface area/volume are listed in Table 5. None of
the uncertainty metrics shows a significantly high correlation with either surface area or volume. Therefore, we
restrain to correct uncertainty measures for surface area or volume.



Table 5. Spearman correlation coefficient between segmentation size measures (in units of voxels) and measures of uncer-
tainty, p values in parentheses

Size Measure (Y% Dpw Ulabelled
surface area | 0.01 (0.89) | -0.21 (3.0e-02) | 0.25 (1.2e-02)
volume -0.09 (0.39) | -0.12 (0.26) 0.15 (0.14)

3.4 Predicting Segmentation Quality in the Absence of Ground Truth

The ability to predict the segmentation quality independently of a ground truth would allow to flag a model’s
predictions for human review if they do not fulfill a set quality criterion. We develop a linear regression model
based on uncertainty metrics extracted from the wecec MC dropout UNet to predict the Dice score of a predicted
segmentation with the goal to use this model to flag cases with a predicted Dice score < 0.8 for human review.
The model was developed on the training data set and evaluated on the independent test set. This preliminary
model has a sensitivity of 87%, specificity of 60% and a false negative rate of 13%. Figure 3 shows the relationship
between the true Dice score and the predicted Dice score for the cases in the test data set.
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Figure 3. Linear regression model to predict the Dice score of a segmentation prediction (here test data set) from its
uncertainty measures. The red line indicates the chosen cutoff for flagging of 0.8 and the red line the true decision
boundary of 0.8.

4. DISCUSSION

We evaluated three different deep learning segmentation methods in combination with estimation of segmentation
uncertainty for the segmentation of lung nodules from low dose CT imaging. Additionally, we compared the
effect of two different widely used cost functions, soft Dice and weighted categorical cross-entropy (wcc), on
the uncertainty measures extracted from the models’ output. All six segmentation models perform well on the
segmentation task (see Table 2) with models trained using wee performing slightly better in comparison to models
trained using soft Dice. This effect that is more accentuated for deep ensembles and MC dropout models than
the conventional 3D UNets.

In contrast to some recently proposed methods,*'7 the methods used for this work are not intended to
maximize the variability in segmentation predictions by producing segmentation hypotheses that reflect the full
space of potential segmentations rather than provide information about the models’ uncertainty in addition to
one most likely segmentation. Furthermore, they only require one set of annotations for the training data.



Qualitative Assessment of Uncertainty Maps The spatial uncertainty distributions derived from all six
lung nodule segmentation models showed good agreement with areas of false positive and false negative segmen-
tation. Generally, the areas of highest uncertainties are concentrated in the periphery of a segmentation. This is
in good agreement with findings previously reported by other groups.®® 18 Qualitatively, the uncertainty maps
derived from the wce models of all three methods appear to capture the uncertainty distribution better than
Dice models. Furthermore, the uncertainty maps are less noisy for MC dropout models as compared to conven-
tional UNets and deep ensembles. While the qualitative visual assessment offers the potential to give researchers
some insight into why and how a segmentation model tends to fail in certain cases, in the absence of a ground
truth expert review of every single case is required. Therefore, we assessed how well ground truth independent
uncertainty measures derived from a model’s predictions correlate with the quality of the segmentation reflected
by its Dice score.

Correlation Between Segmentation Quality and Ground-Truth Independent Uncertainty Measures
While the mean uncertainty Ulapelieq derived from the maximum softmax probability of conventional UNets shows
a moderate relationship with the Dice score of the prediction, this metric might be sufficient to give an idea in
extreme cases (e.g. very good or very bad segmentation quality). However, this correlation is hardly sufficient to
inform downstream tasks e.g. flagging cases for human review especially for borderline cases close to the chosen
threshold.

In contrast, ground truth independent uncertainty measures computed from samples derived from deep UNet
ensembles and MC dropout UNets show a strong relationship with segmentation quality. Both coefficient of
variation and the mean pairwise Dice correlate well with the Dice score for models trained using Dice as well as
wce loss. However, this is not the case for the mean uncertainty over the labelled region: here, models trained
using wce reveal a much stronger correlation with segmentation quality as compared to models trained using
Dice (for both deep ensembles as well as MC dropout UNets). This might be due to the smaller region of high
uncertainty in Dice models as compared to wee models (compared in Figure 1). The use of Dice as cost function
seems to enforce steep probability gradients at the borders of a segmentation in contrast to a voxel-level cost
function as wce. Accordingly, for uncertainty measures based on the voxels’ uncertainty values like the mean
uncertainty over the segmentation, the use of a voxel-level cost function like wce is advantageous over soft Dice
resulting in both higher quality segmentation and image level uncertainty information.

In addition to providing uncertainty measures that show a higher correlation to segmentation Dice (Table
3.3), training and using MC dropout is slightly more convenient than deep ensembles as we are only required
to train one model that allows to sample from it as often as desired. Our results for the correlation between
segmentation quality and uncertainty measures are in good agreement with the results reported by Roy et al.
for the segmentation of brain structures from MRI using an MC dropout segmentation model.” The model that
provides the best overall uncertainty measures is the wee MC dropout UNet.

Even though the concentration of the areas of highest uncertainty around the margins of the predicted seg-
mentations (as illustrated by the uncertainty maps in row 2, 4, and 6 in Figure 1) might imply some relationship
between the volume or surface area of a segmentation, our results imply that there is no need to correct un-
certainty measures for the surface area or volume (Table 5). However, the correlation coefficient of -0.21/0.25
between the surface area of a predicted segmentation and mean pairwise Dice/mean uncertainty indicate that
there is a weak connection and in other use cases a correction might be appropriate.

Predicting Segmentation Quality from Uncertainty Metrics Independent of a Ground Truth One
potential application of uncertainty measures in deep learning segmentation pipelines would be the automatic
flagging of segmentation predictions with an expected low segmentation quality for human review independent of
the availability of a ground truth. Due to the continuous nature of the Dice score as segmentation quality metric
(and other related metrics such as Hausdorfl distance), a linear regression model is the preferred method over
classification models such as support vector machine or random forest. As illustrated in Figure 3, the predicted
segmentation Dice score is in good accordance with the true Dice score for cases in the independent test data
set. Here, we are mostly concerned about the false negative cases in the left upper quadrant of Figure 3 - cases



that actually have a Dice score that is lower than the chosen threshold but where the predicted score is above
the threshold. However, the true Dice of 5 out of the 7 false negative cases in our test data set is above 0.7,
close to the chosen threshold of 0.8. Therefore, a misclassification, although not desirable, would not have a
large impact on the overall performance in the setting of a large scale study. An additional advantage of a linear
regression model over classification models is that the cutoff for cases that are routed for human review can be
chosen arbitrarily without the need to re-train the regression model. For sure, if the result of a segmentation had
an impact on e.g. the therapy a patient is about to receive, an automated quality assessment could not replace
the careful review of an expert.

Future research should address the possibility to extract more uncertainty information from the spatial
distribution of uncertainty over a segmentation and explore the use of the above described uncertainty measures
for other disease sites and imaging modalities.
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