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Abstract

Visualization methods for Convolutional Neural Net-
works (CNNs) are spreading within the medical com-
munity to obtain explainable AI (XAI). The sole quali-
tative assessment of the explanations is subject to a risk
of confirmation bias. This paper proposes a methodol-
ogy for the quantitative evaluation of common visual-
ization approaches for histopathology images, i.e. Class
Activation Mapping and Local-Interpretable Model-
Agnostic Explanations. In our evaluation, we propose
to assess four main points, namely the alignment with
clinical factors, the agreement between XAI methods,
the consistency and repeatability of the explanations. To
do so, we compare the intersection over union of multi-
ple visualizations of the CNN attention with the seman-
tic annotation of functionally different nuclei types. The
experimental results do not show stronger attributions to
the multiple nuclei types than those of a randomly ini-
tialized CNN. The visualizations hardly agree on salient
areas and LIME outputs have particularly unstable re-
peatability and consistency. The qualitative evaluation
alone is thus not sufficient to establish the appropriate-
ness and reliability of the visualization tools. The code
is available on GitHub at bit.ly/2K48HKz.

In many medical imaging tasks, such as segmentation and
classification in magnetic resonance, computed tomography
or ultrasound images, the input comprises an image with a
clear region of interest (e.g. organ or tumor) that often comes
with ground-truth segmentation. In histopathology, Whole
Slide Images (WSIs) can reach gigapixel sizes, with some-
times only infinitesimal regions being decisive for the task.
Isolated tumor cells, for example, can determine crucial de-
cisions despite being single cells or small clusters of tumor
cells that occupy less than 0.008% of the entire image.

Understanding the decision-making process of Convolu-
tional Neural Networks (CNNs) is a key point in medi-
cal imaging, to ensure that clinically correct decisions are
taken. Among the explainability (XAI) methods proposed
in the literature, the post-training attribution to either high-
level concepts (Graziani, Andrearczyk, and Müller 2018;
Graziani et al. 2020; Kim et al. 2018) or input features
was proposed for medical applications (Palatnik de Sousa,
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Maria Bernardes Rebuzzi Vellasco, and Costa da Silva 2019;
Ribeiro, Singh, and Guestrin 2016). Feature attribution, in
particular, highlights the most influential set of features in
the input space by generating saliency maps, also called
heatmaps (Selvaraju et al. 2017; Palatnik de Sousa, Maria
Bernardes Rebuzzi Vellasco, and Costa da Silva 2019; Chat-
topadhay et al. 2018; Ribeiro, Singh, and Guestrin 2016;
Zhou et al. 2016). One of the risks of accepting the plau-
sibility of the heatmaps only by visual assessment is that
of incurring in the so-called confirmation bias. As the re-
search in cognitive psychology explains, we tend to attribute
greater confidence to a hypothesis, even if false, when expla-
nations are generated for it (Lombrozo 2006). For this rea-
son, the reliability and trustworthiness of visual explanations
should be thoroughly addressed before their incorporation
into healthcare pipelines, clarifying the advantages, limita-
tions and similarities of the methods. As Tokenaboni argues
in (Tonekaboni et al. 2019), the specific needs of clinical
practice require the evaluation of the appropriateness of the
explanations, their alignment with clinical factors, their po-
tential of being translated into action and, finally, their con-
sistency over parameter shifts. Remarkable evaluations of
the consistency of saliency maps proposed adding constant
shifts into the data (Kindermans et al. 2019), comparing vi-
sualizations after cascading randomizations of the network
weights (Adebayo et al. 2018) and quantifying the similarity
of explanations under multiple conditions (Arun et al. 2020).
The instability of XAI visualization methods applied to nat-
ural images and chest X-rays emerged from these studies. If
the lesion contours are available, the appropriateness of the
explanations can be evaluated by localization metrics (Arun
et al. 2020). Evaluating visualization methods on the basis of
their localization performance as in (Arun et al. 2020), how-
ever, may easily fail in the context of histopathology images.
WSIs do not have a clear central subject on the foreground
but rather a structural disposition of many instances (e.g.
connective, adipose, or epithelium cells) at several scales,
as illustrated in Fig. 1.

In this work, we propose quantitative metrics that can
specifically evaluate visual explanations in the context of
histopathology images (at 40X magnification). To establish
whether the visualizations are appropriate for the domain,
we evaluate the Intersection over Union (IoU) between the
heatmaps and functionally different nuclei types, i.e. neo-



plastic, inflammatory, epithelial and connective nuclei. We
then compare the Structural SIMilarity index (SSIM) be-
tween multiple XAI methods in order to help users with
choosing the best visualization method and to reduce the
number of look-alike visualizations. The consistency of the
explanations is evaluated against small shifts in the hyper-
parameters of the explanation techniques, and against the
cascading randomization of the model parameters (i.e. CNN
weights). We finally assess, where needed, the repeatabil-
ity of the explanations for multiple initialization seeds. Our
analysis evaluates the commonly used activation maps and
linear surrogate models XAI methods, namely Class Activa-
tion Mapping (CAM), its gradient-based evolutions Grad-
CAM and Grad-CAM++, and Local-Interpretable Model
Agnostic Explanations (LIME). Results on the Camelyon
and PanNuke data collections show that the XAI visualiza-
tions in this paper do not explain the CNN decisions in terms
of the attention paid to tumorous nuclei. The visualizations,
moreover, disagree on the salient input regions, and appear
inconsistent for small shifts in the XAI hyper-parameters.

Methods
Breast Tissue Classification
Datasets We use a combination of three publicly available
datasets, namely Camelyon 16, Camelyon 17 (Litjens et al.
2018) and the breast subset of the PanNuke dataset (Gamper
et al. 2019)1.

The Camelyon collection includes more than a thou-
sand training WSIs of lymph node sections (899 for Came-
lyon 17 and 270 for Camelyon 16), with slide-level annota-
tions of metastasis type (negative, macro-metastases, micro-
metastases, isolated tumor cells) and a few manual segmen-
tations of tumor regions (only for 320 WSIs). The data were
collected at five medical centers with three scanner types and
present high heterogeneity and staining variability (Khan et
al. 2020).

The PanNuke dataset is a collection of 481 WSIs from
19 different tissue types with semi-automatic instance seg-
mentations of five different nuclei types, namely neoplas-
tic, inflammatory, connective, epithelial and dead nuclei. No
dead nuclei were segmented for the breast data used in our
work, as shown by the nuclei type statistics in (Gamper et
al. 2020). The benefit of combining images from several
datasets is twofold. It improves the model generalization to
unseen data and, at the same time, it provides semantic nu-
clei segmentations to evaluate the overlap of the visual ex-
planations with various nuclei types.

Image patches (of 224×224 pixels, i.e. the network input
size) are extracted from all WSIs at 40X magnification, the
highest level of magnification, to show the qualitative fea-
tures of the nuclei that are prognostic of cancer (Rakha et al.
2008). Since the inputs from PanNuke are already released
in image patches of size 256×256 pixels, and since they are
under-represented in number with respect to the Camelyon
dataset, we oversample the original image patches to a five

1https://camelyon17.grand-challenge.org/
and https://jgamper.github.io/PanNukeDataset/

Table 1: Summary of the training, validation and testing
splits.

Cam 16 Cam 17 Pannuke

Train Negative 12,954 107,951 2,915
Positive 6,036 17,475 4,965

Validation Negative - 820 -
Positive - 1000 -

Test Negative - 1,215 1,475
Positive - 1,499 2,400

times larger dataset. The oversampling is obtained by crop-
ping the images at several locations (center, upper left, upper
right, bottom left and bottom right corners). The training,
validation and testing splits are summarized in Table 1. For
the training split, the PanNuke patches were extracted from
the first two original splits provided for benchmarking the
data. The third split was used as testing data. Thus, the train-
ing set comprises 152,296 images (of which 123,820 do not
contain tumor, i.e. negative and 28,476 contain tumor, i.e.
positive). 1,820 images from two centers of the Camelyon17
data were used as validation. Finally, the test set comprises
a total of 6,589 images with 2,690 negative and 3,899 pos-
itive samples. Reinhard normalization is applied to all the
patches to reduce the stain variability, as suggested in (Khan
et al. 2020).

Network Architecture and Training The CNN archi-
tecture is an Inception V3 (Szegedy et al. 2016) with Im-
ageNet pre-trained weights that is entirely finetuned on the
histopathology training images to solve the binary classifica-
tion task of distinguishing positive samples against negative
ones. This solution outperforms other architectures, and is
therefore used for the analyses. Three fully-connected layers
(2048, 512 and 256 neurons respectively) with dropout prob-
ability of 0.8 and a prediction layer are added on top of the
pre-trained features. The weighted binary cross-entropy loss
is used to address the strong class imbalance in the training
data. L2 regularization is used with a coefficient of 0.01 on
the fully-connected layers. The optimization is solved with
stochastic gradient descent and standard parameters (Nes-
terov momentum at 0.9 and decay at 1e-6). Early stopping is
performed on the validation loss to stop the training process,
with 5 epochs of patience. The network obtains a test accu-
racy of 0.80 with an Area Under the ROC Curve (AUC) of
0.85.

Visualization Methods
Class Activation Maps Three types of activation maps
are used for the analysis, namely the original CAM imple-
mentation (Zhou et al. 2016), the gradient-weighted CAM
known as Grad-CAM (Selvaraju et al. 2017) and its gen-
eralized version Grad-CAM++ (Chattopadhay et al. 2018).
CAM produces a localization map by visualizing the con-
tribution of each feature map before these are spatially av-
eraged and linearly combined to produce the network pre-
diction. Grad-CAM generalizes CAM as it generates visual
explanations by directly taking into account the cascade of



gradients, thus applying to a wider variety of models and
applications, including image captioning and query answer-
ing. These two methods were shown to be equivalent up to a
normalization constant that is proportional to the number of
pixels in the feature maps (Selvaraju et al. 2017). As a fur-
ther development, Grad-CAM++ considers the gradients at
the pixel level rather than those of the entire feature maps2.
As a result Grad-CAM++ explanations partially address the
shortcomings of considering the entire feature maps, like the
difficulty to operate when multiple occurrences of instances
of the same class occur in a single image.

LIME Interpretable surrogates are used as linear classi-
fiers by LIME to locally simulate the decisions of the global
classifier. Using LIME to explain CNNs is similar to us-
ing a sparse linear model to approximate the complex de-
cision function of the CNN. The first step of the applica-
tion of LIME to images consists of clustering pixels into
superpixels (that will be used as features) using color, tex-
ture and other types of local similarities. Randomly hiding
some of the superpixels generates perturbations (called sam-
ples) of the original images which can be used to compute
the relevance of each superpixel. Following the indications
in (Palatnik de Sousa, Maria Bernardes Rebuzzi Vellasco,
and Costa da Silva 2019), we test two superpixel algorithms
namely Simple Linear Iterative Clustering (SLIC) (Achanta
et al. 2012) and Felzenszwalb’s graph based image segmen-
tation (FHA) (Felzenszwalb and Huttenlocher 2004).

Evaluation Methods
Visual Similarity and Alignment with Clinical Factors
For the methods considered in this analysis, namely CAM,
Grad-CAM, Grad-CAM++, and LIME with SLIC and FHA
superpixels, we propose the qualitative evaluation of some
visualizations and two quantitative analyses. The quantita-
tive analyses measure respectively the accordance of meth-
ods (in terms of their visual similarity) and their align-
ment with clinical factors. In the first quantitative analy-
sis, the SSIM is used to establish whether different XAI
methods point to the same input regions to explain a given
prediction. The SSIM, ranging from 0 (no structural sim-
ilarity) to 1 (identical structural similarity), is computed
for pairs of XAI methods to evaluate their agreement. In
the second analysis, we follow the experiments in (Zhou
et al. 2018) to compute the overlap (IoU) of the explana-
tions with specific image regions, i.e. each of the four nu-
clei types. Particular attention is given to neoplastic nuclei
as they are indicators of tumor tissue (Gamper et al. 2019;
2020).

Consistency and Repeatability The consistency of the
visualizations is evaluated over variations in the method
hyper-parameters. The number of superpixels and the size
of the neighborhood considered by the linear surrogate (the

2The Rectified Linear Unit (ReLU) activation function that is
applied to the gradients is neglected in the original formulation
(Chattopadhay et al. 2018). The backpropagation of the gradients
is as a result not thresholded by the activation function.

number of samples used to solve the local linear classifi-
cation task in LIME) are hyper-parameters that need to be
tuned to generate meaningful LIME explanations. By using
SSIM, we evaluate the similarity of the visualizations ob-
tained for slightly increasing values of the hyper-parameters,
until a visible plateau is reached (meaning that no further
change happens with an additional increase in the hyper-
parameter value). Based on the observations in (Madhyastha
and Jain 2019), we further evaluate the impact of the inher-
ent randomness within the LIME explanation. We compute
the repeatability as the SSIM between visualizations gener-
ated for multiple initialization seeds of the surrogate model.
The initialization seed controls both the random choice of
the local neighborhood samples and the starting point of the
optimization algorithm for the training of the local surro-
gate. CAM visualizations are excluded from this analysis as
they do not depend on the hyper-parameter choice.

Randomization Test The randomization test verifies the
dependence of the explanation on the model parameters.
The output of the explainability obtained from a trained
network is compared to that of a network with some ran-
domly initialized parameters. If no clear change is present
between the explanation of the trained CNN and that with
randomly initialized weights, then no clear link can be es-
tablished between the network weights and the explanation.
This can lead to a misleading interpretation of the visual-
izations. With the cascading randomization test (Adebayo
et al. 2018), the CNN weights are randomized in progres-
sion from the top layer to the bottom one. For each layer
we evaluate the similarity between the original explanation
and the one obtained with random weights up to that layer.
As previous work has shown, the SSIM of explanations for
ImageNet inputs does not necessarily decrease with the pro-
gressive randomization of the InceptionV3 layer (Adebayo
et al. 2018). From the cascading randomization, we can only
assess if the heatmaps depend on the network weights, as in
the Pneumothorax examples in (Arun et al. 2020) but we
cannot establish whether, after training, the heatmaps point
more towards neoplastic nuclei than before. Therefore, we
compute as an additional analysis the IoUs with each nuclei
type for a fully randomized untrained CNN. This analysis
is conducted to highlight whether the explanations become
more aligned with clinically relevant factors after training.

Results
Visual Similarity of XAI Methods
We compare the visualizations obtained for test PanNuke
images in Fig. 1. In this visual inspection, we compare the
heatmaps of four images with different classification out-
comes, namely True Positives (TP), True Negatives (TN),
False Positives (FP) and False Negatives (FN)3. The seman-
tic segmentation of the nuclei is overlayed on the origi-
nal images. To enable a fair comparison across the differ-
ent methods and the different inputs, the heatmaps are nor-
malized between zero and one according to the maximum

3More images are available in the Github repository for further
validation: https://bit.ly/2K48HKz.



Figure 1: Qualitative comparison of CAM, Grad-CAM,
Grad-CAM++ and LIME on testing images. We report
LIME computed with SLIC and FHA superpixel extraction
as well as their average. The nuclei segmentations are over-
layed on the original images in the left column.

and minimum values of the heatmaps for all testing inputs.
As suggested in (Palatnik de Sousa, Maria Bernardes Re-
buzzi Vellasco, and Costa da Silva 2019), the average of the
LIME visualizations obtained with the two superpixel ex-
traction algorithms is also shown for qualitative assessment
(LIME AVG). To obtain LIME heatmaps, we use the max-
imum number of features for the explanations, correspond-
ing to using all the superpixels in the images. We set the
neighborhood size to 10,000 samples to obtain more robust
visualizations, despite the high computational cost of the op-
erations (Ribeiro, Singh, and Guestrin 2016). Heatmaps of
negative predictions (both TNs and FNs) have lower values
than those for TPs. The mean value of the CAM values, for
example, are 1.53 for TNs, 1.83 for FNs and 4.03 for TPs.

A question that may arise is whether the heatmaps agree
(i.e. high SSIM) when the network is confident about the
predicted class. We evaluate the correlation between the
CNN predictions and the SSIM values to see whether the
similarity increases for increasing values of the prediction.
The SSIM is computed for 200 randomly drawn test inputs
with class stratification (100 for the positive class and 100
for the negative class). Pearson’s correlation of the SSIM
values is shown in Fig. 2a. Grad-CAM behaves as a general-
ization of CAM (Selvaraju et al. 2017), and their agreement
is positively correlated with the network confidence (with
Pearson’s correlation coefficient ρ = 0.44 (p << 0.001).
The correlations between the prediction and the SSIM of the
other pairs of XAI methods in Fig. 2a are mostly negative,
showing that heatmaps are more likely to disagree if the pre-
diction is positive.

In Fig. 2b, we compare the average SSIM values for pairs
of XAI methods. The 200 testing inputs are divided accord-
ing to their classification outcomes, i.e. TP, TN, FP, FN.
The XAI methods agree more on negative predictions than
on positive ones, with an SSIM above 0.6 for all methods
mostly due to consistently low activations of the heatmaps.

Alignment with Clinical Factors
We evaluate whether the explanations reflect the attention of
the CNN towards clinically relevant factors. This alignment
with clinical factors is quantified as the IoU of the heatmaps

(a) (b)

Figure 2: a) Pearson’s correlation between the SSIM of pairs
of XAI methods on testing input images and the relative
CNN predictions. For all cells, except C/LS, p << 0.005.
b) Average SSIM between pairs of XAI methods for the dif-
ferent network outcomes, i.e. TN: True Negative, TP: True
Positive, FN: False Negative, FP: False Positive. The error
bars represent the standard deviation of the SSIM values.

with the segmentation masks of functionally different nuclei.
The IoU is computed for 100 testing images of the PanNuke
dataset containing at least one neoplastic nucleus (indicative
of the presence of tumor). The heatmaps are thresholded,
as in (Zhou et al. 2018), so that they activate on average for
60% of the pixels of the positive class images. We obtain one
IoU score per image and per annotation type. Because some
nuclei types are not present on some subsets of images, the
IoU for a given annotation type is computed only on the sub-
set of images that contains at least one instance of this type.
Results are presented in Fig. 3. The IoU of the heatmaps gen-
erated for a CNN with fully randomized weights is added as
a baseline for comparison4.

Consistency, Repeatability and Randomization Test
We evaluate the consistency of the visualizations by assess-
ing three points: (i) their dependency on the XAI hyper-
parameters, (ii) their repeatability, and (iii) their response
to the randomization test. Since activation maps do not re-
quire the tuning of hyper-parameters, the consistency (i) and
repeatability analysis (ii) are only reported for LIME.

To assess (i), we monitor the changes in the SSIM over
small shifts in two hyper-parameters, namely the number of
samples (that corresponds to the neighborhood size), and the
number of features, i.e. the number of superpixels retained
for the analysis. In (i), differently from the analysis in (ii),
we do not reset the initialization seed used by the LIME sur-
rogate model across repetitions. This gives more stability to
the comparison, reducing the level of stochasticity within
the generation of LIME explanations. The plot in Fig. 4a
shows the SSIM for changing values of the neighborhood
size, with the number of superpixels fixed at 100. The shift
in the hyper-parameters was performed within the range of
zero to 3000 with a step of 50. For a given value N on the
x-axis, the plot represents the SSIM between the heatmap
obtained with N samples (image perturbations) and the one
obtained with N − 50 samples. Similarly, Fig. 4b reports
the SSIMs between heatmaps obtained by fixing the number
of samples to 1000 and shifting the number of superpixels
retained from zero to 3000 by intervals of 50.

4This is not the same as the cascaded randomization test pro-
posed in (Adebayo et al. 2018), that is reported in Fig. 7



Figure 3: Quantification of CNN attention on the nuclei types in PanNuke expressed as the IoU in the testing set. The IoU of
a network with randomly initialized weights (RANDOM-TP and RANDOM-FN) is added as a baseline for comparison. Best
seen on screen.

(a) Neighborhood size (b) Number of superpixels

Figure 4: SSIM between heatmaps obtained from LIME
when a parameter differs by a shift of 50. The studied pa-
rameter is the number of samples in (a) and the number of
superpixels in (b). E.g. the SSIM for the x-axis point 1000 is
the SSIM between the LIME method with 1000 samples and
the LIME method with 950 samples. The number of super-
pixels is set to 100 in (a) and the neighborhood size to 1000
in (b).

(a) Neighborhood size of 100
samples.

(b) Neighborhood size of 1000
samples.

Figure 5: SSIM evaluating LIME repeatability over 25 repe-
titions for True Positive (TP) and False Negative (FN) inputs
for both SLIC and FHA superpixels. The random seed ini-
tialization for LIME is reset at every repetition. Heatmaps
obtained with 10, 100 and 1000 superpixels are compared.
Error bars report the standard deviation.

We assess (ii), namely the repeatability of LIME visual-
izations, by evaluating the SSIM of the heatmaps obtained
with 25 different initialization seeds. As the hyper-parameter
values for the number of superpixels and the neighborhood
size may also affect LIME heatmaps (see Fig. 4), we com-
pare in Fig. 5 the repeatability of the visualizations for 10,
100 and 1000 superpixels with neighborhoods of 100 and
1000 samples. High repeatability (SSIM around 0.8) is ob-
tained only with 10 superpixels and a larger neighborhood

Fig. 5(b) results in slightly more stable explanations.
The randomization test (iii) is finally performed for the

XAI visualization methods considered in this analysis to
assess the dependency of the explanations on the CNN
weights. The weights are randomized in a cascading fashion
(from the top to the bottom layers) up to the full randomiza-
tion of all the CNN. In Fig. 6, we show visual examples of
these cascaded randomizations. The SSIM between the orig-
inal heatmap (from the trained CNN) and the one after the
randomization at each layer is shown in Fig. 7.

Figure 6: Visual assessment of the cascading randomiza-
tion (Adebayo et al. 2018) test for the positive input shown
in the top left corner. The progression from left to right
shows the XAI heatmaps for a randomization of the network
weights up to the layer represented by each column.

Figure 7: SSIM for cascading randomization (Adebayo et
al. 2018). We show the SSIM between the original heatmaps
(from the trained network) and the heatmaps generated as
the CNN weights are randomized in the cascading way.



Discussion
The experiments propose an in-depth evaluation of popu-
lar XAI methods. XAI explanations were generated and vi-
sually compared for a total of 200 testing inputs, despite
only a subset is presented in Fig. 1. The full set of results
can be inspected in the GitHub repository. The CAM-based
visualizations in Fig. 1 seem similar to each other. They
all activate more frequently and with larger absolute val-
ues for positive predictions, with stronger intensity on the
neoplastic nuclei areas, as also seen in (Graziani, Andrea-
rczyk, and Müller 2019). The results obtained with LIME,
on the other hand, are difficult to interpret in the reported
examples, being very dependent on the generation of su-
perpixels (Palatnik de Sousa, Maria Bernardes Rebuzzi Vel-
lasco, and Costa da Silva 2019). Apart from these consider-
ations, however, the simple qualitative analysis is not suffi-
cient to evaluate the appropriateness and reliability of these
XAI methods for histopathology images.

The quantitative metrics in this paper evaluate XAI meth-
ods from a global perspective. The correlation analysis in
Fig. 2a shows that the explanations mostly agree when the
prediction is low (i.e. low probability of tumor). The agree-
ment is given by the very low values everywhere on the
heatmap for these inputs (as also seen in the qualitative as-
sessment in Fig. 1). The SSIM values in Fig. 2 further show
that XAI visualizations are dissimilar for positive predic-
tions (TPs and FPs). The similarity between CAM and Grad-
CAM, shown by the high SSIM values for all prediction out-
comes (0.8 on average), confirms the equivalence between
the two methods explained in (Selvaraju et al. 2017).

The IoU analysis in Fig. 3 suggests that all XAI methods
attribute the largest attention to the neoplastic nuclei. At first
sight, this may indicate that neoplastic nuclei are responsi-
ble for the identification of tumorous patches. There is, how-
ever, an important bias in the distribution of neoplastic nu-
clei, that are in larger numbers than all other types and are
present only in positive images by construction ( the ground
truth of all patches is computed by looking at the neoplas-
tic nuclei). We cannot thus clearly establish the correlation
between the attention attributed to neoplastic nuclei and the
network outcome. Because of this, we compare the IoUs of a
trained CNN to that of a randomly initialized CNN, also re-
ported in Fig. 3. Only a slight (non-statistically significative)
reduction in the IoU with the neoplastic nuclei is noticed.
This suggests that the likelihood of high IoU with neoplas-
tic nuclei is already high for a random heatmap and that the
alignment of the XAI visualization with clinically relevant
features is only apparent.

The consistency of the explanations upon small shifts in
the hyper-parameter setting is another point of our analy-
sis. Fig. 4 shows that LIME results depend strongly on the
hyper-parameter set-up. The SSIM evaluating shifts in the
parameters only plateaus after passing high values for both
the neighborhood size (above 1000 samples) and the number
of features (i.e. number of superpixels, above than 100). The
latter should be much larger than general recommendations
for LIME on non-visual inputs (e.g. around 10 features for
text applications). Besides, Fig. 5 shows that LIME explana-
tions are very unstable and not repeatable unless the number

of features used for the analysis is small (around 10, from
Fig. 5). The two analyses in Fig. 4b and 5 show that it is not
possible to obtain both repeatable and consistent LIME vi-
sualizations. Heatmaps with only 10 superpixels, moreover,
are hard to visually interpret (not illustrated in this paper, but
available on the GitHub for comparison).

We observe in Fig. 6 that XAI visualizations change when
the network weights are randomized at cascading depths. Es-
pecially the results for CAM-based methods align with those
in (Adebayo et al. 2018), showing diffused heatmaps around
the image center. The cascading randomization test is passed
by CAM-based methods in Fig. 7.This does not mean, how-
ever, that the CAM-based visualizations of the trained CNN
point more towards clinically relevant regions than an un-
trained CNN. As previously mentioned, the comparison of
the IoUs of trained and untrained CNNs in Fig. 3 shows that
XAI visualizations for the trained CNN do not overlap more
with neoplastic nuclei than those for an untrained CNN. We
conclude that the XAI visualizations analyzed in this paper
reflect only apparently the clinical variability in the images.

Conclusions

This study proposes qualitative and quantitative analyses of
XAI visualization methods in the context of CNNs for dig-
ital pathology. The qualitative inspection may lead to mis-
leading conclusions, e.g. that the network’s attention points
towards neoplastic nuclei. As neoplasticity is a main indi-
cator of tumor, these explanations increase the confirmation
bias and the tendency of accepting the CNN decisions as
true. Our evaluation however, shows no significant differ-
ence in the attention paid to neoplastic nuclei by a trained
CNN than that of a randomly initialized one. The explana-
tions, therefore, do not seem to increase their alignment with
clinical evidence after network training. In addition, LIME
visualizations are neither consistent nor repeatable, generat-
ing different explanations for different settings of the hyper-
parameters or initialization seeds. Driven by these results,
we feel that XAI visualizations should not be used as a way
of proving the correctness of the CNN decision-making on
this task.

We remark a limitation of this study in the annotations of
nuclei types, that are not exhaustive of the clinical factors
that could be involved in the decisions. Mitoses, for exam-
ple, are not considered by our analyses.We focus on the most
popular XAI methods, not proposing an exhaustive cover-
age. Our framework for the evaluation, however, can be eas-
ily extended to new annotations, architectures, datasets, and
XAI methods. This paper shows that more applied research
is indeed crucial to test and confirm the utility of XAI meth-
ods in the medical imaging field.
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