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Abstract

Since its emergence in the 1960s, Artificial Intelligence (AI) has grown to conquer many
technology products and their fields of application. Machine learning, as a major part of
the current AI solutions, can learn from the data and through experience to reach high
performance on various tasks. This growing success of AI algorithms has led to a need
for interpretability to understand opaque models such as deep neural networks. Various
requirements have been raised from different domains, together with numerous tools to
debug, justify outcomes, and establish the safety, fairness and reliability of the models. This
variety of tasks has led to inconsistencies in the terminology with, for instance, terms such as
interpretable, explainable and transparent being often used interchangeably in methodology
papers. These words, however, convey different meanings and are “weighted” differently
across domains, for example in the technical and social sciences. In this paper, we propose
an overarching terminology of interpretability of AI systems that can be referred to by the
technical developers as much as by the social sciences community to pursue clarity and
efficiency in the definition of regulations for ethical and reliable AI development. We show
how our taxonomy and definition of interpretable AI differ from the ones in previous research
and how they apply with high versatility to several domains and use cases, proposing a –
highly needed – standard for the communication among interdisciplinary areas of AI.
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1. Introduction

The last decade saw a sharp increase in
research papers concerning interpretability
for Artificial Intelligence (AI), also referred
to as eXplainable AI (XAI). In 2020, the
number of papers containing “interpretable
AI”, “explainable AI”, “XAI”, “explainabil-
ity”, or “interpretability” has increased to
more than three times that of 2010, follow-
ing the trend shown in Figure 1.

Figure 1: Trends of the publications containing “in-
terpretable AI” or “explainable AI” as keywords

Being applied to an increasingly large
number of applications and domains, AI
solutions mostly divide into the two ap-
proaches illustrated in Figure 2. On the one
side, we have Symbolic AI, symbolic reason-
ing on knowledge bases as an important ele-
ment of automated intelligent agents, which
reflect the humans’ social constructs into
the virtual world [RN02]. To communicate
intuitions and results, humans (henceforth
agents) tend to construct and share ratio-
nal explanations, which are means to match
intuitive and analytical cognition [Omi20].
On the other side, Machine Learning (ML)
and Deep Learning (DL) models reach high
performance by learning from the data and
through experience. The complexity of
the tasks in both approaches has increased
over time, together with the complexity of
the models being used and their opacity.
A rising interest in interpretability came

with the increasing opacity of the systems
and with the frequent adoption of ”black-
box” methods such as DL, as documented
by multiple studies [Mil19, Lip18, TG20,
MSK+19, CS20, ADRDS+20, AB18, Rud19,
ABC+19, MRW19].

Artificial Intelligence 
(AI)

Symbolic AI
Machine 
Learning

Deep 
Learning

Figure 2: Graphical representation of Artificial In-
telligence, Machine Learning, and Deep Learning
adapted from https://www.intel.com.

A strong condition to ensure the reli-
able use of AI is improving the understand-
ing of its internal mechanics, particularly
when complex DL models are deployed.
As the previous studies on interpretabil-
ity point out, understanding the decision-
making of an AI system is a non-trivial
task that spans over three areas, namely
understanding the task, the performance
metric used by the model and the type
of experience being used. With the in-
tent of improving the interpretability within
these three areas, a large number of require-
ments, tools and techniques have been de-
veloped in different application fields, lead-
ing to inconsistent use of the terminol-
ogy. Interpretability is often confused with
more abstract notions of fairness, privacy
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and transparency [Wel19]. These terms do
not have a clear and unique definition and
the understanding of these terms may dif-
fer depending on the domain and context.
Similarly, the words interpretable and ex-
plainable have been used interchangeably
in some articles [Mil19, Lip18], while oth-
ers use a strong distinction between the two
terms [Rud19]. Undoubtedly, there is a link
between the act of interpreting and that of
explaining, as shown by the etymology of
the words themselves (that we report in Ta-
ble 3). Interpretability has been presented
as “explaining or presenting in understand-
able terms to a human”, “providing expla-
nations” to humans [Mil19] and “assign-
ing meaning to an explanation” [PLM+21].
For [Rud19], however, there is a strong
distinction between interpreting and ex-
plaining since models may be developed to
directly encompass the ability to explain
their decision-making. In this case, in-
terpretability refers to meeting the trans-
parency requirement at the task definition
level, whereas explanation refers to a post-
hoc (after training) evaluation of the model
understandability.

The different perspectives about the tech-
nical terminology are discussed in several
papers within the specific context of ex-
plainable AI and ML design, finding diffi-
cult integration within the other domains
that are driving and shaping AI develop-
ment. Policies for funding and regulating AI
research also refer to concepts such as trans-
parency, explicability, reliability, informed
consent, accountability, and auditability of
the systems [BLdSF20a, BLdSF20b, EV17].
Clarifying what these terms refer to and
unifying the social and technical perspec-
tives on these aspects is fundamental to de-
termine directions for progress and to en-
courage cross-disciplinary discussion and in-

teraction on AI developments. Fields that
analyzed the impact of technologies over the
centuries such as cognitive sciences, soci-
ology, philosophy and ethics constitute in-
valuable resources of knowledge from which
it is possible to evaluate and understand
how human trust evolves over time and
how it can be built to motivate the adop-
tion of new technologies. If the use of a
global terminology is adopted by these dis-
ciplines, then a broader range of possibili-
ties can open, encouraging the design of in-
terpretability tools that are not only useful
and understandable to ML developers but
to a wider audience ranging from the final
decision-maker to anyone affected by this
decision [TJMG19].

The contributions of this paper are the
following: (i) we collect the perspectives
on the interpretable AI terminology from a
large number of experts, reporting the re-
sults of the interdisciplinary collaboration
with 8 disciplines in the social and technical
sciences; (ii) we propose a taxonomy and in-
terdisciplinary definitions for interpretabil-
ity and interpretable AI that can be used in
multiple contexts; (iii) we propose the study
of a use case in the medical field to demon-
strate the relevance of unifying perspectives
and adopting a common terminology.

2. Related work

Several papers in the literature proposed
a taxonomy of interpretable AI. Table 1 re-
views in chronological order the numerous
definitions that were given in the ML lit-
erature for interpretable, explainable, trans-
parent, decomposable and intelligible. While
trying to be as complete as possible, we clar-
ify that this table is not exhaustive. We
excluded from this review the papers that
defined the taxonomy for developing a sin-
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gle technique. Discordance can be noticed
on the meaning assigned to the terms by the
papers in this collection, with major divid-
ing points emerging on the words: (i) inter-
pretable and explainable; (ii) transparency
and decomposability ; (iii) intelligible and
interpretable;

The terms interpretable and explainable
are equated, for example, by several re-
searchers [Mil19, AB18, ABC+19, CH19,
MSK+19, VHM+20]. An even broader
number of papers describes a clear dis-
tinction between these two terms [Rud19,
Lip18, BC17, MSM18, MRW19, CS20,
ADRDS+20, PLM+21], suggesting that a
distinction between these two terms is more
popular among researchers. As for inter-
pretability, multiple definitions exists also
within the context of explainability, for
which we refer the reader to the system-
atic review by [VL20]. The work by Arri-
eta et al. [ADRDS+20], for instance, distin-
guishes interpretability from explainability,
which is defined as a human-understandable
interface that exists between the user and
the system. Transparency is used in mul-
tiple papers with the meaning described
by Lipton in [Lip18] of model decompos-
ability [Lip18, CH19, CS20]. In other
papers, this term is used as a synonym
for interpretability [MSK+19, ADRDS+20]
or for functional understanding of the
model [MRW19]. Rudin et al. [Rud19] de-
fine transparency as models with particu-
lar properties such as monotonicity since
these models are transparent in the way
their variables are jointly related. Finally,
the concept of intelligible model equated to
that of an inherently interpretable model
in [ABC+19], while it is used meaning the
introduction of interpretability constraints
in the model design in [CH19, MSM18].

None of the papers in Table 1 considers

the taxonomy used by policymakers, reg-
ulators, philosophers and sociologists dis-
cussing the impact of AI on society and on
the research community. The perspectives
in this paper are discussed by experts in
AI development and familiarity with ML.
As a consequence, different definitions are
used in social sciences. This paper reviews
the existing definitions and gathers the per-
spectives from a multidisciplinary pool of
experts to provide a taxonomy that can be
used in multiple domains in a unique way
that adapts to both the social and the tech-
nical sciences.

3. Methods

A round table public meeting was held
online on April 29th, 2021 on “A Global
Taxonomy for Interpretable AI”1. Endorsed
by the AI4Media project within the Euro-
pean Union’s Horizon 2020 for research and
innovation plan, this event was organized
to bring together researchers from multidis-
ciplinary backgrounds to collaborate on a
global definition of interpretability that may
be used with high versatility in the docu-
mentation of social, cognitive, philosophi-
cal, ethical and legal concerns about AI. A
total of 18 experts were invited to partic-
ipate in the event. The selection of the
experts was tailored to obtain the most rep-
resentative consortium of the fields dealing
with Interpretable AI at the moment. The
final pool of experts involved in this work
also depended on the experts’ interests and
their availability but the selection was by no
means at all made in such a way to steer the
discussion in the direction of a pre-agreed
consensus. The experts were both internal

1https://taxonomyinterpretableai.

wordpress.com/, as of October 2021.
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Table 1: Multiple Taxonomies - Part 1
Interpretable Explainable Transparent Intelligible Ref.
The system operations
can be understood by a
human, either through
introspection or through
a produced explanation.

To show the rationale be-
hind each step in the de-
cision. It is linked to jus-
tification and affects user
acceptance and satisfac-
tion.

Not mentioned. Not mentioned, although
they refer to introspec-
tive explanations.

[BC17]

Ability to explain or to
present in understand-
able terms to a human.

Not mentioned. Not mentioned. Not mentioned. [DVK17]

A non-monolithic con-
cept reflecting several
distinct ideas.

Solely intended as post-
hoc interpretability.
Post-hoc explanations
can be verbal, and
visual.

Understanding the
mechanism by which the
model works. Related
to simulatability and
decomposability.

Understandable models
are sometimes called
transparent.

[Lip18]

A mapping of an ab-
stract concept into a do-
main that the human can
make sense of.

Collection of features
[. . .] that have con-
tributed to produce a
given decision.

Achievable by both in-
terpreting and explain-
ing ML outcomes

Post-hoc interpretability
should be contrasted
to incorporate inter-
pretability into the
structure of the model.

[MSM18]

Used more frequently
than “explainable” by
the ML community, re-
ferring to a powerful tool
for justifying AI-based
decisions.

Not mentioned. Not mentioned. Understandability is
characterized by no
means of understand-
ing the internal model
functioning. Under-
standable is different
from intelligible.

[AB18]

The level to which an
agent gains and can
make use of both the
information embedded
within explanations
given by the system
and the information
provided by the system’s
transparency level.

The level to which a sys-
tem can provide clarifica-
tion for the cause of its
decisions/outputs.

The level to which a
system provides infor-
mation about its inter-
nal workings or structure
and the data it has been
trained with.

Not mentioned. [TBH+18]

Equated with “explain-
ability”, it defines the
degree to which an ob-
server can understand
the cause of a decision.”

Establishing an inter-
action between the
explainer and the ex-
plainee (i.e. the subject
on the receiving end of
an explanation), that is
contextual and selective,
based on small subset of
causes.

Briefly mentioned as in-
terlinked to trust.

Not mentioned. [Mil19]

Acknowledgment of mul-
tifaceted definitions from
earlier studies.

Answering “why” and
“why not” questions to
improve the user’s men-
tal model of the system.
In other cases, equated
to interpretable.

Providing explanations
on how the system
works, clearly describing
model structure, equa-
tions, parameter values
and assumptions.

A system that is “clear
enough to be under-
stood”. It is challeng-
ing to understand how
an AI system should be
defined in order to be
“intelligible” since this
would require the clarifi-
cation of “complex com-
putational processes to
various types of users”.

[CH19]

Broadly defined, refer-
ring to the extraction
of relevant knowledge
(visualization, language,
or equation) about do-
main relationships con-
tained in the data.

Used as a synonym of in-
terpreting.

A feature engineering
process to enhance the
analysis of model inter-
pretability.

Not mentioned. [MSK+19]
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Table 2: Multiple Taxonomies - Part 2
Interpretable Explainable Transparent Intelligible Ref.
Used interchangeably
with explainable.

Post-hoc explanations
involve an auxiliary
method after a model is
trained. Self-explaining
models generate lo-
cal explanations that
may not be directly
interpretable.

Not mentioned. A “directly inter-
pretable” model,
namely intrinsically
understandable by most
consumers.

[ABC+19]

It is a domain-specific
notion that does not al-
low a general-purpose
definition. An inter-
pretable ML model is
constrained in model
form so that it is either
useful to someone, or
obeys structural knowl-
edge of the domain [...]

Possibly unreliable and
misleading, explana-
tions are not faithful to
what the original model
computes. Often, they
do not make sense nor
do they provide enough
detail to understand
what the black box is
doing.

Fully transparent mod-
els are allowed to un-
derstand their variables
and the related correla-
tions.

Not mentioned. [Rud19]

It refers to the degree
of human comprehensi-
bility of a given black-
box model or decision.

It refers to the numer-
ous ways of exchang-
ing information about a
phenomenon (a model’s
functionality or the ra-
tionale and criteria for
a decision) with multi-
ple stakeholders.

A model is transparent
if its functionality can
be comprehended in its
entirety by a person.

Not mentioned. [MRW19]

It is a passive charac-
teristic of a model re-
ferring to the level at
which it makes sense for
a human observer (also
referred to as trans-
parency).

Any action or procedure
to clarify the internal
model functions.

As in Lipton, described
by Simulability, Decom-
posability and Algorith-
mic Transparency.

Not mentioned. Un-
derstandable is different
from intelligible.

[CS20]

It encompasses multi-
ple concepts and defi-
nitions. Generally, it
is associated with mod-
els with inherently in-
terpretable behavior.

It is intended as the gen-
eration of post-hoc ex-
planations for black-box
models.

It is intended as an ex-
planation of how the
system works.

Not mentioned. [ADRDS+20]

Assigning meaning to
an explanation.

Process of describing
one or more facts, facil-
itating the understand-
ing of said facts by a hu-
man consumer.

Not mentioned. Not mentioned. [PLM+21]

Assigning a subjective
meaning to a model, ob-
ject, or variable that
is possible to be inter-
preted by the explainee.

The activity of produc-
ing more interpretable
objects manipulating
symbolic information.

Providing a clear repre-
sentation of the black-
box dynamics.

Concerning the ex-
plainee, it is intended a
successful consumption
of an explanation.

[CSOC20]
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members of the AI4media project and ex-
ternal non-affiliated members. The exter-
nal experts were invited so as to obtain a
balanced perspective on the topic that went
beyond the purpose of the project itself. For
each of the discussed disciplines, at least
one external expert was included in the dis-
cussion. The selection was done based on
the previous publication records on inter-
pretable AI and on the reported interest and
availability to participate in the study. In
addition, attention was given to the inclu-
siveness in terms of gender and ethnicity
of the experts. The experts represent in-
stitutions from eight different countries (of
which two are non-european) and span from
academia to industry and healthcare profes-
sionals.

The workshop was organized in two ses-
sions, consisting of a round table discus-
sion and a panel session with a question
and answer format. The first session con-
sisted of seven short talks of 12 minutes fol-
lowed by 3 minutes for questions. The sec-
ond session involved a panel of five experts
discussing questions from the audience con-
cerning the role and implications of AI and
transparency. The workshop was streamed
on YouTube2 and spectators were able to
interact with the audience through a live
chat.

The round table resulted in a solid ba-
sis for the work reported in this paper and
steered further discussion and proposed fu-
ture research directions. We hope that this
work may constitute a first solid step to-
wards finding a global consensus on the tax-
onomy for interpretable AI for both the so-
cial and the technical sciences.

2https://www.youtube.com/watch?v=

aVLCDORsqmo, as of February 2022.

4. Results

4.1. Etymology and existing definitions

Table 3 analyzes the etymology of fre-
quently used words in the context of inter-
pretable AI. Looking at the historical for-
mation and the original meaning of a word
can shed light on its roots and history, deep-
ening the understanding of its meaning and
the context in which it should be used. The
word clue, for example, gains meaning from
its intrinsic referral to Greek mythology.
It originates from the Germanic word clew
that indicates a ball of thread or yarn. The-
seus used a clue of thread to find the exit
of the Labyrinth. When people say “give
me a clue”, they refer to some helpful in-
formation and not the ball of yarn itself.
Understanding the etymology of the words
in the AI interpretability terminology can
help in a similar way to better understand
the meaning of each term and why one word
is more appropriate than another in specific
contexts.

Figure 3 illustrates how some of the
terms defined in Table 3 (such as intel-
ligible, transparent, explainable, account-
able, auditable and reliable) slightly change
their meaning depending on the context, ac-
quiring multiple shades and connotations
as they interact with the different do-
mains. This analysis, based on the cross-
disciplinary knowledge of the people par-
ticipating in the initiative, gives insights
into how each domain envisions these con-
cepts. Some conflicts in the definitions are
shown as the words are used in one or
another discipline. The attention towards
one or more concepts is mostly heteroge-
neous, with some disciplines focusing more
on one aspect than others. While hetero-
geneity in the attention to the words is le-
gitimate and given by the intrinsic nature
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Table 3: Analysis of the etymology of the terms related to interpretability.
ID Word Etymology ML Definition
1 Interpretability, Interpretable From late Latin inter-

pretabilitis from Latin in-
terprĕtor, interprĕtāri (to
interpret).

To interpret, comment,
explain, expose, illustrate,
to translate.

To translate, expose, and
comment on the gener-
ation process of one or
multiple ML systems out-
comes, making the over-
all process understand-
able by a human.

2 Explainability, Explainable From 1600 use of explain
+ -able adapted from
Latin explāno, explānāre

To explain, clarify, ex-
pose, illustrate, state
clearly

To indicate with preci-
sion, to illustrate what
features or high-level con-
cepts were used by the ML
system to generate pre-
dictions for one or mul-
tiple inputs. In intelli-
gent agent systems: pos-
sibly iterative process of
symbolic knowledge ma-
nipulation to make it in-
terpretable.

3 Transparency, Transparent Medieval Latin adapta-
tion of the words trans
(on the other side) and
pārĕo, pārēre (to appear,
to show).

To see through. A transparent ML system
has a non-opaque output-
generation process where
the role of the individual
components, the learned
paradigms, and the over-
all behavior of the model
are known and can be sim-
ulated by a human user.

4 Intelligibility, Intelligible From Latin intellegibilis,
intellegibilis, II class ad-
jective.

To understand, compre-
hend, decipher.

An intelligible ML system
is an understandable sys-
tem with inherent inter-
pretability

5 Accountability, Accountable. From 1770 use of account-
able + -ity, adapted from
Old French acont derived
from Latin compŭto,
compŭtāre, which has
multiple meanings includ-
ing to count, to estimate,
to judge and to believe.

Used from the 1610s with
the sense of “rendering an
account”, meaning pro-
viding a statement an-
swering for conduct.

An accountable ML sys-
tem is expected to justify
its outcomes and behavior

6 Reliability, Reliable From Scottish of the
1560s “raliabill”, derived
from Old French relier a
derivation of the Latin
rĕl̆ıgo, rĕl̆ıgāre (meaning
to tie, to bind).

From the 1570s used with
the sense of to depend,
to trust, typically used in
the expression “to rely on
something/someone”.

To be consistently good
and be worthy of trust

7 Auditability, Auditable From Latin noun auditŭs,
auditūs.

The sense of hearing, the
act of hearing, audition.
Used in the sense of of-
ficial audience, judicial
hearing or examination.

An “auditable” ML sys-
tem should provide infor-
mation on how to perform
an official audience of the
model. For example, this
can be done by providing
extra documentation and
functionalities.

8 Liability, liable From Anglo-French liable,
derived from Latin l̆ıgo,
l̆ıgāre (to tie, to bind).

Legal responsibility for
acts.

Legal liability of a prod-
uct implementing ML,
particularly in the case
where something goes
wrong.

9 Robustness, Robust From French robuste, de-
rived from Latin robustus,
robustum.

The literal meaning is
oaken, made of oak. Used
in the figurative sense of
strong, vigorous and resis-
tant.

Robust ML systems are
resistant, secure and re-
liable. Providing consis-
tent results also in case of
adversarial attacks, varia-
tions in the dataset, do-
main shifts, and outliers.
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of each discipline, the strong changes in the
meaning assigned to the same word by dif-
ferent disciplines may inhibit understand-
ing and collaboration among different fields.
The word transparent has been interpreted
as “providing meaningful information about
the underlying logic” in the EU legislation,
whereas by technical developers this is of-
ten understood as a certain degree of under-
standing of the system mechanics, decom-
posability and simulability. In other words,
if technicians and legislators were to think
of the degrees of transparency of a vehicle,
they would see different aspects. The for-
mer would think of pistons, fusible and the
combination of these elements to the final
engine. The latter would think of the degree
of information available to the user about
the working principles of the vehicle: start-
ing the engine, stopping it from running,
changing the direction and so on.

4.2. A global definition of Interpretable AI

As an important contribution of this
work, we derive a multidisciplinary def-
inition of interpretable AI that may be
adopted in both the social and the legal sci-
ences.

In daily language, an instance, or an ob-
ject of interest, is defined as interpretable
if it is possible to find its interpretation,
hence if we can find its meaning [Sim09].
Interpretability can thus be conceived as
the capability to characterize something as
interpretable. A formal definition of in-
terpretability exists in the field of mathe-
matical logic, and it can be summarized as
the possibility of interpreting, or translat-
ing, one formal theory into another while
preserving the validity of each theorem in
the original theory during the translation
[TMR53]. The translated theory as such as-
signs meaning to the original theory and it

is an interpretation of it. The translation
may be needed, for instance, to move into a
simplified space where the original theory is
easier to understand and can be presented
in a different language.

From these explicit definitions, we can
derive a multidisciplinary definition of in-
terpretability that embraces both techni-
cal and social aspects: “Interpretability is
the capability of assigning meaning to an
instance by a translation that does not
change its original validity”. The defini-
tion of interpretable AI can then be de-
rived by clarifying what should be trans-
lated: “An AI system is interpretable
if it is possible to translate its work-
ing principles and outcomes in human-
understandable language without af-
fecting the validity of the system”.
This definition represents the shared goal
that several technical approaches aim to ob-
tain when applied to AI. In some cases, as
we discuss in Sec. 4.4, the definition is re-
laxed to include approximations of the AI
system that maintain its validity as much
as possible. Interpretability is needed to
make the output generation process of an AI
system explainable and understandable to
humans and it is often obtained as a trans-
lation process. Such a process may be in-
troduced directly at the design stage as an
additional task of the system. If not avail-
able by design, interpretability may be ob-
tained by post-hoc explanations that aim
at improving the understandability of how
the outcome was generated. Interpretabil-
ity can thus be sought through iterations
and in multiple forms (e.g. graphical visual-
izations, natural language, or tabular data)
which can be adapted to the receiver. This
fosters the auditability and accountability
of the system.
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Figure 3: Differences of definitions in other domains than ML development. In this diagram, interpretable
is equated to explainable since most of the social domains equate the two terms for simplicity.
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4.3. A global taxonomy

In what follows we present a global tax-
onomy for interpretable AI, and summarize
the multiple viewpoints and perspectives
gathered in this work. Table 4 presents the
taxonomy with further detail on domain-
specific definitions used in each of the eight
fields studied in this work, namely law,
ethics, cognitive psychology, machine learn-
ing, symbolic AI, sociology, labour rights,
and healthcare research. Brackets specify
the domain in which each definition applies.
If a term applies to both social and techni-
cal experts it is provided first and marked
by the (global) identifier. Otherwise it is
marked as the domain specific identified, i.e.
EU law, sociology, etc. This table may be
resorted to by practitioners in any of the
above-mentioned fields to obtain a common
definition for each term in the taxonomy
and to inspect all the exceptions and varia-
tions of the same term in the literature. Our
objective is not to impose one taxonomy
above another, rather to raise awareness on
the multiple definitions of each word in each
domain, and to create a common terminol-
ogy that researchers may refer to in order
to reduce misinterpretations.

The following subsections explain how
the proposed taxonomy adapts to the fields
with their respective needs, challenges and
goals in terms of ML interpretability.

4.4. Use of the proposed terminology to
classify interpretability techniques

In this section, we show how the ter-
minology in Table 3 can be used to clas-
sify ML interpretability techniques. To do
so, we group popular interpretability tech-
niques into the families shown in Table 5.
On the basis of this, Table 6 summarizes
how each family of techniques can provide
the properties described in Table 3. In the

following, we give more insights concern-
ing the classifications provided in Tables 5
and 6.

Due to their low complexity, models such
as decision trees and sparse linear models
have inherent interpretability, meaning they
can be interpreted without the use of ad-
ditional interpretability techniques [Mol19].
These methods are intelligible, according
to the definition in Table 3 ID 4. Black-
box models, such as deep learning models,
have surpassed the performance of tradi-
tional systems over complex problems such
as image classification. However, due to
their high complexity, they require tech-
niques to interpret their decisions and be-
havior. These techniques often involve con-
sidering a close approximation of the model
behavior that may be true in the locality
of an instance (i.e. local interpretability)
or for the entire set of inputs (i.e. global
interpretability). They can be grouped ac-
cording to the following criteria: (1) scope,
(2) model-agnostic, and (3) result of expla-
nation.

The scope of the technique shows the
granularity of the decisions that are allowed
as explanation, either global or local. Global
interpretability techniques explain the be-
havior of the system as a whole, answering
the question “How does the model make
predictions?”, while local interpretability
techniques explain an individual or group
of predictions, answering the question “How
did the model make a certain prediction or
a group of predictions?” [Lip18].

Model-agnostic techniques can be applied
to any model class to extract explanations,
unlike model-specific techniques that are re-
stricted to a specific model class. Inter-
pretability techniques can also be roughly
divided by their result or the type of ex-
planation they produce, creating multiple
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Table 4: Taxonomy of Interpretable AI for the social and technical sciences. Brackets specify the domain in
which each definition applies. Global marks a definition common to both the social and technical sciences.

Terminology Definition in AI Family of AI systems (technical)

Interpretability

(global) AI interpretability defines those AI
systems for which it is possible to trans-
late the working principles and outcomes in
human-understandable language without af-
fecting the validity of the system

Three families of AI systems may be identified
by interpretable AI. These are (i) AI systems
with built-in interpretability (ii) AI systems
that are inherently interpretable (iii) AI sys-
tems that were explained by post-hoc meth-
ods. More details on these families in Table 5

(EU law) AI interpretability defines the sup-
ply of meaningful information about the un-
derlying logic, significance and envisaged con-
sequences of the AI system

-

(symbolic AI) AI interpretability includes ex-
planations of the symbolic AI systems in sym-
bolic language

-

(sociology) AI interpretability must define a
social relationship of trust between the human
and the machine

-

Interpretability by design (global) The translation of the system’s work-
ing principles and outcomes into human-
understandable language is provided directly
by the AI-system itself, interpretability being
one of the tasks of the system

Two families of systems may be identified,
namely (i) systems with a transparent de-
sign (e.g. introducing parameter sparsity,
implementing monotonic functions [NM19])
(ii) systems with a self-explanatory objec-
tive that generate explanations for the model
predictions (e.g. interpretable decision sets
[LBL16]).

Post-hoc interpretability (global) The AI system is neither inher-
ently interpretable nor interpretable by-
design, rather additional analyses are per-
formed to generate explanations without re-
training the model parameters

Six families of post-hoc interpretability meth-
ods can be identified based on the form of
the generated explanations into (i) feature at-
tribution (ii) feature visualization (iii) con-
cept attribution (iv) surrogate explanations
(v) case-based explanations and (vi) textual
explanations. For further details on these cat-
egories we refer the reader to [ADRDS+20]
and [Gra21]

Local interpretability (technical) Local interpretability is provided
when interpretability analysis is performed on
the system’s outcome for a single input

The family of feature attribution
methods contain several approaches
that provide local interpretability
[RSG16, LL17, SVZ14, MLB+17, ZKL+16,
SCD+17a, STY17, LBM+15]

Global interpretability (technical) Global interpretability is provided
when interpretability analysis is performed to
explain the system behavior for a set of inputs
corresponding to an entire class or multiple
classes

Post-hoc interpretability methods may pro-
vide global interpretability, such as distillation
techniques [FH17] and the extraction of rule
lists[CBP20]

Explainability (global) Explainable AI, also denoted as XAI,
defines the branch of AI research that focuses
on generating explanations for complex AI
systems

The six families of post-hoc interpretability
methods known as feature attribution, feature
visualization, concept attribution, surrogate,
case-based and textual explanations are ad-
dressed as explainable AI.

Transparency (global) Transparency is used in AI to char-
acterize those systems for which the role of
internal components, paradigms and overall
behaviour is known and can be simulated

The family of linear regression models and de-
cision trees in low dimension are transparent
and can be simulated
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families of techniques. It is important
to note that some types of explanations are
strongly preferred, as half the studies using
interpretability techniques in the oncologi-
cal field use either saliency maps or feature
importance [PAHAF+21]. These techniques
can produce data points that explain the be-
havior of the model [KKK16, LBM+15], vi-
sualizations of internal features [OMS17] or
produce simpler models that approximate
the model [RSG16, LBL16, LL17]. It is im-
portant to choose the right technique based
on its scope and family to reach the desired
objective. Table 5 presents the families of
techniques, their definitions and important
references [Mol19].

Based on Tables 1, 2 and 4 we present
Table 6 where we group families of inter-
pretability techniques based on their scope
and classify them based on their suitabil-
ity to achieve each of the objectives men-
tioned in Tables 1 and 2. To achieve inter-
pretability as intended in Table 3 (ID 1),
local techniques are preferable since they
allow users to interpret the outcomes of a
system and thus increase its interpretabil-
ity. Global techniques can be rather inac-
curate at a local level, although they are
more adequate to expose the mechanisms of
a system in general. The decision-making
process can become more transparent (ID
3) at the local or global level, depending
on the scope of the interpretability tech-
niques. Intelligibility (ID 4) is a charac-
teristic of inherently interpretable models.
It can be achieved for more complex mod-
els by approximating the decision function
either locally or globally with an inherent
interpretable model. It is also important
to point out that even with the model be-
ing inherently interpretable, sometimes the
features being used to train the models can
be hard to understand, particularly for non-

experts in feature engineering.
As for accountability, systems would need

to justify their outcomes and behavior to be
accountable, and thus the techniques that
offer any interpretability or explainability
can help to achieve this. Similarly, these
techniques can also be used to examine the
global behavior or reasoning of local deci-
sions and provide auditability (ID 7). Fi-
nally, Robustness (ID 9) is not achievable
by only understanding the behavior of the
model. It would rather require finding or
producing instances that make the model
misbehave, limitations of the model or data
points which are outside the training data
distribution.

At this point, we remark that inter-
pretability techniques come with inherent
risks. A desired property of interpretabil-
ity is to help the end-user with creating the
right mental model of an AI system. How-
ever, if one considers AI models to be lossy
compression of data, then interpretability
outcomes are a lossy compression of the
model and are severely underspecified. In
other words, it is possible to generate sev-
eral different interpretations for the same
observations. If used improperly, inter-
pretability techniques can open new sources
of risk. In some settings, interpretability
outcomes can be arbitrarily changed. For
example, [AAF+19] demonstrate a case of
“fair washing”, where fair rules can be ob-
tained that represent an underlying unfair
model. It is also possible for an AI system
that predicts grades to be gamed if the un-
derlying logic is fully transparent. Model
explanations can demonstrate an AI model
criterion to be illegal or provide grounds for
appeals [Wel19]. Finally, transparency also
conveys trade-offs involved in decisions in
an explicit manner that may otherwise be
hidden [CW20].
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Table 5: Definitions of families of interpretability techniques

Scope Family Definition

Inherent
Interpretability

Interpretable Model Models that are considered interpretable due to their low complexity and
simple structure.

Black-box Model Models that are considered hard to interpret due to their high complexity
and complicated structure.

Global
Interpretability

Feature Visualiza-
tion [NDY+16, OMS17]

Synthetization of new instances that help visualize features learned by the
model or a specific part of the model.

Prototype, Criti-
cism [KKK16]

A prototype is a data instance that is representative of all the data. A
criticism is a data instance that is not well represented by the set of
prototypes.

Influential Instances [KL17] Data instances of which the removal has a strong effect on the trained
model.

Dependency Plot Depicts the functional relationship between a small number of input vari-
ables and predictions.

Global Surrogate [HVD15] Interpretable model that is trained to approximate the predictions of a
black-box model.

Concept Attribution
[KWG+18, GAMMM20]

Explain the model’s behavior based on user-friendly concepts.

Feature Importance [LL17] Assigns a score to input features based on how useful they are at predicting
a target variable.

Local
Interpretability

Local Surrogate [RSG16] Local surrogate models are interpretable models that are used to explain
individual predictions of black-box models.

Saliency Map [SCD+17b,
LBM+15]

Highlight the pixels that were relevant for a certain image prediction.

Counterfactual Exam-
ple [WMR17]

A counterfactual explanation of a prediction describes the smallest change
to the feature values that changes the prediction to a predefined output.

Adversarial Exam-
ple [GSS15]

An adversarial example is an instance with small, intentional feature per-
turbations that cause a ML model to make a false prediction.
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Table 6: Classification of families of interpretability techniques
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Inherent Interpretability
Interpretable Models x x x x x x x

Black-box Models - - - - - - -

Global Interpretability

Feature Visualization x - x - x x -

Prototypes and Criticisms x - x - x x x

Influential Instances x x x - x x x

Dependency Plot - x x - x x -

Global Surrogate x x x x x x -

Concept Attribution x x x - x x -

Feature Importance - x x - x x -

Local Interpretability

Local Surrogate - x x x x x -

Saliency Map - x x x - x -

Counterfactual Example - x x - x x -

Adversarial Example - - - - - x x

From these considerations, it follows that
interpretability requires a context-based
scientific evaluation. Two standard ap-
proaches for such evaluations are (a) to es-
tablish baselines based on domain insights
to evaluate the quality of explanations, and
(b) to leverage end-user studies to deter-
mine effectiveness. For instance, user exper-
iments have been used for trust calibration
(knowing when and when not to trust AI
outputs) in joint decision-making [ZLB20].
In another interesting approach, [LBL16]
measured the teaching performance of end-
users in establishing how effective explana-
tions are in communicating model behavior
with good teaching performance indicating
better model understanding.

Several quantitative measures to assess
explanation risks have also been proposed
in the literature. A common measure using
surrogates involves approximating a com-
plex model with a simpler interpretable one.

Properties of the simpler model can then
help address questions on the extent of in-
terpretability of the original model. Com-
mon measures include fidelity, the fraction
of time the simpler model agrees with the
complex one, or complexity, the number of
elements in the simpler model a user needs
to parse to understand an outcome. Faith-
fulness metrics measure the correlation be-
tween feature importance as deemed by an
AI model versus deemed by an explanation.
Sensitivity measures [YHS+19] the degree
to which explanations are impacted by non-
trivial perturbations.

4.5. Terminology in the cognitive sciences

From the point of view of the cognitive
sciences, interpretability (as defined in line
1 of Table 3), is considered part of the so-
cial interaction between an AI system and
a user [Hil90]. As the definition underlines,
the concept of interpretability is strictly
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connected to the human ability of under-
standing information. The process of un-
derstanding is defined in cognitive psychol-
ogy as the ability of the human brain to
infer or make predictions in the semantic
memory. The semantic memory is wired
by connections of neurons that are created
and consolidated by positive enforcement.
A high-level model of such neural connec-
tions identifies areas that are specialized for
reacting to specific stimuli (e.g. numbers,
words, shapes, colors, actions, sounds). De-
pending on what kind of information is be-
ing understood, these areas may be used in-
dividually or share functions [War19]. The
understandability of something is thus the
property of an object, may this be a model
or the outcome of interpretability methods,
to be understood by a human. Because
the wiring of the neurons constituting the
areas in the semantic memory is a result
of individual experiences, understandabil-
ity incorporates some degree of subjectivity
and variability, e.g. what is understandable
to someone may not be understandable to
someone else. Users may vary greatly, so
may their background and understanding
of explanations. Thus to be widely appli-
cable and useful to a variety of users, un-
derstandability shall not require any prior
training of the addressees concerning the
feature extraction, hyper-parameter selec-
tion and training of AI systems.

Some aspects of human explanation gen-
eration (i.e. explainability as in ID 2 Ta-
ble 3) do not coincide directly with what
is intuitively thought about as transparency
(ID 3 in Table 3). The first difference is that
explanations are selected by humans. The
selection is generally biased to reflect the
mental model of the explainee. Even hav-
ing a complete set of causal relations, peo-
ple are more likely to rely on a few causes

that may explain certain key aspects of the
event [Hil17]. It may at this point be noted
that explainability should thus be intended
differently from transparency, that is rather
the unbiased provision of insights about the
internal mechanics of an AI system.

4.6. Social and working environment

To develop a social relationship be-
tween humans and machines, interpretabil-
ity needs to act as a social contract of
trust between these two parties. Trust in
the system leads to reliability (as intended
in ID 6 of Table 3) and this can only be
built through sustained understanding. Us-
ing understanding to build trust is a well-
understood social science research problem,
complicated by the fact that humans accept
explanations first and foremost in a highly
biased manner [Lom06]. The fact that bias
is part of every human understanding, how-
ever, should not limit the potential success
of explainable AI. For this reason, AI ex-
plainability (ID 2 in Table 3) should be seen
as a social translation, as investigated in re-
cent studies in HCI like [KNJ+20]. If only
computer scientists are considered within
the project ideation and development, how-
ever, there is the main risk, discussed by
T. Miller in [MHS17], of having the helpless
being led by the clueless3, namely having
ML engineers building explainability mostly
for other ML engineers. Social scientists
and workers should be introduced in the
analyses proposed by ML researchers, as
the actual addressee and users of the algo-
rithms. Collaborations should be built to
develop types of human-computer interac-
tions in ML that are more understandable
to non-ML experts. If interpretability is not

3In the original paper, this problem is formu-
lated as that of “the inmates running the asylum”.
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developed with the help of the social sci-
ences, the risk of creating AI systems mainly
for other researchers is high and it would un-
dermine the efforts in building reliable and
trustworthy automated systems.

AI may not be developed with the only
intent of prioritizing the reduction of human
input, as this may lead to the perception of
AI as “inhuman” intelligence [Dic19]. New
algorithms should prioritize the creation of
a relationship of trust above the desire to
automate and reduce human input.

Within the realm of employment rela-
tions, work and labor markets, the concept
of ”democracy at work” is generating into
the discussion of the criteria for AI trans-
parency (as defined in Table 3 ID 3). Of
particular importance are the employees’
rights of participation and consultation if
AI algorithms are employed to make deci-
sions at the workplace. Employees should
be guaranteed the possibility to get involved
in management decisions about the organi-
zation of work and of working conditions.
Democracy is thus essential to let the em-
ployees create optimal conditions for work
and it translates into the need of trans-
parency if AI systems are used to manage
the working personnel. In particular the
workers’ autonomy (the right of a worker
to intervene), skill grading and the ruling
of organization and production processes
should be regulated by transparent AI de-
cisions. Transparency is thus desired to
decide whether an algorithm is performing
non-democratic practices, such as discrimi-
nation. It is thus intended in the sense of a
means to improve the worker’s satisfaction
and safety at work (see Figure 3). Even
further, it may help to identify the work-
place conditions enabling discrimination in
the first place.

4.7. The EU law on interpretability

In law, there is no precise definition of
AI explainability. The High-Level Expert
Group on AI (AI HLEG) set up by the
European Commission lists explicability4 as
one of the ethical principles that must be
respected in order to ensure that AI sys-
tems are developed, deployed and used in
a trustworthy manner. The principle of
explicability encompasses both the terms
of transparency and explainability as de-
fined in Table 3. From a legal point of
view, explainability is seen as collecting
meaningful insights on how a particular
decision is made [BLdSF20b]. According
to [BLdSF20b], it does not set the require-
ment for an interpretable representation of
a mathematical model. Most important is
that the explanation should assign mean-
ing to the decision, i.e. so that the deci-
sion improves the explainee’s understand-
ing5 of the decision generation process. It
follows from the AI HLEG Guidelines that
explainability should be adapted to the level
of expertise and understanding of the indi-
vidual concerned. [BLdSF20a] argue that in
private decision-making, the legal require-
ments relate to the following four levels of
ML explainability concepts: (i) providing
the main features used for a decision, (ii)
providing all features used for a decision,
(iii) providing explanation on the way the
features are combined to make the decision,
and (iv) providing an understandable rep-
resentation of the whole model. [WMF17]
propose the following categorization of what

4https://www.europarl.europa.eu/

cmsdata/196377/AI%20HLEG_Ethics%

20Guidelines%20for%20Trustworthy%20AI.pdf,
as of February 2022.

5Intended in the scientific sense used in cognitive
psychology (see Section 4.5).
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one may mean by an explanation of au-
tomated decision-making. Two kinds of
explanations are possible, depending on
whether one refers to: system functional-
ity, i.e. the logic, significance, envisaged
consequences, and general functionality of
an automated decision-making system, e.g.
the system’s requirements specification, de-
cision trees, pre-defined models, criteria,
and classification structures; or to specific
decisions, i.e. the rationale, reasons, and
individual circumstances of a specific auto-
mated decision, e.g. the weighting of fea-
tures, machine-defined case-specific decision
rules, information about reference or profile
groups. Furthermore, one can also distin-
guish between an ex-ante explanation (i.e.
prior to the automated decision-making
taking place) and an ex-post explanation
(i.e. after the automated decision has taken
place) [WMF17]. The focus of many legal
scholars has been on the meaning of explain-
ability from the data protection law point of
view. The core debate has primarily focused
on whether or not the General Data Pro-
tection Regulation 2016/679 (GDPR) cre-
ates a right to an explanation of an algo-
rithmic decision, as argued by [GF16] and
further discussed by [WMF17]. The lat-
ter, in particular, argue that a non-existing
“right to explanation” of a specific auto-
mated decision should not be mistaken with
other GDPR provisions. The actual GDPR
rather forms a “right to be informed” by
claiming: (i) the right not to be subject to
automated decision-making and safeguards
enacted thereof (Article 22 and Recital 71);
(ii) notification duties of data controllers
(Articles 13–14 and Recitals 60–62); and
(iii) the right to access (Article 15 and
Recital 63). Others, like [SP18], point out
that whether one uses the phrase “right to
explanation” or not, data controllers need

to provide the data subject with the “mean-
ingful information about the logic involved,
as well as the significance and the envisaged
consequences of such processing for the data
subject” (Article 13(2), 14(2), 15(1) of the
GDPR). Such information must be mean-
ingful to an individual confronted with a
decision [SP18]. The test for whether the
information is meaningful should therefore
be functional - explanations are a means to
help a data subject act rather than merely
understand the mathematical processes be-
hind decisions [EV17]. This is also in line
with some of the claims done in the ap-
plicative domain at high-stakes, e.g. clinical
decision-making [TJMG19].

Some scholars have studied how the legal
requirements on explainability could be in-
terpreted and applied to ML [BLdSF20b].
[HJM+21] used a COVID-19 use case sce-
nario to assess the feasibility of legal re-
quirements on algorithmic explanations.
They concluded that the use of complex
deep learning models in AI applications
makes it hard to reconcile with the existing
EU data protection law requirements, es-
pecially with regards to human legibility of
explanations for non-expert data subjects.
Similarly, [EV17] note that the legal concept
of explanations as “meaningful information
about the logic of processing” may not be
provided by the kind of ML “explanations”
computer scientists have developed. This
further motivates the need to resort to a
common ground where the objectives re-
garding interpretability can be discussed
among the disciplines involved, for example
on the basis of the taxonomy provided in
this paper. It is possible that in some cases
transparency or explanation rights may be
overrated or even irrelevant – the problem
that is often referred to as transparency fal-
lacy. In many cases what the data sub-
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ject wants is not an explanation—but rather
for the disclosure, decision or action sim-
ply not to have occurred [EV17]. In high-
risk AI systems, however, the recently pro-
posed draft Regulation on AI (the AI Act)
envisions transparency as one of the obliga-
tions for the operators. Article 13 of the
draft AI Act requires high-risk AI systems
to be “designed and developed in such a way
to ensure that their operation is sufficiently
transparent to enable users to interpret the
system’s output and use it appropriately.”
The obvious difference here, in comparison
with the AI HLEG Guidelines, is that the
transparency is addressed towards the users
of the AI systems, that are not necessar-
ily familiar with ML theory. This aligns
with the requirement of personalized expla-
nations discussed in Section 4.5 and con-
trasts with the current definition of trans-
parency in the ML community where this
property is rather intended as an objective
peek through inside the AI algorithm.

For AI systems that interact with natural
persons, e.g. an emotion recognition system
or a biometric categorization system and AI
systems that generate deep fakes, the draft
AI Act prescribes an obligation to inform
or disclose the fact that they interact or are
exposed to such systems. It is interesting
that even though the draft AI Act does use
the very term transparency, it does not re-
fer to the explainability and the traceability
dimension that were part of the concept ac-
cording to the AI HLEG Guidelines. This
shows the inconsistency of the terminology
from a legal point of view. One obvious so-
lution would be to amend the text of the
regulation; if not, it would be subject to in-
terpretation by the Court of Justice of the
European Union that is likely to rely on
other branches of science to complement the
legal gaps, which shows the clear necessity

of unified taxonomy.

4.8. An ethical point of view

The requirement of interpretability is of-
ten made on the basis of an analogy with
human decision-making [Coe20]. We ex-
pect bankers to explain why they reject a
loan, physicians to explain why they discon-
tinue treatment and politicians to explain
why they want to implement a certain pol-
icy. This requirement is often based on the
idea of transparency: that seeing how a phe-
nomenon happens generates accountability
and the possibility of change [AC18]. The
interpretation of phenomena in this sense
derives from the epistemological concerns
being debated since antiquity in philosophy.
In the historical sense (in Table 3), inter-
preting has to do with understanding a par-
ticular course of action or decision-making
and ethical concerns have to do with pro-
viding reasons for moral choices. Even prior
to that, interpretation has been primarily a
religious issue, namely concerning the inter-
pretation of the holy scripture, which was
supposed to transmit the word of God, in a
way such that the true meaning of the text
would be preserved.

Unlike other technologies, interpretation
is one of the primary ethical concerns that
are raised with the application of AI. While
other technologies are also able to replace
human functions (e.g., a walking stick takes
over the function of a leg), AI is arguably
the first technology that has the capacity
to make decisions. And this raises both the
epistemological question of why certain de-
cisions were made by an AI system, as well
as the ethical question of whether good rea-
sons can be given for this decision, in case
it is of ethical significance.

What sets the ethical discussion apart
from the technical perspective in Sec-
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tion 4.4, is its primary focus on the ethical
value of an explanation, rather than in its
epistemic value [Rob19]. That is, a causal
chain leading to the damage needs to be
provided if an AI-generated decision may
affect a human being.

As scholars have argued, however, human
beings often do not need complete causal
chains of explanation [Coe20]. This opens
up some new ethical issues and problems
such as the intentional concealing of infor-
mation, which may be obtained even by
simply providing explanations of which the
understandability is limited by the require-
ment of prior expert knowledge [AC18]. A
patient might not be helped by a full causal
explanation of a diagnosis but rather by a
trustworthy account of understandable rea-
sons expressed in clear and simple language.

From this perspective, we may raise
three overarching ethical concerns of inter-
pretable AI. First, there is the concern of
“sacrifice”. Because interpretation is al-
ways situated between the system and the
user, it generates the inevitable risk of omis-
sion during interpretation. This can be due
to either oversimplification (simplifying the
model dynamics missing out on important
technical details) or to overcomplexify (pro-
viding too technical explanations most users
cannot grasp) [Nis11]. Interpretation there-
fore inevitably sacrifices meaning. Second,
we should be concerned about “hospitality”,
here intended as a common ground of un-
derstanding between strangers that aims to
remedy the potential of conflict. Interpreta-
tion requires building bridges between dif-
ferent world visions, for instance between a
physician and a patient, or a civil servant
and a citizen. Third, interpretation raises
the question of professional virtues. It is of-
ten part of a particular profession (a notary,
a physician, a school teacher) to uphold cer-

tain standards of excellence in providing in-
terpretability, for instance under the head-
ing of the virtue of “fidelity”. Importantly,
what these standards mean in practice can
differ significantly between different profes-
sional contexts.

In light of the above three (and other)
ethical challenges, researchers have to con-
sider how the ethical interpretability of AI
systems should be realized in practice. Of-
ten, this requires finding ways in which hu-
mans and AI systems are able to work to-
gether in providing interpretations that are
related to practices, sensitive to context,
and provide good reasons for making eth-
ical choices if required.

4.9. Not only humans: XAI in intelligent
autonomous systems

Virtual agents are the most common em-
bodiment of symbolic AI [RN02]. They can
operate singularly, in a cooperative or ad-
versarial fashion (within Multi-Agent Sys-
tems – MAS). The agents composing in-
telligent autonomous systems (MAS) are
hardware/software-based computer systems
characterized by any or all of the follow-
ing: (i) autonomy (no direct intervention
or human control), (ii) social ability (free
to interact with other agents and humans),
(iii) reactivity (perception of their environ-
ment and according reactions), and (iv) pro-
activeness (being goal-directed, they can
take the initiative) [FG96]. MAS have in-
creasingly become part of modern society
and as such are incorporated in an increas-
ing number of everyday tasks [CMS+17].

Beyond their symbolic nature, modern
agents can also leverage sub-symbolic
algorithms (i.e., ML and DL), integrating
them into their reasoning processes [Sch14].
While symbolic agents are explainable
by design (being mainly rule-based), the
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behavior of sub-symbolic or hybrid agents
can result in being opaque for both human
users and other agents. Such opacity
harms the reputation of the single agents
and the trust into the overall intelligent
system [ANCF19, CSOC20]. In the last
decades, the majority of the articles in
explainable agents focused on making in-
telligent systems understandable primarily
to humans [RR19, ANCF19, GMR+18].
Bridging symbolic and sub-symbolic
approaches is called neuro-symbolic
integration [SSK21, SZEH21]. For ex-
ample, [DRMD+19] proposed to adopt
neuro-symbolic and probabilistic ap-
proaches, [RPKD15] to adopt neuro-
argumentative techniques, and [BK15]
proposed two paths to achieve such an
integration. Nevertheless, current research
indicates that the forthcoming decades will
focus on the full development of conver-
sational informatics [NNOM14, CCN+21].
MAS are modeled after human societies and
within MAS agents communicate with each
other, sharing syntax and ontology. They
interact via the Agent Communication
Languages (ACL) standard [? ] shaped
around Searle’s theory of human commu-
nication based on speech acts [SSW+69].
Therefore, multi-agent interpretability and
explainability require multi-disciplinary
efforts to capture all the diverse dimensions
and nuances of human conversational acts,
transposing such skills to conversational
agents [CCOC19, CSOC20]. Equipping vir-
tual entities with explanation capabilities
(either directed to humans or other virtual
agents) fits into the view of socio-technical
systems, where both humans and artificial
components play the role of system com-
ponents [Whi06]. Ongoing international
projects revolve around these concepts. For
example, they are tackling intra- and inter-

agent explainability (EXPECTATION),
actualizing explainable assistive robots
(COHERENT), countering information
manipulation with knowledge graphs and
semantics (CIMPLE), and relating action
to effect via causal models of the environ-
ment (CausalXRL) 6. Explainable agents
can leverage symbolic AI techniques to pro-
vide a rational and shareable representation
of their own specific cognitive processes
and results. Being able to manipulate such
a representation allows building one or
more personalized explanations to meet the
explainee (human and virtual) background
and boost the success of the explanation
process and overall interaction.

5. A case study: The medical domain

In this Section, we present a case study
in a medical scenario. We show how each
of the perspectives from the multiple do-
mains (i.e. from the legislation, cogni-
tive, social, ethical, philosophical, rights
at work, ML and symbolic AI) comes into
play in a possible use case. As argued
by [TJMG19, BHB22], the application of
ML to clinical settings represents a relevant
use case for interpretability, motivated by
the high stakes, the complexity of the mod-
eling task and the need for reliability. From
the legal perspective, clinicians are the sole
people legally accountable for any diagnosis
and decision-making, hence accepting ML
suggestions is seen as taking an acknowl-
edged risk that may affect the survival and
life quality of the patient. As the cognitive
sciences suggest, clinicians should be able to

6Projects within the CHIST-ERA pathfinder
programme for research on future and emerging in-
formation and communication technologies https:
//www.chistera.eu/projects
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revise their mental model of the AI system
to be able to understand the principles ap-
plied by the systems’ decision-making, en-
suring the reliability of the systems. It is
only through time and sustained use that
a social relationship of trust between the
physician and the automated system can be
installed. Interpretability is to be sought in
the medical application not only for the sake
of the philosophical and epistemic value of
explanations per se, but also as an ethi-
cal requirement to provide a factual, di-
rect and clear explanation of the decision-
making process, especially in the event of
unwanted consequences” [FCB+18, Rob19].
An AI-generated decision arguably needs to
be interpretable if it can affect a human
being. Given the high cost of making a
mistake, the ML application cannot be al-
lowed to take decisions independently, dif-
ferently from other contexts where ML tools
are used lightly, e.g. recommendation sys-
tems. This sets a major requirement to
ensure the well-being of the physicians in
the workplace, making sure that their con-
fidence with the tools may increase over
time and provide them with sufficient trans-
parency to take the decisions on whether to
rely or not on the AI system. To satisfy
the requirements set by this analysis from
the social sciences, the ML and symbolic-
AI tools deployed for clinical use should in-
teract with the experts for which technical
solutions must be developed.

The interaction between humans and ML
systems is a non-trivial task. Human rea-
soning is mostly based on high-level con-
cepts that interact with each other to form a
semantic representation. These interactions
with semantic meaning are not necessar-
ily represented by ML models that mostly
operate on numeric features such as input
pixel values, internal activations and model

weights [KWG+18]. When the features used
by the model are expressed in clinical terms,
the interaction of the clinicians with the sys-
tem is enhanced and can lead to successful
cooperation. An example is the case de-
scribed in [CLG+15]. Despite its high per-
formance, the model for pneumonia risk de-
tection had a hidden flaw. Cases of pneumo-
nia with concurring asthma were assigned
a lower risk of death than those without,
despite the presence of this condition being
known to worsen the severity of the cases. A
correct prediction would have been the op-
posite diagnosis given the high risk of death.
The misleading correlation (i.e. presence of
asthma thus low risk of death from pneumo-
nia) was rather a consequence of the effec-
tive care given to these patients by health-
care specialists that were promptly reacting
to reduce the risk of death, and as a conse-
quence lowering the recorded risk for these
patients. The misleading feature “pres-
ence of asthma” was captured by the in-
terpretability analysis and it was promptly
understood by physicians since it was ex-
pressed as a clinical feature.

It is now worth pointing out that, as de-
scribed by Asan et al., “maximizing the
user’s trust does not necessarily yield the
best decisions from a human-AI collabora-
tion” and that the optimal trust level can
be achieved when the user knows when the
model makes errors. After recalling that
the role of humans in the practical appli-
cations of AI has been overlooked [ABC20,
VSR+ew], they suggest that achieving such
an understanding of both strengths and
weaknesses of the models requires a com-
bination of three main elements: (i) in-
creasing transparency, (ii) ensuring robust-
ness [BLM20] and (iii) encouraging fair-
ness. Concerning (i), XAI was mentioned
as the most promising approach to alleviate
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the black-box effects [MVJ+18, RMP+20,
VSR+ew]. In addition, we believe that
current AI model lifecycles are often too
short for the user to acquire a sufficiently
high confidence, where novel approaches,
or even retrained versions of the same al-
gorithm are constantly released, sometimes
with only little quantitative performance
improvement. This can be compared to
a situation where drivers must flawlessly
master their vehicle while the latter is con-
tinuously changing shape and characteris-
tics. One must therefore foster patience to
achieve an adequate level of trust, which
involves an intimate relationship between
the end-user and a particular instance of
the model to seize the situations where the
model is working well and where it does
not. This was de facto encouraged by the
U.S. Food and Drug Administration (FDA),
which as of June 2021 only approved static
algorithms. However, as pointed out by Pi-
anykh et al. the performance of static AI
algorithms tends to degrade over time, ow-
ing to the naturally occurring changes in
local data and the environment [PLD+20].
Furthermore, the access to a large collection
of well-curated, expert-labeled data from a
source that has high relevance to the studied
population and the question asked is also
a severe barrier for widespread adoption in
the clinics [WKH+20]. We can conclude
that an optimal model lifecycle has yet to be
discovered to balance between model perfor-
mance and robustness as well as adequate
user trust and data access to optimally train
AI models.

6. Conclusion

This work proposes an in-depth discus-
sion of the terminology in interpretable AI,
highlighting the risks of misunderstanding

that exist if differing definitions are em-
ployed in the technical and social sciences.
As noted by the experts, there are impor-
tant gaps between how, for example, the
legal legislation shows the notion of trans-
parency and the meaning that is assigned
to this word by ML experts and develop-
ers. While in the first case transparency
is intended as a subjective property that is
influenced by the receiver’s understanding
and prior knowledge, in the technical sci-
ences transparency is rather seen as an ob-
jective property that is not influenced by
the receiver of the information. Similarly,
the notion of interpretability is seen as the
creation of a social contract of trust by so-
cial sciences, whereas this is yet too often in-
tended as the explanation of the automated
generation process of the AI system by most
AI experts.

The taxonomy proposed in this paper has
the objective to harmonize the terminology
used by lawyers, philosophers, developers,
physicians and sociologists, with the goal
of building a solid basis for discussing the
future of AI development in a multidisci-
plinary setting. We show how the proposed
terminology is used in multiple domains and
also its versatility to social and technical
discussions. By discussing these points on
the concrete application of the medical do-
main we show that the need for a com-
mon terminology is real and that further
reflection is needed to define how effective
human-machine cooperation can be estab-
lished. Without the help of the social sci-
ences, it would not be possible to obtain
a sustainable human-machine partnership
and further research needs to be pursued
at the frontier of the social and technical
sciences. This paper may then constitute
a strong foundation for scientists and hu-
manists to collaborate and interact on such
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matters.
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