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ABSTRACT

Computer-aided diagnosis tools for Retinopathy of Prematurity (ROP) base their decisions on handcrafted
retinal features that highly correlate with expert diagnoses, such as arterial and venous curvature, tortuosity and
dilation. Deep learning leads to performance comparable to those of expert physicians, albeit not ensuring that
the same clinical factors are learned in the deep representations. In this paper, we investigate the relationship
between the handcrafted and the deep learning features in the context of ROP diagnosis. Average statistics on
the handcrafted features for each input image were expressed as retinal concept measures. Three disease severity
grades, i.e. normal, pre-plus and plus, were classified by a deep convolutional neural network. Regression Concept
Vectors (RCV) were computed in the network feature space for each retinal concept measure. Relevant concept
measures were identified by bidirectional relevance scores for the normal and plus classes. Results show that the
curvature, diameter and tortuosity of the segmented vessels are indeed relevant to the classification. Among the
potential applications of this method, the analysis of borderline cases between the classes and of network faults,
in particular, can be used to improve the performance.
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1. INTRODUCTION

Retinopathy of Prematurity (ROP) is a disease that affects premature infants and can lead to blindness if not
promptly treated. Particularly important for treatment planning is the correct classification of three grades
of ROP, namely normal, pre-plus and plus. Fully-automated diagnosis tools have recently shown classification
performance comparable to experts and significantly higher than non-experts, especially when Convolutional
Neural Networks (CNNs) are used.1,2 It is still not clear, however, whether a link can be established between
the deep CNN features and the handcrafted features of more traditional machine learning approaches.2 The
identification of such a link, if possible, would give clinicians a better understanding of the deep learning black-
box. Our approach proposes to link the handcrafted and the deep features by measuring the relevance of the
first ones in the classification with a deep CNN. Methods to compute the influence of arbitrary concepts to
the network classification were proposed by Testing with Concept Activation Vectors (TCAV)3 and Regression
Concept Vectors (RCVs).4 In this paper, we apply RCVs to ROP data to compute global and local explanations
about the network decisions, mapping the latter to handcrafted features of tortuosity, dilation and curvature
of retinal vessels. The results highlight the representations of curvature, dilation and tortuosity learned by
the network. By computing bidirectional relevance scores (Br), we show that these concepts are relevant to
the network prediction. Moreover, individual relevance scores can be used as support in the diagnosis, since
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they propose complementary information to the prediction. The potential applications of this approach are
numerous. The retinal concept measures that are the most responsible for misclassification could, for instance,
be detected and penalized. Mislabeled examples at the decision boundaries between the classes can also be
rectified, improving the classification accuracy.

2. RELATED WORK

Treatment indication of ROP focuses on the detection of the three grades of ROP. For instance, the plus grade
is the most important predictor of progression of ROP and usually requires prompt treatment, while pre-plus
requires very close monitoring. Early work relied on quantitative features of retinal tortuosity, curvature and
dilation extracted from manual annotations.2 A long and intense process of manual vessel tracking is needed to
extract the vessel segmentation, which is prone to noisy segmentations. Feature extraction is performed on the
segmentations in different modalities, which vary depending on the location at which the feature is computed and
on its formulation. Point-based features are extracted from any point on a retinal vessel, while segment based
features are extracted from a set of vessel points that are between two vessel intersections. Eleven different types
of features were widely evaluated in the literature.2 Especially, point-based features of curvature performed
better than point-based and segment-based features of dilation. Deep learning led to fully automated vessel
segmentation and ROP classification at expert-level performances.5 It raises the question of whether measures
of curvature and dilation are still important to the network classification.

Intense research focused on explaining the internal behavior of neural networks, offering a wide range of
visualization techniques and delineating a taxonomy of desiderata, methods and evaluation criteria.6–8 The
notion of global interpretability was defined as the attempt to explain overall behaviors of the model, for example
how some filters in the model or combinations of neurons can influence the prediction. Local interpretability, on
the other hand, focuses on individual testing inputs, highlighting characteristics that were more salient to the
network output. Especially, the relevance or saliency of input factors to the network decision was proposed in
several gradient-based methods.8–11 Outputs of these methods are typically local explanations that are gathered
in attribution maps and overlayed to the original input image. Despite their fragility to shifts in the input
features,12,13 saliency maps constitute a standard method for network interpretability. Research on linearity
in the activation space has shown how linear classifiers can learn meaningful directions that can be mapped to
semantic word embeddings in14 or human-friendly visual concepts in.15 Particularly, TCAV and RCV seek a
direction (a high-dimensional vector) that represents the presence of a concept in the activations of a layer and
that can be used to compute its saliency. The main idea of TCAV is to compute the direction representative of
a concept as the normal to the hyperplane that separates a set of concept images from a set of random images.
RCV extends this idea to continuous concept measures, identifying their direction of greatest increase by Linear
Least Squares regression (LLS). Saliency is computed for each testing input as the directional derivative of the
network’s output along the concept direction. Bidirectional relevance scores were proposed to obtain global
explanations of the model starting from the individual sensitivity scores.4 More details about RCV and Br are
provided in Section 3.

3. METHODS

3.1 Dataset

A database of 4800 de-identified posterior retinal images is used to perform the analysis. The images were
captured by a commercially available camera (RetCam; Natus Medical Incorporated, Pleasanton, CA). A set of
3024 images (1084 for normal ; 1074 for pre-plus; 1080 for plus) is used to train the network. Figure 1 illustrates
one raw images for each class. The images were pre-processed with the pipeline proposed by Brown et al.,5

which used a deep CNN to segment the retinal vasculature. After segmentation, the images are resized to 224 x
224 pixels and data augmentation is applied to balance the dataset, i.e. 90-degree rotations and horizontal and
vertical flipping. A testing set of 985 samples (817 for normal ; 148 for pre-plus; 20 for plus) is used to evaluate
network performance and to compute relevance scores for the retinal concept measures. Note that ROP is a low
prevalence disease (only 3% prevalence), hence data scarcity is the main cause of the class imbalance between
plus and normal cases.
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Figure 1: Sample images for the three classes normal, pre-plus and plus. Best viewed in color.

3.2 Network Architecture

An Inception-v1 network (GoogLeNet)16 pre-trained on ImageNet is finetuned to classify the preprocessed images.
The last softmax activated layer is trained to output a probability for each of the classes normal, pre-plus and
plus. The categorical cross-entropy loss is optimized for 100 epochs with stochastic gradient descent and a
constant learning rate of 0.0001. The hyperparameters are tuned by 5-fold cross-validation as in Brown et al.5

3.3 Model Interpretability

3.3.1 Handcrafted Features

We extract 11 types of handcrafted features from the images, whose importance to the evaluation of the ROP
disease was evaluated by Aeter-Cansizoglu et al.2 The impact of the features choice on the diagnosis was
thoroughly investigated in the literature and the selected method constitutes a reference standard with high
inter-expert agreement.2 For each type of feature, 8 traditional statistics (such as minimum, maximum, mean,
median and second and third moments) and 5 Gaussian Mixture Model (GMM) statistics are extracted, for
a total of 143 handcrafted features (more details in the Appendix 1). Such features are extracted from the
automated vessel segmentations and express curvature, tortuosity and dilation of retinal arteries and veins
(details reported in Table 1). The features in Table 1 are first computed independently for each vessel in the
image. The ”vesselness” of the whole retinal sample is then summarized by standard statistics such as mean and
median of the per-vessel features. A ranking of the features is computed on the basis of their Gini coefficient for
random forest classification of normal and pre-plus or worse on 100 random train-test splits (with replacement)
of the data. The retaining criterion used for this analysis identified a set of six measures that covered a wide set
of clinically interpretable features, discarding measures with a frequency of appearance lower than 10% in the
ranking. The retained measures were: curvature mean, curvature median, avg point diameter mean, avg segment
diameter mean, cti mean and cti median. Notwithstanding, the same analysis can be repeated with a different
criterion or with the exhaustive analysis of all the 143 features.

Feature Description Clinical interpretation
curvature κ(s) rate of direction change

avg segment diameter #pixels/Lc(x) global dilation
avg point diameter Wn(x) absolute dilation

Cumulative Tortuosity Index (CTI) cti(x) = Lc(x)/Lx(x) curving, curling, twisting rate
Table 1: Handcrafted feature description and clinical interpretation. κ(s) describes the rate of changing veloc-
ity between points with respect to the rate of changing the curve length between points. Lc and Lx denote
respectively curve and chord length. Wn denotes the width of vessel on the normal direction.

3.3.2 Regression Concept Vectors

RCVs are computed by seeking in the activation space of a layer the direction of greatest increase of a set of
measurements for one retinal concept. This direction is computed as the LLS regression of the retinal concept



measures on the training inputs.4 The regression vector is normalized to obtain a unit vector that identifies
the direction of increasing values of the concept measure. The determination coefficient of the linear regression,
R2, is used to evaluate the quality of the RCV and to obtain insights about the layer in the network where the
concepts are learned. For each image xi and each retinal concept C, the directional derivative of the network
output f(·) on the RCV (−→v C) is computed in the activation space of a layer Φl as shown in Eq. 1.

Sl
C,i =

∂f(xi)

∂Φl(xi)
· −→v C (1)

For a given concept, the directional derivative expresses the sensitivity of the network output to changes in
the input along the direction of increasing values of this concept.4 The sensitivity scores are summarized in
global explanations by Br scores. Br scores are defined as the ratio between R2 and the coefficient of variation
(standard deviation over the mean) of the individual sensitivities:4

Br = R2 ×
(
µ̂

σ̂

)
(2)

Br scores were proposed to express the global relevance of a concept on the basis of the magnitude and consistency
of the individual sensitivities.4 However, different scoring systems could be proposed to evaluate the global
relevance of a concept. RCVs were computed by extending the Keras Visualization Toolkit∗.17

3.4 Visualization

We visualize the layer activations with Uniform Manifold Approximation and Projection (UMAP).18 UMAP
is a manifold learning technique for dimensionality reduction, competitive with the more traditional t-SNE
for visualization quality and runtime performance. The optimal low-dimensional representation is obtained by
minimizing the cross-entropy between two topological representations, namely one for the high dimensional data,
and the second for the candidate compression. We visualize the 2D projection of the activations at the filter
concatenation layer of the last inception module (for brevity we will refer to this layer as Mixed 5c Concatenated

in the rest of the paper). The distribution of the concept measures among the network’s representation of each
class is visualized by changing the color intensity and the size of each data point. Moreover, the predictions for
the testing set are visualized in the same projection space and misclassification errors are shown in different color
and size.

4. RESULTS

4.1 Model performance and global interpretability

The classification achieved 90% accuracy on the training set and 81.5% accuracy on the test set (0.97 AUC
normal, 0.93 AUC plus).

Figure 2 shows the R2 at different layers for inputs of the normal and plus classes. Avg point diameter
mean and curvature median are the best performing concepts for both classes. Retinal concept measures about
tortuosity (i.e. cti mean and cti median) are poorly learned on normal cases (R2 is clipped to zero). The 95%
confidence intervals of the R2 are particularly narrow, with RCVs remaining unchanged when computed over
different subsets of the data (we computed the angles between computations which were close to zero). Figure 3
shows the global Br scores that were computed at the filter concatenation layer of the last inception module
and scaled to be in the range [-1,1].4 Curvature median is the most relevant concept in both classes, but with
opposing directions (Br = −1 for normal and Br = 1 forplus). Avg point diameter mean is the second most
important concept for normal cases, Br = −0.99. For plus cases, Avg point diameter mean and cti median are
equally important with both Br = 0.56. Cti median has almost zero Br in normal cases.

For each of the concept measures analyzed, we visualize the 2D UMAP compression of the representation
learned at the Mixed 5c Concatenated layer (in Figure 4). The ROP classes are colored with three different
colors, namely green for normal, blue for pre-plus and red for plus. The values of the handcrafted features
corresponding to the desired concept measure are represented with different color intensities and sizes.

∗Our source code is available at https://github.com/maragraziani/iMIMIC-RCVs.git
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Figure 2: R2 of the regression at different layers of the network, averaged over 3 repetitions, for (a) normal and
(b) Plus input samples. 95% confidence intervals computed over 3 repetitions are illustrated. Best viewed in
color.

(a) (b)

Figure 3: Global Br relevance scores on the testing set for normal and plus images. Best viewed in color.

4.2 Misclassification

The normal class is the most affected by misclassification. We measure the gravity of the misclassification error
as the distance between the predicted class label and the true class label. When the distance is negative, the case
is underestimated, namely the prediction assigned a lower class than the real (e.g. normal instead of pre-plus or
pre-plus instead of plus). Similarly, when the distance is positive, the case is overestimated, with the assignment
of pre-plus or plus to a patient that was less in danger. Figure 5 illustrates the misclassification errors in the
2D UMAP compression of the activations of the Mixed 5c Concatenated layer. Most of the misclassification
errors are made at the decision boundary between pre-plus and normal, at gravity 1 (points in orange color).
The emptiness of the left portion of the space shows how misclassification on plus cases is kept to a minimum,
with a very low number of false negatives. Among them, a false negative sample lies at the decision boundary
between the pre-plus and plus. The individual relevance scores for such data point are presented in Figure 6b.



Figure 4: UMAP representation at the Mixed 5c Concatenated layer of the Inception model. The three colors
respresent the three classes, respectively normal as green, pre-plus as blue and plus as red. The color intensity
and the size of the data point have been changed to show the value of the concept measure. Smaller values of
the concept measure correspond to less bright, smaller data points. Best viewed in color.

4.3 Individual relevance scores

Figure 6 presents the individual relevance scores for a correctly classified sample (6a) and for the misclassification
of plus as pre-plus (6b). The original values of the handcrafted features (which were used as concept measures)
are reported on the left of the image. The network probability of each class is shown on top of the segmentation,
as pn, ppre and pplus. For the misclassified data point, the scores highlight that higher values of curvature and
tortuosity would increase the probability of the plus class.



Figure 5: 2D UMAP of the Mixed 5c Concatenation layer activations for the training data points (in trans-
parency in the background), the testing data points (in brighter color) and the miclassified data points. The
three classes are colored in green for normal, blue for pre-plus and red for plus. Misclassification data points are
in larger size and colored according to misclassification gravity (false negatives in dark blue, false positives in
orange). Best viewed in color.
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Figure 6: Individual relevance scores for (a) correct classification (b) misclassification of plus as pre-plus. The
original values of the concept measures are overlayed on top of the raw image on the left. The network proba-
bilities for normal, pre-plus and plus are respectively pn, ppre and pplus. Best viewed on the screen.



5. DISCUSSION

The analysis of the R2 (in Figure 2) highlights that concepts are learned better at deeper layers of the network.
Interestingly, avg point diameter mean has a better regression than curvature median in Figure 2a. However,
this situation is reversed for plus cases. After a crossing point in the middle layers, the R2 of curvature median
overcomes the one of avg point diameter mean (Figure 2b). Moreover, the narrow confidence intervals of the R2

show that the solution of the regression is robust to multiple repetitions, leading to consistent directions. The
opposing signs of the Br scores for the two classes can be interpreted as a decrease (if scores are negative) or an
increase (if scores are positive) in the probability for this class when the values of the concept measure increase.
For instance, the negative Br scores of the normal class can be interpreted as a shift in the prediction towards
pre-plus or plus. Since measures of curvature and dilation emerged as the most relevant, the shift in the prediction
towards pre-plus or worse is more marked when the inputs present larger measures of such features. Tortuosity
has little relevance in the classification of normal cases, while it becomes as important as dilation measures in the
classification of plus. Finally, visualizing the misclassified data points on the 2D compression of the activation
space helped in finding regions where the network faults were more frequent. For instance, most of the errors
were false positives (on inputs of class normal), and the false negatives were very few. The visualization of the
individual relevance scores of the misclassified data points shows that larger values of curvature or tortuosity
may have increased the probability of the class plus.

Overall, the application of the RCV framework allowed to identify relevant concepts in a fully-automated
system for ROP diagnostics. The interpretations of the network can be related to the handcrafted features used
in more traditional machine learning approaches. Our analysis could be extended to a variety of alternative
handcrafted features. One limitation of this approach is the linearity assumption of the LLS. Especially, a
non-linear regression could be found for concept measures that were not possible to regress linearly. Moreover,
regularized regression would lead to even more stable solutions. Notwithstanding, the results show that the
proposed approach can generate explanations of the network decisions that are clinically interpretable and
consistent with previous findings in ROP.

6. CONCLUSIONS

This work presented a method to compare deep learning features to more traditional features of vessel curvature,
tortuosity and dilation for the diagnosis of ROP. We linked deep features to handcrafted features by using the
latter as concepts measures in the RCV framework. RCVs were computed at different layers of the network
and the relevance of each concept to the classification of ROP grades was computed on testing inputs of the
classes normal and plus. The Br scores highlighted the network focus on vessel measures to perform the
classification. Curvature emerged as a particularly discriminating factor between the classes plus and normal.
Tortuosity is only relevant for plus cases, suggesting that the neuron activating for the class plus is the only
one attending features of vessel tortuosity. However, more experiments are needed to estimate the attention
given to a concept by a single neuron. Individual scores were used to highlight the factors most responsible for
misclassification. The penalization of these in the network optimization function could improve the classification
accuracy. Moreover, the approach versatility allows the extension to similar pathologies which may have larger
datasets available. Concepts that could be relevant in more than one clinical application (e.g. vessel features in
diabetic rethinopathy) could be identified and eventually used during network training. In conclusion, this paper
is a step towards a better understanding of the connection between deep features and retinal vascular features.
Further research is still needed to fully uncover the deep learning mechanisms, thus broadening the perspectives
on the application of deep learning to computer-aided ROP diagnosis.
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7. APPENDIX

7.1 ROP features

Feature types Eleven types of features that quantify either tortuosity or dilation were used for the experi-
ments. These features are divided into three groups depending on where and how the feature is computed: point-
based, segment-based or tree-based. Average point diameter is an example of point-based feature, which describes
the width of the vessel (on the direction normal to the blood flow) at each point in the image. Segmented-based
features are computed on segments of the vessel trace. For example, average segment diameter is obtained by
dividing the number of pixels on the vessel by the vessel curve length. Finally, an example of tree-based feature
is the distance to the center of the optic disc, namely for each vessel segment the distance between the ending
point of the vessel and the disc center. An exhaustive comparison of the feature types can be found at.2

Feature statistics Statistics are computed on the features. Traditional statistics include the minimum and
maximum first and second values, the mean, median and higher central moments (up to the third). Moreover,
the pool of feature values is separated into two clusters to separate out the signal from normal and abnormal
vessels. The normal and abnormal clusters are then fit into a GMM and the mean, variances and component
coefficients are respectively used as GMM statistics. For each feature type 8 traditional statistics and 5 GMM
statistics were computed, generating a total of 143 measures.

Feature ranking Feature ranking was used to identify the most important features for the classification of
the ROP disease. We trained 100 random forest classifiers on random data shuffles, ranking the features for
importance according to their Gini coefficient and selecting the top 5 in all the 100 repetitions. Interestingly the
median of the Cumulative tortuosity index appeared in the top 5 for all 100 models. Table N reports how often
each feature appeared in the top 5, while Figure 7 shows the kernel density estimation of the feature values for
each of the three ROP classes.

Feature Name type frequency in the top5
cti median segment-based 100%
cti mean segment-based 87%

curvature median point-based 85%
curvature mean point-based 42%

average point diameter mean point-based 21%
average segment diameter median segment-based 10%

Table 2: Top 5 frequency in the classification of ROP disease over 100 random forests repetitions



Figure 7: Kernel Density Estimation of the handcrafted feature values for the three classes (normal in orange,
pre-plus in green, plus in blue).
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