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Abstract. The increasingly intensive collection of digitalized images of tumor tis-
sue over the last decade made histopathology a demanding application in terms
of computational and storage resources. With images containing billions of pixels,
the need for optimizing and adapting histopathology to large-scale data analysis is
compelling. This paper presents a modular pipeline with three independent layers
for the detection of tumoros regions in digital specimens of breast lymph nodes
with deep learning models. Our pipeline can be deployed either on local machines
or high-performance computing resources with a containerized approach. The need
for expertise in high-performance computing is removed by the self-sufficient struc-
ture of Docker containers, whereas a large possibility for customization is left in
terms of deep learning models and hyperparameters optimization. We show that
by deploying the software layers in different infrastructures we optimize both the
data preprocessing and the network training times, further increasing the scalability
of the application to datasets of approximatively 43 million images. The code is
open source and available on Github.
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1 INTRODUCTION

Breast cancer is the second leading cause of cancer death among women world-
wide [35]. In 2019, the estimated number of women diagnosed with breast cancer
was 271 270 only in the U.S. (7.3 % increase from the estimates of 2017), and an in-
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creasing number of women died from the disease (2.8 % increase from 2017 with
41 760 estimated deaths). A metastasizing breast cancer, particularly, has a far
worse prognosis than a localized one. Assessing regional tumor spreading is thus ex-
tremely important for prompt treatment planning and accurate cancer staging [12].
Being the most likely target for initial metastases, axillary lymph nodes are ana-
lyzed to determine the spreading stage to neighboring areas. The N-stage of the
TNM system, for instance, assesses the presence of tumor in regional lymph nodes.
Before undergoing surgical removal of tissue, the patient is injected a blue dye or
a radioactive tracer to identify the nearest lymph node to which the tumor may
have drained, which is also called the sentinel lymph node [12]. Thin tissue slices
are collected for visual analysis, mounted on glass slides. At this stage, the tissue
slices mostly have transparent cells, the reason why they are treated with multiple
contrasting stains. Different staining techniques can be used, with Hematoxylin and
Eosin staining (H & E) being the most common, and immunohistochemical (IHC)
staining for cytokeratin being used only in case of unclear diagnosis on H & E [7].
Hematoxylin stains the nuclei with blue, while Eosin highlights the cytoplasmic and
non-nuclear components in different shades of pink. Their combination highlights
the structure and cells within the tissue specimen. Tumor presence is tradition-
ally evaluated by microscopic inspection, which may take several minutes per slide.
Pathologists base their decisions upon morphometric and architectural features of
the tissue structure and the nuclei, for instance estimating the presence of tubu-
lar formation, nuclear pleomorphism and mitotic count (see Figure 1) [30]. Such
analysis is time-consuming, tedious, and error-prone since small metastases may be
missed by the pathologist’s eyes (detection rate lower than 40% for the smallest
type) [38]. Moreover, the grading of tumor growth patterns is very subjective and
reports high inter-observer variability (κ ∈ [0.582, 0.850] [32, 29]).

Figure 1. Grading criteria in the Nottingham Histologic Grade of breast cancer

The difficulties in the diagnostic motivate the automation of the grading process,
made possible by the commercialization of high-resolution digital scanners for im-
ages of tissue specimens called Whole Slide Images (WSIs) around the year 2000 [1].
The well-established success of Convolutional Neural Networks (CNNs) in various
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computer vision tasks triggered their use for automatic diagnoses. While clinical
pipelines are increasingly introducing the full digitization of specimens by WSIs,
several challenges affect the analysis of these images by deep learning models. On
the data acquisition side, defects in the tissue handling, fixation, processing and
staining affect the image quality, thus hampering future analyses. Intervals between
tissue harvest, fixation and total fixation time are also poorly controlled in current
pipelines, often leading to high variability and heterogeneity in the data collec-
tion [1]. Further technical aspects of the slide digitization such as the maximum
magnification, the image compression and the color palette may also cause hetero-
geneity in the data, affecting both the image visualization and analysis. Moreover,
storage requirements can easily explode when scaling the data collection to multiple
patients. WSIs are extremely large, reaching generally more than 100 000× 100 000
pixels [4]. Some pathological section processes may generate up to 20 images per
patient, easily leading to more than 65 GB of data per patient [41]. Besides, no
universally accepted WSI format has yet been defined, with different scanner man-
ufacturers patenting different WSI file formats (such as SVS or NDPI). The multi-
resolution pyramidal structure of WSIs, finally, contains multiple down-sampled ver-
sions of the original image, with different informative content [4]. Varying the scale
at which the images are analyzed improves the quality of the analysis by taking into
account information at different levels, the high-level disposition of the cells (e.g.
degree of tubular formation) and fine-grain details such as the nuclei morphology or
the mitotic activity.

This paper describes the research pipeline that we developed to process a scal-
able number of breast lymph node WSIs, to compare the performances of multiple
deep learning architectures in terms of their training and inference time, accuracy
and explainability. Our design takes into account the developmental requirements of
scientific research generally performed on small computing clusters (up to 4 GPUs
maximum). Being released with a containerized approach, it can be deployed on dif-
ferent infrastructures without requiring specific expertise, and it can be used to run
some tasks on the large scale computing services provided by the PROCESS project1,
by transforming the Docker into Singularity containers. The design of such pipeline
was driven by the need for flexibility in the used libraries for scientific development,
while its integration exploits the services of the High-Performance Computing (HPC)
structures. The paper is structured as follows. Section 2 introduces the state of the
art about deep learning developments for both digital pathology and HPC. Section 3
describes the methods and datasets used for the experiments. In this section, we
also describe the specific requirements of deep learning for histopathology and how
these are met by the PROCESS platform interconnecting HPC and research centers
in Europe. The experiments are run, in fact, at different sites, namely the Univer-
sity of Amsterdam (UVA), the SurfSARA computing center (with the LISA cluster),
the SuperMUC-NG of the Leibniz-Rezerchcentrum (LRZ), the Prometheus cluster

1 The PROCESS project received funding from the European Union’s Horizon 2020.
Homepage: https://www.process-project.eu/

https://www.process-project.eu/


Breast Histopathology with HPC and DL 1005

at Cyfronet (AGH), the computing resources of the Slovak Academy of Sciences
(UISAV) and our local resources. Particularly in Sections 3.5, 3.6 and 3.7, we de-
scribe the three layers of the proposed pipeline, pointing to the relative open source
Github repositories. Section 4 reports the experimental results obtained with the
proposed architecture on the different computing resources. In Section 5, finally, we
present a discussion of the results and the challenges of scaling histopathology ana-
lysis to exascale datasets, together with the computational aspects of the software
optimization.

2 RELATED WORK

2.1 Digital Pathology

Digital pathology has become very popular over the last decade for its practical
assets [26]. WSIs reduce the need for storing glass slides on-site, reducing their risk
of breaking, fading, or getting lost. Digital images can also easily be shared across
institutions. This solicits the exchange of opinions, and if necessary pathology con-
sults, about challenging cases. In case of specific questions at tumor boards, WSIs
can be inspected offhand to find answers. Besides, WSIs allow the collection of ex-
amples of many different cases, including rare cases, that can be practically used in
teaching slides sets. The creation of open-access digital slide archives, such as that of
The Cancer Genome Atlas, led to intensive research on image analysis for pathology,
which recently steered towards the application of deep learning based techniques.
The large image sizes, as well as their heterogeneity and the often-imbalanced data
distribution (towards non-tumorous tissue), make the development in this area chal-
lenging. The development of handcrafted features requires a background knowledge
comprehensive of biology and imaging skills, together with the further specializa-
tion of the specific tissue type being analyzed. Handcrafted features that can be
applied to any organ type include nuclear/gland shape and size, and tissue texture
and architecture. Nuclear shape and texture, for example, were shown to predict
the prognostics for breast cancer [25]. Graph-based approaches such as Voronoi tes-
sellations were also used to characterize the relative positioning of nuclei and glands
within the tissue. Prognostic features specific for breast cancer, for example, take
into account the disposition of infiltrating tumoral lymphocytes.

Deep learning approaches for the analysis of histopathology images remove the
need for the cumbersome creation of tissue-specific handcrafted features. Most of
the approaches in the literature focus on the detection of Region of Interest (ROIs)
where tumorous tissue can be identified, on the direct segmentation of nuclei [19]
or the quantification of mitoses [3]. Because of the pyramidal structure of WSIs,
images are often analyzed at multiple resolutions in a multi-step procedure [22, 42].
A thresholding operation (e.g. Otsu thresholding [42]) is performed on the lowest
resolution image to filter out the image background. The doctor annotations of ROIs
can then be used as ground-truth labels to train Convolutional Neural Networks
(CNNs). Image crops at higher resolutions are assigned the tumor label if they fall
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within the ROI while the remaining tissue is assigned a non-tumor label. These data
are used to train CNNs end-to-end for the patch-based classification of tumorous
images2. Additionally to these, weakly supervised learning methods were used to
exploit coarse labels to extract fine-grained information. The information contained
in high-resolution crops of the WSIs is used as a “bag of inputs” with a single label
in multiple-instance learning, for example. Teacher-student designs, besides, were
recently proposed for combining small amounts of finely annotated data (manual
segmentations of tumorous areas) with large amounts of weakly annotated data
such as instance-level annotated WSIs [28].

As for the deployment of digital pathology on HPC, this is a recently growing
area with yet unexplored opportunities and challenges. Particularly, with the ex-
ponential growth of biomedical data, several techniques will require adaptation and
optimization to process efficiently large-scale datasets [41]. The specific demands of
digital pathology require double adaptation, namely that of the HPC infrastructure
towards the high computational burden of analyzing the massive dataset sizes, and
that of developing pipelines that best exploit the infrastructure potential. Only
a few existing works distribute the algorithms for medical image analysis. The work
in [39], for example, uses MapReduce to answer spatial queries on large scale pathol-
ogy images. A low-cost computing facility that can support the analysis of up to
1 million (1 M) images was proposed, for example, in [5]. Multiple-instance learning
for histopathology was implemented in [41] to fit Microsoft HPC resources, and fur-
ther modifications to the original algorithm were shown to obtain better scalability
in [40]. These works, however, were directly optimized on the available computing
resources for the research, requiring expertise at the frontier of HPC, deep learning
and digital pathology. The main purpose of this work is to offer a ready-to-use appli-
cation for researchers in the digital pathology field that have little to no experience
in HPC and optimized computing. The application, being organized in three layers,
presents different steps in the traditional pipeline with a modular approach, where
each module can be customized in terms of research parameters and input data and
can be deployed to different computing facilities.

2.2 HPC for Deep Learning

HPC infrastructures have played a fundamental part in solving large-scale problems
with a high degree of computational complexity in domains such as astrophysics,
high energy physics, computational fluid dynamics or finite element analysis. HPC
services were built specifically to fit the requirements of such problems to efficiently
scale up the problem size, exploiting the power of thousands of multi-core computer
nodes to effectively solve a single computationally-intensive problem. The downside
is that the technical and organizational architecture of HPC trades some of the flex-
ibility and dynamism for achieving the highest possible performance and maximum

2 Different pipelines can be adopted, obtaining different results, as those in https:

//camelyon17.grand-challenge.org/evaluation/leaderboard/

https://camelyon17.grand-challenge.org/evaluation/leaderboard/
https://camelyon17.grand-challenge.org/evaluation/leaderboard/
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utilization rate. Only recently, HPC has embraced some of the programming solu-
tions to provide more effective Single Instruction Multiple Data (SIMD) operations
for vector data, which generated the possibility of introducing large scale machine
learning applications to their computational capacities.

The training of a deep neural network involves solving a high-dimensional non-
linear optimization function. The minimization of the gradients, often performed
with gradient descent algorithms such as Stochastic Gradient Descent (SGD), uses
several linear algebra computations on generally dense matrices. DistBelief was one
of the first examples of parallel training frameworks to train fully connected net-
works (42 M parameters) and locally connected convolutional neural networks (17 M
parameters) [9]. In this case, the parallelization of network training was achieved
by model parallellism. Model parallellism, splits the weights of the network equally
among multiple threads, creating network blocks that all work on the same mini-
batch. In other words, the same data is used for every thread, but the model-inherent
computations are split among threads. The output needs therefore to be synchro-
nized after each layer to obtain the input to the next layer. A simpler method is
that of data parallelism. The same model is replicated in each thread or working
node (either GPU or CPU) and the training is performed on different batches of
data. The gradients computed by each thread are relevant to the overall network
training. Hence, they need to be shared within all the models on all the workers at
the end of each data pass (i.e. their average is computed). Despite the simplicity
and the adaptability of this method to datasets, models and resources, two possible
bottlenecks may arise and hamper its efficiency. The averaging of the model pa-
rameters would require the transmission of extremely large matrices between nodes,
thus requiring a highly efficient network card connecting each node. A similar prob-
lem arises when handling the multiple data accesses: the continuous input/output
operations and data decoding may be the first cause for the slowing down of the
training process. Moreover, as in data parallelism the same mini-batch is analyzed
by all the GPUs, smaller batches result in decreased efficiency. The work on Large
Minibatch SGD by [13] proposed a solution to the optimization difficulties that arise
when increasing the size of the mini-batches to push to the edges the computational
gains in each worker. Furthermore, recent research in gradient compression has
proposed a solution to the latency in the communication between different nodes
caused by limited communication bandwidth. For instance, gradient compression
transmits only gradients larger than a certain threshold and accumulates locally
the rest of the gradients, thus consistently reducing the network communication
time [23].

In both data and model parallelism, the communication between the nodes can
be either synchronous or asynchronous. In the former, all the devices use differ-
ent parts of the same batch of training data and the model is updated when the
computation has finished in all of them. In the latter, the devices update the
model independently based on their mini-batches. Generally, the updates are shared
through a central parameter store, called parameter server. The parameter server
receives the gradients from all the workers and, when all the updates have been
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received, computes the new model update and sends it to the workers. A boost in
efficiency is given by the ring all-reduce technique, where each worker receives the
latest gradient update from its predecessor and sends its gradients to its successor
neighbor in a circular fashion. The trade-off between the synchronous and asyn-
chronous implementation of SGD was exploited in [21]. Synchronous systems use
the hardware resources less efficiently, whereas the asynchronous systems generally
need more iterations since the gradient updates are computed on older versions of
the model.

The use of specific hardware dedicated to deep learning seems, therefore, to be
projected as a prosperous newborn branch for HPC. The introduction of the ultimate
TPUs by Google research3 stands as an initial step in this direction. Notwithstand-
ing, the range of hardware characteristics of multi-purpose supercomputers is very
large. Scaling up computations might be cumbersome, requiring HPC expertise to
tailor models on the available system hardware.

3 DATASETS AND METHODS

3.1 Datasets

We use the Camelyon 16 and 17 challenge data, which constitute, currently, one
of the largest and most challenging datasets for histopathology research [4]. The
datasets include WSIs of lymph node sections together with slide-level annotations
of metastases type (negative, macro-metastases, micro-metastases, isolated tumor
cells) and some manual segmentations of tumor regions. The data were collected
at five different data centers, namely the University Medical Center in Nijmegen
(RUMC), the Canisius-Wilhelmina Hospital in Nijmegen (CWZ), the University
Medical Center Utrecht (UMCU), the Rijnstate Hospital in Arnhem (RST), and
the Laboratory of Pathology East-Netherlands in Hengelo (LPON). A summary of
the data provenances and distribution is given in Table 1.

Year Center Total WSIs Metastases (Train)

Train WSIs Test WSIs None ITC Micro Macro

2016
RUMC 170 79 100 – 35 35
UMCU 100 50 30 – 12 8

2017

CWZ 100 100 64 11 10 15
RST 100 100 58 7 23 12
UMCU 250 100 165 2 34 49
RUMC 349 100 210 8 64 67
LPON 100 100 61 8 5 26

Total 1 169 629 688 36 183 212

Table 1. WSI-level summary of the Camelyon 16 and 17 challenge datasets

3 https://cloud.google.com/tpu/docs/tpus

https://cloud.google.com/tpu/docs/tpus
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The variability in preparation across acquisition centers makes the data very
heterogeneous. Three different scanners were used in the five centers, namely the
3DHistech P250 (0.24µm pixel size) at RUMC, CWZ and RST, the Philips IntelliSite
Ultra Fast Scanner (0.25µm pixel size) at LPON and the Hamamatsu XR C12000
(0.23µm pixel size) at UMCU. The average file size is around 4 GB, for a total
storage requirement of 3 030.5 GB.

3.2 Application-Driven Requirements

The design of the HPC infrastracture used to run the experiments was driven by
the specific requirements of the pathology application, summarized in Table 2. The
rapid growth of this field makes its requirements at the border of those of exascale
computing both for computational and storage resources.

On the storage side, the extraction of image crops from the WSIs can easily grow
to more than 60 thousand patches for a single record. With more than one record
being held for each patient, the storage requirements can easily grow to several
Terabytes (TB) of space. This highly demanding data preprocessing is shared with
similar data types, e.g. satellite images. A requirement that is specific to the medical
field, however, is the handling of sensible data. Large publicly available datasets such
as Camelyon can be shared and downloaded on the main infrastructure to exploit
the storage and computing facilities of the HPC providers. Sensible data such as
private patient data must, however, be left on the local storage of the hospital to
meet the security and privacy requirements. A typical approach, in this case, is
that of the “Evaluation as a Service” (EaaS) solution, where the data can remain
in a single infrastructure and does not need to be moved. Sensitive data could be
left in the hospitals and be used only on their local environment.

On the computational side, the training of state-of-the-art CNNs with millions
of parameters is highly demanding. Current implementations can take days to con-
verge for datasets sizes of the order of magnitude of 10 Gigabytes (GB). Medical
imaging data (and not only) easily reaches the TB if not the petabyte (PB) or-
der of magnitude. The computational demand on such datasets can easily reach
15 petaflop/s [21], pointing towards exaflop/s in the nearest future. The support
of dense linear algebra on distributed-memory HPC is an indispensable require-
ment to train deep models. Open Message Passing Interfaces and parallelization
libraries such as Horovod4 allow the parallelization on multiple GPUs and HPC
nodes. Top-development libraries such as Tensorflow and Keras are also top list
requirements for the deployment of deep learning algorithms. Computational and
storage requirements may seem two disentangled types of prerequisites, but one ac-
tually proportionally influences the other. With increasingly intense computations,
the need for storage for saving intermediate results arises.

The need for containerized software is a further requirement to maintain the
portability of the developments. While Docker containers are mostly used by the

4 https://eng.uber.com/horovod/

https://eng.uber.com/horovod/
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scientific community, Singularity containers constitute a better trade-off between
the application and the infrastructure requirements, providing improved security by
removing the root access on the HPC machines. Specific technologies are required
to process the different image formats, being WSIs often saved as BIGTIFF files
paired to annotation XMLs, CSVs or TXTs. Moreover, datasets such as PubMed
central may require the handling of more common image compression formats such
as JPEG and MPEG.

Requirement Motivation Software Layer

SCP and FTP connection initial WSI transfer 1
Docker or Singularity software portability 1, 2, 3
Data storage (> 100 TB) public WSIs and intermediate results 1, 2
OpenSlides WSI preprocessing 1
Tensorflow > 1.4.0 DL library 2, 3
Keras > 1.4.0 DL library 2, 3
Horovod distributed computing 1, 2
OpenMPI distributed computing 1, 2
SLURM distributed computing 1

Table 2. Summary of application specific requirements

3.3 The Exascale Platform Architecture

In this section, we describe the architecture of the exascale platform within the
developments for the PROCESS project, highlighting the modules introduced to
adapt High-Performance Computing (HPC) to the use case requirements.

Data Services for Medical Use Case. The main data service of the PRO-
CESS platform is a virtualized distributed file system (VDFS) LOBCDER. It is
a modular, scalable and extensible VDFS implementing the micro-infrastructure
approach. LOBCDER integrates special hardware nodes that are dedicated to
the transfer of data. It has a module for meta-data management (DataNet) and
pre/post-processing of exascale datasets (DISPEL).

Computing Services for the Medical Use Case. The PROCESS platform
is available via Interactive Execution Environment (IEE) which gives access
to heterogeneous computing infrastructure of supercomputers supporting HPC
(via Rimrock) as well as cloud computing (via Cloudify). Both computing ser-
vices provide relevant containerization services (Docker and Singularity). The
platform also allows users to use GPUs in parallel and in a distributed manner.

Table 3 summarizes the core requirements for the exascale platform given by the
medical application. These requirements are one of the main pillars on which the
PROCESS architecture was built. The table also provides an overview of how the
PROCESS platform is capable to satisfy them.
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Requirement PROCESS Module

Support containerization Rimrock

Workflow management for configuration, deployment and
management of multiple application/use case executions

IEE

Distributed file system supporting medical use case datasets
and their file formats (e.g. image formats)

LOBCDER

Support multiple pipelines within a workflow LOBCDER,
Rimrock

Distributed pre-processing of training data DISPEL, LOBCDER

Supporting data transfer protocols (e.g. GridFTP, SCP, etc.) LOBCDER

Support of the set of common tools for machine learning and
deep learning on the HPC centres

Docker and Singularity
containers supported
by computing sites

Parallel and distributed multi-GPUs training Computing centres

Support GPUs in containers Computing cetenrs

Table 3. Use case requirements and dedicated components from the PROCESS platform
which fulfils them

3.4 A Modular Design for a Step-by-Step Pipeline

The method we propose is a three-layer software architecture for training differ-
ent deep neural network models, summarized in Figure 2 and presented in de-
tail in Figure 3. The modular approach splits the full pipeline in different work-
flows that can be shared, reused and updated independently. In the following
subsections we describe the methods adopted in each of the three framework lay-
ers.

3.5 Layer 1: Preprocessing and Patch Extraction

The WSI in its original format is much larger than the maximum input format for
a CNN. For this reason, WSIs need to be cropped into smaller images, called patches
or tiles, which can then be fed to the network. Patches are extracted at the highest
level of magnification (i.e. 40×). High resolution highlights qualitative features of
the nuclei which are prognostic of cancer [30].

The first layer of the proposed application focuses on the patch extraction and
data preprocessing of the WSIs (see Figure 4). As a first step, the filesystem is
scanned to retrieve patient-related metadata and the acquisition center. If additional
data were to be loaded on the HPC, the LOBCDER filesystem of PROCESS could
be used. From the lowest magnification level, binary masks of normal and tumor
tissue are extracted by the Otsu thresholding method [42], already proposed for this
data in [4]. Patches are then sampled at the highest magnification level from the
annotated tumor regions for the tumor class. For the non-tumor class, patches are
sampled not only from the annotated images but also from 297 non-tumor WSIs in
Camelyon17.
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Figure 2. Overview of the CamNet software

Layer I

Layer II

Layer III

Figure 3. Detailed structure of each software layer. Best on screen.
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Figure 4. WSIs preprocessing pipeline: Normal tissue and tumor tissue masks are ex-
tracted and high-resolution patches are sampled from the selected regions

Patches with non-relevant information (e.g. white content, black pixels, back-
ground, etc.) are filtered out and discarded. Information about the patient, the
lymph node, the hospital which handled the acquisitions, the resolution level of the
patch and the patch location in the WSIs are stored together with the pixel values
in an intermediate HDF5 database. Moreover, the doctor annotations are stored
in the HDF5 as a binary label on the patch, which discriminates between tumor
and non-tumor patches. Different cropping strategies following the sampling ap-
proaches for automated histological image analysis [4] are available in the system.
The most common is the random sampling scheme, which extracts randomly several
patch locations. A seed for initializing the random sampling and the desired number
of patches to extract (N) are passed as input parameters of this stage. A white-
threshold (expressed in terms of the percentage of pixels with intensity values larger
than 200) is applied to discard image croppings of the background and the adipose
tissue, which are uninformative for the task. Similarly, black background patches are
removed from the sampling results. The Simple Linux Utility for Resource Manage-
ment system (SLURM) is used to develop a parallel version that can be distributed
on the HPC. A job array is configured with a random generator seed. At each batch
run, a different patch set is extracted. The code for local execution (sequential
algorithm) and for the distributed execution is available online5.

By means of the HPC computational capacity, the dense coverage of the WSIs
is also possible. A sliding window that extracts patches with a fixed stride is imple-
mented as an alternative sampling option. This option, not possible with the local
research facilities, is optimal when ran on the computing capabilities of HPC. The
distribution of the code on different HPC nodes is, in this case, necessary. Therefore,
this part of the software can only be run on distributed computing facilities with
the support of SLURM. Each WSI is assigned to a single SLURM job array. The
patches with non-relevant information are filtered out and discarded by the white
thresholding. A further scaling step is also available, combining two SLURM tech-

5 https://github.com/medgift/PROCESS_L1

https://github.com/medgift/PROCESS_L1
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niques at the same time for better efficiency. Each task in the SLURM job array is
assigned a different WSI, and an arbitrary number of subtasks are run in parallel to
implement the sliding window.

The image croppings resulting from the extraction process with any of the two
strategies are stored in an intermediate Hierarchical Data Format file (HDF5), to-
gether with the metadata about the patient, the lymph node, the acquisition center,
the magnification level and the patch location.

3.6 Layer 2: Patch-Based Deep Learning

The second layer loads the intermediate HDF5 dataset generated by Layer 1, and
focuses on the training of deep learning architectures for the binary classification be-
tween tumor and non-tumor patches, following the approach in [42]. The training of
several state-of-the-art CNNs (i.e. ResNet50, ResNet101, GoogleNet, Inception V3,
DenseNet, InceptionResNetV2, all pre-trained on ImageNet) is pre-implemented.
The training can be distributed with the Open Source Distributed Deep Learning
Framework for Tensorflow, Horovod. A configuration file is used to specify the
network architecture preferences and hyperparameters (i.e. loss, activation, learning
rate and batch size). The output of this layer consists of the trained network param-
eters and training statistics. In this paper, we compare the performances of ResNet
and Inception on different GPU types, namely Titan V, Titan X, Tesla K80, Tesla
K40. The source code is also available online, for either single-GPU or multi-GPU
execution6.

3.7 Layer 3: Inference and Interpretability

We present a summary of the functionalities of Layer III in Figure 5. This last layer
of the proposed application deals with two main tasks: performing inference and
interpreting the models trained in Layer II.

Figure 5. An example of the functionalities in Layer III, which consist of performing dis-
tributed inference for building the tumor heatmap and providing interpretability analyses
and insights about network training

6 https://github.com/medgift/PROCESS_L2/

https://github.com/medgift/PROCESS_L2/
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As a first functionality, this layer generates heatmaps of the probability of the
presence of tumorous tissue, which can be used for visual inspection and comparison
with the ground truth segmentations. CNN inference, in general, is less costly than
training, although WSIs still require a great number of patches to be tested. This
process is hence optimized by parallel-data distribution. Several copies of the CNN
are stored on the GPUs and inference is performed in parallel on distinct batches of
data. The heatmaps are then built by interpolating the predicted probability values
for each pixel.

The interpretability of the models, besides, is analyzed in this layer. Understand-
ing the decision-making process of CNNs is a key point in medical imaging, to ensure
that clinically correct decisions are taken. Several different approaches are proposed
in the literature, with clear distinctions being made between models that introduce
interpretability as a built-in additional task [11, 20, 6, 8, 2, 34] and post-hoc meth-
ods. Post-hoc methods, as defined in [24], are particularly suited to the proposed
layered framework, since they allow to disentangle the interpretability analysis from
network training. They can be used to explain any machine learning algorithm with-
out retraining the network weights. Several post-hoc techniques [36, 43, 33, 10, 31]
highlight the most influential set of features in the input space, a technique known as
attribution to features [37]. Among these, gradient-based approaches, such as Class
Activation Maps (CAM), Gradient-weighted Class Activation Maps (grad-CAM)
and its improved version grad-CAM++, attribute the network output to perturba-
tions of the input pixels. The output of such methods is a heatmap of the input
pixels that mostly contributed to the decision. Local Interpretable Model-Agnostic
Explanations (LIME) are used as an alternative tool to obtain visualizations. These
visualizations are compared to interpreting the CNNs by the regression of clinical
values such as lesion extension and appearance in the internal network activations
in [15]. The method proposed for the comparison is that of Regression Concept
Vectors (RCVs), first implemented in [14] and then expanded in [17]. This ap-
proach, besides, was further investigated in [16], showing that it can be efficiently
used to improve the training of CNNs on medical images. To develop concept-based
explanations, we define a list of concepts that could be relevant in the diagnosis.
Concepts are chosen so that specific questions can be addressed, e.g.: Do the nuclei
appear larger than usual? Do they present a vesicular texture with high chromatism?
To answer these questions about the nuclei area and texture, representative of the
NGH nuclear pleomorphism, the segmentation of the nuclei instances in the image
is obtained by either manual annotations [14] or automatic segmentation [27]. We
express the nuclei area as the sum of pixels in the nuclei contours, whereas the nu-
clei texture is described by Haralick’s descriptors such as Angular Second Moment
(ASM), contrast and correlation [18]. A summary of the concepts extracted and
how to compute them is presented in Figure 6.

The performance of the RCV is evaluated by the determination coefficient of
the regression R2, expressing the percentage of variation that is captured by the
regression. This is used to check if the network is learning the concepts and in
which network layers [14, 17]. Sensitivity scores are computed on testing patches
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from Camelyon17 as in [14]. The global relevance of the concept is estimated by
either TCAV or Br scores.

Figure 6. Concept list derived for the breast histopathology application with information
about the magnification level at which to extract them and whether the measures require
a continuous (C) or discrete (D) representation

4 EVALUATION

4.1 Data Preprocessing

We report in Table 4 the evaluation of the execution times for the data preprocessing
and patch extraction workflow. The two sampling processes, random and dense,
are compared. The measurements were computed on the AGH site in Krakow,
Poland.

# WSIs # Nodes Sampling Parallelization Type CPU Time [s]

1 1 random none 292
5 5 random 1 CPU/WSI 260

1 1 dense none 18 400
1 100 dense 1 000 CPUs/WSI 3 000
5 500 dense 5 000 CPUs/WSI 7 530
5 1 000 dense 10 000 CPUs/WSI 3 780

Table 4. Measurements of execution time vs data sizes for extracting high resolution
patches from the Camleyon17 dataset at the PROCESS AGH site. The WSI size is
100 000× 100 000 pixels.

The layer scalability to increasingly larger datasets and patient cohorts are
shown in Figure 7. Scaling is possible by increasing the number of available nodes,
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for instance, from 100 to 1 000. In this case, approximately 50 000 patches can
be extracted in less than 5 minutes with random sampling strategy, showing lin-
ear speed-up capability. Through the dense sampling strategy and by scaling the
patch extraction to 1 000 nodes, we extracted 43 million patches, for a total of
7 TB of intermediate data. With 8 thousand nodes available for the computa-
tion, this would take approximately 1 hour with the SLURM parallelization tech-
nique.

Figure 7. Layer 1 scalability to larger datasets and patient cohorts vs number of available
nodes

4.2 Data Transfer Between HPC Sites

In addition to the computational time, we evaluate the time for data transfer between
HPC centers, to establish whether this could constitute a possible bottleneck that
would prevent the execution of two different software layers in two centers, e.g.
Layer I at AGH and Layer II at UVA.

We show the cross-site staging results for transferring 30 GB of the Camelyon 16
dataset (3 % of the full dataset size, approximatively) in Table 5. Where available,
i.e. for LRZ and UVA, we compare the Data Transfer Nodes connections. DTN
nodes speed up trasfers of nearly 30 % compared to the standard SCP protocol.

LRZ DTN UVA DTN LISA AGH

LRZ DTN – 405.32 25.53 32.17
UVA DTN 494.51 – 324.17 48.60
LISA 324.97 549.62 – 30.27
AGH 14.71 51.07 30.27 –

Table 5. Cross-site data staging speed for transfering 3 % of the Camelyon data with the
gridFTP protocol. Measures are reported in Mb/s.

Figure 8 compares using standard SPC protocols for data transfer between DTN
nodes against the dynamic reprogramming of DTNs with the FDT protocol through
containers. For files smaller than 2 Gb, the overhead of deploying the containers on
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the fly is greater than the transfer time. For larger files, however, the overhead is
amortized by the better performing FDT protocol.

Figure 8. Comparison of SCP protocols vs FTD containerized approach for data transfer

4.3 Model Training

We compare in Figure 9 the training times (over 10 epochs) of two different ar-
chitectures, namely ResNet50 and InceptionV3, on 50 Gb of training data. Less
performant GPUs require a longer time to perform the training operations, with
NVIDIA K80 requiring more than 7 hours to train the 26 million of parameters
of ResNet50. This time reduces to slightly more than 1 hour when using the
latest NVIDIA V100. The model parallelization on two GPUs, particularly on
2 NVIDIA V100 shows the scalability of the network training over multiple GPUs,
requiring 1 hour and a half to train the 24 million of parameters of Inception
V3.
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Figure 9. Comparison of ResNet and Inception average training times (on 50 Gb of train-
ing data) with single and distributed training on different GPUs. The number of param-
eters being trained is reported in brackets (M = millions). The floating point operations
per second (FLOPS) are reported for each GPU configuration. The size of the circle is
proportional to the number of parameters in each network.

The scalability of network training over larger datasets is compared for ResNet50
distributed on 2 NVIDIA V100 in Figure 10. This is insightful about the scalability
of the combination of Layer I and Layer II estimating the training time per epoch
for increasing dataset sizes.

Figure 10. Training time per epoch vs increasingly larger data sizes for ResNet50 on
2×NVIDIA V100

4.4 Visualizations and Interpretability

Figure 11 shows some output heatmaps overlayed to the original input WSIs and
compared to the manual tumor segmentations provided by the pathologist. The
inference of nearly 10 thousand patches is distributed over 5 processes on a single
NVIDIA V100, requiring less than 4 minutes to compute the heatmap for an input
WSI (230 s). The network output is interpreted at the patch-level using gradCAM,
gradCAM++ and LIME. Some examples are shown in Figure 11.

The concepts representative of the NGH nuclear pleomorphism are learned in
early layers of the network, as shown in [14, 17]. Particularly, from the analysis of
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Figure 11. Visualization outputs. The heatmaps of tumor probability are computed by
distributed inference over 5 models replicas on a single NVIDIA V100. The interpretability
visualizations (on the right) were also computed on the same GPU.

the TCAV and Br scores it emerges that the contrast of the nuclei texture is relevant
to the classification, with TCAV = 0.72 out of 1 and Br = 0.27.

5 DISCUSSION

The best performance for the data preprocessing and patch extraction pipeline
(layer 1) is obtained when this layer is run on the HPC site. The scaling up of
the dataset sizes is possible under the condition of a sufficiently large number of
CPU cores on the computational site, which narrows down the computational time
required by each operation. The results in Table 4 show the large benefits of op-
timizing the data extraction process on the HPC resources. In less than one hour,
nearly 1 TB of data were extracted from 5 WSIs, with a computational requirement
of one thousand nodes (with 10 CPU cores per node). Scaling this up led us to the
extraction of 34 million of patches for a total of 7 TB that can be used for network
training. Under the hypothesis of a large number of CPUs available, i.e. one per
WSI, the computational requirements will not be a limit for data preprocessing, as
the scalability requirements are almost linear.

Similarly, layer 2 was tested on different GPU servers, comparing performances
of state-of-the-art networks and GPU types. The containerized approach allows
users to deploy each layer on multiple sites without requiring specific expertise on
the deployment site, thus leaving open different possibilities for deployment. The
training times are consistently narrowed down by the distribution of training with
model parallelism on multiple GPUs, as shown in Figures 9 and 10. The results
on the distribution of network training show that the TFLOP of the GPUs is not
a major limitation for scaling to larger datasets, with the performance of 4 NVIDIA
K80 being close to that of a single NVIDIA V100 (150 minutes against 140 minutes
respectively, as shown in Figure 9). Increasing data sizes leads to longer train-
ing times per epoch, as expected. In this case, even more TFLOPS are needed to
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scale up to millions of images. The training on 1 million images, however, can be
performed in approximately 2 days with parallelization on 2 NVIDIA V100. The
heatmap generation and interpretability analyses provide a direct visualization of
the regions with a high probability of being tumorous. GradCAM, gradCAM++
and LIME provide various insights about the input regions responsible for the de-
cision. RCVs further showed the importance of nuclei texture in the classifica-
tion, with nuclei texture contrast being particularly relevant to the classification
of patches of breast tissue. This is in accordance with the NHG grading system,
which identifies hyperchromatism as a signal of nuclear atypia. It seems there-
fore that nuclear pleomorphism is taken into consideration during network train-
ing.

The results for each layer suggest that an optimal configuration would make the
best use of the CPU clusters for data preprocessing, while network training should
be performed on GPU servers. By testing data transfer times (see Table 5) we
showed that the FTD containerized approach with DTNs would reduce the data
staging bottleneck to the minimum.

6 CONCLUSION

We proposed a modular application that adapts with large flexibility to the differ-
ent requirements of research in deep learning for histopathology and is deployable
on HPC computing. The three layers can be deployed independently on the ap-
propriate computing site to run different parts of the pipeline. The modularity of
the proposed application embraces the foreseen future of digital pathology, being
easy to deploy and offering large customization in terms of network parameters and
choice of the training data. The parallelization of the different workflows improves
the performance in terms of computational time. This is in line with the require-
ments of digital pathology, that, with increasingly larger datasets being collected
and thus increasingly demanding tasks being set, is becoming demanding in terms
of computational and storage requirements.

Moreover, the network training could be deployed independently on a private
computational site, allowing users to fine-tune the network weights on sensitive data
that cannot be shared.
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