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Abstract

The representational differences between generalizing
networks and intentionally flawed models can be insight-
ful on the dynamics of network training. Do memorizing
networks, e.g. networks that learn random label correspon-
dences, focus on specific patterns in the data to memorize
the labels? Are the features learned by a generalizing net-
work affected by randomization of the model parameters?
In high-risk applications such as medical, legal or finan-
cial domains, highlighting the representational differences
that help generalization may be even more important than
the model performance itself. In this paper, we probe the
activations of intermediate layers with linear classification
and regression. Results show that the bias towards simple
solutions of generalizing networks is maintained even when
statistical irregularities are intentionally introduced.

1. Introduction
In this paper, we investigate the representational differ-

ences between Deep Neural Networks (DNNs) that learn to
generalize and those that do not. Understanding the gen-
eralization properties of DNNs can ensure that their de-
ployment in high-risk daily practices will lead to reliable
decisions [7, 8, 11, 20]. The link between learning and
generalization is still unclear, with over parametrized net-
works being able to achieve the best generalization perfor-
mances and fit pure noise at the same time [5, 29, 30]. To
shed some light about the learning behaviors of generaliz-
ing and non-generalizing models, we analyze the optimiza-
tion bias towards simple solutions even when statistical ir-
regularities are intentionally introduced (e.g. randomiza-
tion of the training labels). Are there patterns in the data
that are learned by both generalizing and memorizing net-
works? This paper proposes to consider the activation of an
intermediate layer l as a geometric space and to look at lin-
ear combinations of the neuronal directions, which we call
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linear probes [2], as clues for the interpretation. Given a
modelM trained on the main task (e.g. DNN trained on im-
age classification), an interpreter model Mi (e.g. the linear
probe) is trained on an interpretability task in the activation
space of layer l (hence M l

i ). In addition to the generalizing
networks trained on correct data, two types of intentionally
flawed models are used for the main task model M : i) net-
works with random initialization of the trainable parame-
ters as in [1], which we call random networks; ii) networks
trained on image datasets with different fractions of ran-
domized labels (i.e. closed-set noise) as in [22, 28, 29]. For
a given fraction N of corrupted labels, we refer to such net-
work as N-memorizing network. The interpreter model M l

i

computes linear probes in the activation space of a layer l.
The task of M l

i consists of learning either linear classifier
probes [2], Concept Activation Vectors (CAV) [16] or Re-
gression Concept Vectors (RCVs) [12, 13]. Each technique
gives different insights about the learned representations.
Linear classifier probes measure the linear separability of
the classes at intermediate layers of the DNN. CAVs inter-
pret the DNN internal state in terms of human-friendly con-
cepts. RCVs extend the original definition of CAVs from
linear classification of binary concepts (e.g. presence or ab-
sence of a concept) to the linear regression of continuous-
valued concept measures (e.g. the area of an object). In this
work, we focus on linear classifier probes and RCVs.

1.1. Main contributions

Our main contributions and findings are the following:

• We propose an analysis of intentionally flawed mod-
els, i.e. random and N-memorizing networks by lin-
early probing the internal activation space with linear
classifier probes [2] and RCVs [12, 13].

• We show in Sec. 3 that network training increases the
linear separability of the classes in the activation space.
Moreover, simple concepts become linearly regress-
able after training.

• Experiments in Sec 4 suggest that simple concepts
are learned at early layers to solve the memorization



task. These concepts are then passed on to deep lay-
ers, where the random mapping is learned.

• We show in Sec. 5 that DNNs learn the non-corrupted
data distribution earlier than the strong statistical irreg-
ularities artificially introduced by label corruption.

Differently from previous works on memorizing [5, 21, 22,
30] and randomly initialized networks [1, 24], the internal
activations are interpreted with linear probes. In particular,
our experiments focus on the representational differences
between generalizing and faulty models in terms of sim-
ple concepts such as first (color) and second order (texture)
statistics computed on the image pixels1.

2. Related work
Intensive research focused on the comparison between

generalizing and non-generalizing models [1, 4, 5, 18, 21,
22, 24, 28–30]. Part of these [1, 24, 27] suggested the ex-
istence of an ”architecture prior”, that is the impact that
the architecture with randomly initialized parameters has
on the learned representations, hence on the search space
of the optimization. The analysis of models trained on
noise [5, 18, 21, 22, 29, 30] showed that a sufficiently large
DNN can fit data distributions with strong statistical irreg-
ularities, such as random labels [29]. Research in label
noise modeling achieved some robustness to noise, partic-
ularly with mixup data augmentation [31] and loss correc-
tion [4]. Qualitative differences between learning noise and
natural images, however, showed that DNNs are biased to-
wards learning simple patterns before memorizing the out-
of-distribution samples.

On a parallel side, an increasing number of studies has
been addressing the challenging task of understanding what
makes the representations learned by DNNs so successful,
of which extensive surveys can be found in [8, 20]. Post-
hoc interpretability methods are particularly suited to the
analysis of flawed models since they allow to interpret the
representations without the need for retraining or modify-
ing the optimization task. Linear classifier probes [2] and
CAVs [16] showed that the internal activations of a layer
can be interpreted in terms of linear classifiers (of the class
labels in the former and of the binary presence or absence of
a human-friendly concept in the latter). RCVs extended the
interpretability task of CAVs to learning continuous valued
concept measures by linear regression [12,13]. This method
was insightful in the interpretation of DNNs for tasks in the
field of computer vision and in the medical domain [13, 14]

This paper attempts to link the research on randomly ini-
tialized and memorizing networks to the interpretation of
the learned representations with linear models.

1Code for reproducibility at github.com/maragraziani/
intentionally_flawed_models

3. Linear probes improve over training
In this paper, the model for the main task M is either a

Multi-Layer Perceptron2 (MLP), a shallow Convolutional
Neural Network3 (shallow-CNN) or an InceptionV3 net-
work [25], trained on different image classification datasets.
The MLP is trained for 1,000 epochs with Stochasitc Gra-
dient Descent (SGD) and learning rate 0.01 as in [5]. The
shallow-CNN also follows the setup in [5] and is trained
for 100 epochs with SGD and learning rate 0.01. Incep-
tionV3 is trained for 1,000 epochs with the Adam optimizer
and standard parameters (learning rate 0.01, β1 0.9 and β2
0.999). Note that all the N-memorizing networks converge
to a full overfit of the training data. The model choices are
based upon relevant research in understanding deep learn-
ing [1, 2, 5, 29].

The MLP is trained on the dataset of handwritten dig-
its MNIST [19], while the shallow-CNN is trained from
scratch on a small subset of ImageNet [10]. The latter,
referred to as ImageNet10, contains fewer well separated
classes to better enhance the differences between general-
izing and flawed networks. Five texture-like classes with
high texture appearance (namely bookshop, butcher, chain-
link fence, cliff dwelling and confectionery) and five object-
like classes (namely acoustic guitar, ambulance, chihuahua,
golden retriever, ladybug) are retained following the distinc-
tion between texture-like and object-like classes proposed
in [3]. As a first analysis, we use linear classifier probes
as the interpreter model Mi to evaluate the linear separabil-
ity of the classes during training. Fig. 1 shows the predictive
performance of the linear classifier probes on the activations
φl of layer l in generalizing and flawed models. Evidently,
training increases the linear separability of the classes in the
learned internal representations.

(a) MNIST (b) ImageNet10

Figure 1: Predictive performance of linear probes against
training epochs on a held-out validation set for (a) MNIST
and (b) ImageNet10; for the three types of networks: ran-
domized, 0.4-memorizing and generalizing. Best on screen.

As a further analysis, InceptionV3 is trained to classify
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the Describable Texture Dataset (DTD) [9]. DTD is a col-
lection of 5,640 textural images organized in 47 categories
inspired by human-centric attributes of perceptual proper-
ties of textures. The training images of original sizes rang-
ing between 300× 300 and 640× 640 pixels are randomly
cropped during training to the standard input size of Incep-
tionV3 (299× 299).

We extract concept measures of first and second order
statistics from the image pixels. The colorfulness metric,
based on opponent color spaces, is computed as in [15].
Besides, individual measures of the percentage of a specific
color in the image are computed by applying the color quan-
tization of the HSV (Hue, Saturation, Value) space shown
in Fig. 2a. The HSV colorspace is closer to the human
representation of hue ranges than RGB. For each of the
eight bin quantizations, we define a distinct concept mea-
sure. For example, the blue-ness of the image is computed
as #bluepixels

#pixels . Images of the DTD dataset sorted for in-
creasing values of blue-ness can be inspected in Fig. 2b.
The same technique is applied to the saturation ranges to
obtain measures of white-ness and black-ness.

(a) HSV quantization (b) Increasing blue-ness

Figure 2: Measuring the presence of individual colors in the
image. (a) Quantization of the HSV color space (b) Exam-
ples of DTD images sorted from low to high blue-ness.

In this experiment, the interpreter model Mi is the RCV
linear probe computed for a concept of interest. We ana-
lyze 11 concepts of color (i.e. the eight hue ranges, white-
ness, black-ness and colorfulness) and six concepts of tex-
ture (i.e. energy, ASM, dissimilarity, homogeneity, contrast
and correlation). Fig. 3 shows the determination coefficient
R2 of the RCV probes against the training epochs. For best
presentation, we select two concepts of color and two con-
cepts of texture and discuss similarity and differences of the
trends with the remaining concepts.The increasing values
of R2 illustrate the learning of the concepts during train-
ing. We observe two main trends in the results. For some
concepts, namely orange (Fig 3a left), dissimilarity (Fig. 3b
left), contrast, correlation, homogeneity, red and colorful-
ness, the R2 of the probes in the 1-memorizing network is
markedly below the R2 in the generalizing network. The
R2 of the RCVs for the concepts green (Fig 3a right), en-
ergy (Fig. 3b right), ASM, cyano, magenta, purple, yellow,
black and blue, however, do not show significant differences
between the two networks. A singular case is observed with
white-ness, which reaches high R2 after only 50 epochs for
both the generalizing and memorizing network. The R2 re-

mains almost constant over training, suggesting that white-
ness is quickly learned at the beginning of training and then
remains easy to regress in both networks.

We further evaluate the RCVs by computing the Mean
Squared Prediction Error (MSPE) on 376 data points that
were not used in the estimation of the regression coeffi-
cients. The MSPE of random networks, 1-memorizing net-
works and generalizing networks are compared in Table 1.
Network training drastically reduces the MSPE of both 1-
memorizing and generalizing networks, as shown by the
comparison with the random network.

Table 1: MSPE for concepts of texture and color in mixed0
of InceptionV3 trained on DTD. Lower MSPE reveals
higher predictive performance of the RCV.

model cyano energy orange correlation
random 2× 105 2× 106 7× 105 8× 105

1-mem. 0.032 0.017 0.29 0.10
gener. 0.070 0.030 0.21 0.08

4. Early layers focus on simple concepts
We define the complexity of a concept according to its

position in the hierarchical structure of visual categories [6].
Simple concepts include low-level visual attributes of color
and texture, while attributes of material, object parts, full
objects and scenes have increasing complexity as they rep-
resent a progression to more abstract concepts. The results
in Table 1 show that texture and color are learned by early
layers of 1-memorizing networks. If we consider the fact
that the main task of 1-memorizing networks is to learn the
random mapping between the data points and the corrupted
labels, we can conclude that learning texture and color is
useful to the task. In other words, these simple concepts
are learned to simplify the clustering of the learned repre-
sentations to match the random labeling scheme. However,
the conjecture proposed by Tishby in [26] claims that DNN
training consists of an initial fitting phase and a subsequent
compression phase. One could further analyze with lin-
ear classifier probes at different network depths whether the
separability of the classes in the activation space happens
before or after these concepts are learned. In the former
scenario, the concepts are likely used to memorize the sam-
ples. In the latter, compression happens after memorization
as suggested in [26]. Future work will address this point.

In the next experiment, we train N-memorizing MLPs
with label corruption ratios ranging from zero to one on
the MNIST dataset. We increase the MLP depth to six
hidden layers and we probe simple concepts of shape for
the MNIST task such as area, eccentricity and perimeter as
in [12]. All concepts are best regressed in the representa-
tion space of the first layer, φ1 (see Fig. 4 showing the RCV



(a) Color: green and orange (b) Texture: dissimilarity and energy

Figure 3: R2 of the regression of concepts of color (1st order statistics of pixel values) and texture (2nd order statistics) at
intermediate layers of InceptionV3 (1-memorizing and generalizing) for DTD images. Best seen on screen.

probe of area. The regression of other concepts presents
comparable behaviors). Increasing the fraction of label cor-
ruption does not affect the learning of the concepts in the
first layer. By probing the layers at different depths, we in-
spect the representational differences introduced by the in-
creasingly enforced memorization. As depth increases, the
R2 is more and more impacted by label corruption. We find
that these results underline the importance of depth in mem-
orizing network, already discussed in [21,23]. In particular,
depth seems to play a fundamental role in the rearranging of
the internal clustering of the data points to match the statis-
tical irregularities introduced by the random labeling. Lin-
ear classifier probes could be used to further confirm this
hypothesis.

Figure 4: R2 of the RCVs of area against label corruption at
each of the 6 hidden layers of the MLP trained on MNIST.

5. True labels are learned before random labels
We monitor the convergence of a 0.5-memorizing Incep-

tionV3, separating the performance on the true and the cor-
rupted labels. We use a single training set up rather than dif-
ferent settings as in [5,29]. We find this approach more rep-
resentative of a real-case scenario where unintended memo-
rization may happen on a fraction of the original dataset. In
Fig. 5, we show that the network learns more easily the true
data distribution than the corrupted one. As we expected,
the underlying distribution of natural images is easier to fit

during training than randomly labeled images. Our results
align with the work in [4], which models the training loss
as a bimodal distribution4. Similar results were obtained on
the CIFAR10 dataset [17].

Figure 5: Accuracy on the true and random labels of Incep-
tionV3 (0.5-memorizing) on DTD.

6. Conclusion
In this paper, we analyzed the differences in the repre-

sentations learned by flawed and generalizing models. The
analysis of the activations of intermediate layers with linear
probes (classifiers, CAVs or RCVs) adds a new viewpoint
to previous works [5,21,29,30] by interpreting model flaws
with human-friendly concepts. Simple concepts are learned
already at early layers, even in fully memorizing networks.
Monitoring the learning curves on portions of data, rather
than on the entire dataset, highlighted the slower conver-
gence of memorization, particularly at early epochs. We
believe that these observations can help to notice the mem-
orization of incorrectly-labeled samples or outliers. This is
particularly relevant in medical applications, where impre-
cise labels may affect the learning of the true underlying
distribution of the data.
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7. Appendix

Figure 6: R2 of the regression of concept measures
of white-ness at intermediate layers of InceptionV3 (1-
memorizing and generalizing) for DTD images. Best seen
on screen.

Figure 7: Loss on the true and random labels of shallow-
CNN (0.5-memorizing) on CIFAR10.


