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A B S T R A C T

This paper relates the post-analysis of the first edition of the HEad and neCK
TumOR (HECKTOR) challenge. This challenge was held as a satellite event of
the 23rd International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI) 2020, and was the first of its kind focusing on
lesion segmentation in combined FDG-PET and CT image modalities. The chal-
lenge’s task is the automatic segmentation of the Gross Tumor Volume (GTV)
of Head and Neck (H&N) oropharyngeal primary tumors in FDG-PET/CT im-
ages. To this end, the participants were given a training set of 201 cases from
four different centers and their methods were tested on a held-out set of 53
cases from a fifth center. The methods were ranked according to the Dice Score
Coefficient (DSC) averaged across all test cases. An additional inter-observer
agreement study was organized to assess the difficulty of the task from a human
perspective. 64 teams registered to the challenge, among which 10 provided a
paper detailing their approach. The best method obtained an average DSC of
0.7591, showing a large improvement over our proposed baseline method and the
inter-observer agreement, associated with DSCs of 0.6610 and 0.61, respectively.
The automatic methods proved to successfully leverage the wealth of metabolic
and structural properties of combined PET and CT modalities, significantly out-
performing human inter-observer agreement level, semi-automatic thresholding
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based on PET images as well as other single modality-based methods. This
promising performance is one step forward towards large-scale radiomics studies
in H&N cancer, obviating the need for error-prone and time-consuming manual
delineation of GTVs.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

High-throughput medical image analysis, often referred to as radiomics, has shown its potential in unveiling relation-

ships between quantitative image biomarkers and cancer prognosis, including in the context of Head and Neck (H&N)

cancer Bogowicz et al. (2017); Vallieres et al. (2017). H&N cancer is the 5th leading cancer by incidence Parkin et al.

(2005) and its treatment is generally based on a combination of radiotherapy with systemic treatment (e.g. Cetux-

imab) Bonner et al. (2010). However, treating this cancer remains challenging since local failure occurs in about 40%

of patients in the first two years after the treatment Chajon et al. (2013). The development of non-invasive and per-

sonalized approaches (e.g. radiomics) is critical for improving disease characterization and will, hopefully, lead to more

targeted therapies based on phenotypic tumor characteristics. 2-[18F]fluoro-2-deoxyglucose positron-emission tomogra-

phy (FDG-PET) and Computed Tomography (CT) hold a special place for disease characterization since they contain

complementary information about the metabolism and the anatomy of cancer. Furthermore, they are used for initial

staging and follow-up of H&N cancer. These modalities are therefore readily available for the creation and evaluation of

radiomics models based on these clinically acquired images. Typical radiomics analyses rely on localized feature extrac-

tion inside delineated lesions or Volumes Of Interest (VOI) Gillies et al. (2016); Lambin et al. (2017). One of the reasons

that impede the development of robust models is the time-consuming and error-prone manual delineation of these VOIs.

To this end, the automatic segmentation of H&N Gross Tumor Volume of the primary tumor (GTVt) and the lymph

nodes (GTVn) constitutes a highly promising approach to annotate and analyze very large cohorts, which is critically

needed to enable robust and reproducible validation of radiomics models. Moreover, automatic segmentation also has

the potential to allow radiation oncologists to improve treatment planning efficiency by reducing the time needed for

tumor delineation as well as improving inter-observer reproducibility.

The goal of the HEad and neCK TumOR (HECKTOR) challenge is to establish and benchmark the best-performing

methods for H&N lesions segmentation while exploiting the rich bi-modal information of combined PET/CT. In this first

edition of the challenge, the participants were asked to develop automatic methods for the segmentation of the GTVt1 on

FDG-PET/CT images of patients suffering from oropharyngeal cancer. It is worth noting that to be part of the official

ranking, the participants had to provide a paper describing their methods. Furthermore, participants had to disclose the

use of external training data and were in this case not eligible for the official ranking. None of the participants reported

using external data. This manuscript summarizes the methods and presents the associated segmentation results of the

different teams who participated in this 2020 edition of the HECKTOR challenge. It also includes several additional

extensive qualitative and quantitative analyses. This paper extends the material presented in Andrearczyk et al. (2021b)

with the following:

∗Corresponding author
e-mail: valentin.oreiller@hevs.ch (Valentin Oreiller∗)

1For the first and second edition of the challenge, the GTVn segmentation is not part of the tasks but will be asked in further editions.
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• an extensive review of the prior work;

• an analysis of the inter-observer agreement organized with four different observers on a subset of 21 cases;

• an evaluation of a super-ensemble segmentation based on the submitted contours of the ten ranked teams;

• an addition of new participants’ results from runs submitted after the end of the challenge;

• a semi-automatic segmentation based on PET thresholding as an additional baseline; and

• additional extensive qualitative and quantitative analyses of the results.

The paper is organized as follows. Section 2 presents the related work. Section 3 describes the challenge setup

including the dataset, annotations, participation, and ranking. The presentation and in-depth analysis of the participants’

results are provided in Section 4 and are discussed in Section 5. Finally, Section 6 concludes the paper.

2. Prior Work

2.1. Related Tumor Segmentation Algorithms

An abundance of works has been proposed to automatically segment tumors in PET and PET/CT images ranging

from thresholding to unsupervised and supervised machine learning methods. Making an exhaustive review of all these

approaches is out of the scope of this manuscript and is proposed in Foster et al. (2014); Hatt et al. (2017). Among

these different strategies, the simplest ones are based on the thresholding of the Standardized Uptake Values (SUV) in

PET images. These methods are difficult to automatize completely since the SUV is a semi-quantitative measure that

highly depends on the time between the injection and the image acquisition, the device, the reconstruction algorithm,

the shape of the tumor, and even the patient (Wahl et al., 2009).

More refined approaches have been proposed to further automatize this process. Most of them are relying on the

distribution of SUV values or other handcrafted quantitative image features in PET only. For instance, algorithms

based on Gaussian Mixtures (Aristophanous et al., 2007) or fuzzy C-means modeling (Hatt et al., 2009; Lapuyade-

Lahorgue et al., 2015) were proposed. Others formulated the segmentation problem as a minimization of a Markov

random field (Song et al., 2013). In the context of H&N tumors delineation, a decision-tree-based K-nearest-neighbor

classifier trained with regional texture features in PET and CT images was used in (Yu et al., 2009).

Recent work was inspired by the success of deep Convolutional Neural Networks (CNN), and more precisely of the

U-Net (Ronneberger et al., 2015) applied to multi-modal biomedical image segmentation (Zhou et al., 2019). PET/CT

tumor segmentation has also benefited from the advancement of this field. For instance, Blanc-Durand et al. (2018)

applied a 3D U-Net to segment brain tumors in O-(2-[18F]fluoroethyl)-L-tyrosine PET/CT images. Deep CNNs was

also used several times in the context of lung tumor segmentation (Fu et al., 2021; Li et al., 2019; Wu et al., 2020; Zhao

et al., 2018; Zhong et al., 2018). A 3D U-Net was used by Jemaa et al. (2020) to lung cancer and lymphoma, which was

trained on 2540 volumes and tested 1124 volumes. Iantsen et al. (2021a) used a U-Net architecture for the automatic

segmentation of cervical tumors in PET only.

The deep learning-based approaches were also specifically applied to tumor segmentation in H&N cancers. A com-

parison of different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor

segmentation is presented in Ren et al. (2021). In a study including 22 patients from two different centers, Huang et al.
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(2018) used a 2D U-Net to segment the GTV, i.e. the union of GTVt and GTVn. Moe et al. (2019) used a 2D U-Net

for the segmentation of GTV on a dataset of 55 patients. In another study, Guo et al. (2019) applied a 3D U-Net to

segment the GTVt, which was evaluated on a cohort of 250 patients. The authors showed that multimodal networks

outperform networks based on a single modality. More recently, Groendahl et al. (2021) performed an analysis of the

different types of automatic segmentation based on thresholding, classification at the pixel level using a shallow classifier,

and deep CNN methods. They did this comparison on a mono-centric cohort of 197 patients and concluded that deep

learning models outperform the others.

Identifying the best performing method among all these different strategies requires a standardized evaluation. This

was already highlighted by Hatt et al. (2017) and challenges constitute a suitable way to systematically evaluate and

compare state-of-the-art algorithms against the same test set and with highly controlled conditions.

2.2. Medical Image Segmentation Challenges

The growing interest in biomedical image analysis challenges is illustrated by and an increasing number of new chal-

lenges organized every year, which can be partly explained by the growing community. For instance at the International

Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2018, 2019, and 2020 there

were 15, 22, and 25 accepted challenges, respectively. In the past three MICCAI editions, 52 out of 125 tasks (42%)

were related to segmentation2. Several other challenges are organized as satellite events of other conferences including

the International Symposium on Biomedical Imaging (ISBI), the international conference on Medical Imaging with Deep

Learning (MIDL), and the annual meeting of the Radiological Society of North America (RSNA), as well as indepen-

dently organized challenges (e.g. on Kaggle3). Remarkably successful challenges in medical image segmentation include

the Brain Tumor Segmentation (BraTS) challenge Menze et al. (2014), Kidney Tumor Segmentation (KiTS) Heller et al.

(2021) challenge and the Visual Concept Extraction Challenge in Radiology (VISCERAL) del Toro et al. challenge.

Surprisingly, as of 2021, only one challenge was organized on PET segmentation (Hatt et al., 2018) and, to the best of

our knowledge, none on PET/CT segmentation.

3. HECKTOR 2020 Challenge Set-Up

The challenge took place in 2020 and was associated with the 23rd MICCAI conference as a satellite event the same

year. It was hosted on the AIcrowd platform4. The training and test data were released on the 10th of June and the

1st of August, respectively. The participants were asked to submit their results before the 10th of September. The

challenge’s results were communicated the 15th of September, and the MICCAI associated event was held the 4th of

October. The data of the challenge are currently available on the AIcrowd platform after signing an end-user agreement

and the leaderboard submission was open until the 10th of September 20215.

The following section summarizes the challenge’s set-up. A thorough and BIAS Maier-Hein et al. (2020) compliant

description of the challenge organization is provided in Andrearczyk et al. (2021b).

2https://www.biomedical-challenges.org/miccai2021/Statistics, as of October 2021.
3https://www.kaggle.com/, as of October 2021.
4https://www.aicrowd.com/challenges/miccai-2020-hecktor, as of October 2021.
5The leaderboard was replaced by the 2021 edition after this date: https://www.aicrowd.com/challenges/miccai-2021-hecktor/

leaderboards.

https://www.biomedical-challenges.org/miccai2021/Statistics
https://www.kaggle.com/
https://www.aicrowd.com/challenges/miccai-2020-hecktor
https://www.aicrowd.com/challenges/miccai-2021-hecktor/leaderboards
https://www.aicrowd.com/challenges/miccai-2021-hecktor/leaderboards
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(a) CHUM (b) CHUS (c) HGJ

(d) HMR (e) CHUV

Fig. 1: Case examples of 2D sagittal slices of fused PET/CT images from each of the five centers. These images are obtained after resampling
the PET image and the CT image to 1x1x1 mm3 with a tricubic interpolation. The CT window in Hounsfield unit is [−140, 260] and the
PET window in SUV is [0, 12].

3.1. Dataset

The dataset used in this challenge includes PET and CT images as well as patient information including age, sex, and

acquisition center. The patients selected for this dataset suffered from H&N cancer, which was histologically proven, and

they underwent radiotherapy treatment often combined with chemotherapy. The data were acquired from five centers:

1. Hôpital Général Juif (HGJ), Montréal, CA (n = 55)

2. Centre Hospitalier Universitaire de Sherbooke (CHUS), Sherbrooke, CA (n = 72)

3. Hôpital Maisonneuve-Rosemont (HMR), Montréal, CA (n = 18)

4. Centre Hospitalier de l’Université de Montréal (CHUM), Montréal (n = 56)

5. Centre Hospitalier Universitaire Vaudois (CHUV), CH (n = 53)

The four centers HGJ, CHUS, HMR, and CHUM were used for the training set, which amounts to 201 cases. This

training data constitute a subset of Vallieres et al. (2017) which contains 298 cases including H&N cancers originating

from various anatomical regions. For this initial edition of the HECKTOR challenge, we decided to focus on patients

suffering from oropharyngeal cancer to reduce anatomical variations and provide more controlled conditions for the

algorithms. The CHUV center was used for the test set, totaling a number of 53 test cases.

An example of fused PET/CT images for each of the five centers is depicted in Fig. 1. The list of scanners used

in each center for image acquisition can be found in Table 1. Additional information concerning image protocols are

described in Andrearczyk et al. (2021b).

The Digital Imaging and Communications in Medicine (DICOM) files were converted to the Neuroimaging Informatics

Technology Initiative (NIfTI) format. The CT and PET images were stored in Hounsfield Units (HU) and SUVs,
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Table 1: List of scanners used in the different centers.

Center Device
HGJ hybrid PET/CT scanner (Discovery ST, GE Healthcare)

CHUS hybrid PET/CT scanner (GeminiGXL 16, Philips)
HMR hybrid PET/CT scanner (Discovery STE, GE Healthcare)

CHUM hybrid PET/CT scanner (Discovery STE, GE Healthcare)
CHUV hybrid PET/CT scanner (Discovery D690 TOF, GE Healthcare)

respectively. The code used for the conversion is available on the challenge’s repository6. Each case comprises NIfTI

files for the CT image, the PET image, and the GTVt mask (for the training cases), as well as patient information

(age, sex) and center. A bounding box locating the oropharyngeal region was also provided (details of the automatic

region detection can be found in Andrearczyk et al. (2020a)). The choice of preprocessing (e.g. resampling, image

standardization) was left to the participants. Therefore, no further preprocessing was performed to mimic a clinical

use of the segmentation methods. However, we provided some routines to crop, resample, and also train a baseline

CNN (using NiftyNet (Gibson et al., 2018)). This code was made available on the challenge’s repository7 to help the

participants and to maximize transparency, but the participants were free to use their methods.

3.2. Contours

The GTVts from the original dataset were drawn by expert radiation oncologists from multiple centers for radio-

therapy treatment planning. In most cases, the contours used for treatment planning are larger than the actual tumor

and are presumably not optimized for radiomics with sometimes the inclusion of surrounding tissue or even air cavities.

Furthermore, only 40% (80 cases) of the training set were delineated on the CT of the PET/CT scans. The remaining

60% were drawn on a dedicated CT scan for the treatment planning and were registered to the PET/CT scans using

intensity-based free-form deformable registration with the software MIM (MIM Software Inc., Cleveland, OH). For more

information about the original training set, please refer to Vallieres et al. (2017). The original contours of the test set

were all drawn on the fused PET/CT scans.

To homogenize the data i.e. to obtain delineations closer to the true tumoral volume and to remove variability

due to the annotators and the registration step, each contour was controlled by an expert who is both a radiologist

and a nuclear physician. Two non-experts annotators made an initial cleaning to facilitate the expert’s work. During

this control, multiple contours were rectified to follow the true border of the tumor as close as possible. Many original

contours included air as well as various tissues around the tumor. In some cases, the registration between the dedicated

CT planning and the PET/CT introduced artifacts that did not belong to the GTVt. In many cases, the GTVt and

GTVn were stored under the same label and had to be separated. Three annotations were corrupted and could not

be loaded, requiring the contours to be drawn from scratch. Among the 53 test cases, 11 images were contoured from

scratch with the help of the radiological report. Despite the high inter-observer variability (see Section 4.4), and with a

slight misuse of language, we refer to these “controlled” reference annotations as ground truth.

Finally, the same VOI quality control process was performed for the GTVn contours. These contours were not

directly used for the HECKTOR 2020 challenge but we used them in post-analysis of the results (see Section 4.8). We

6github.com/voreille/hecktor/blob/hecktor2020/src/data/dicom_conversion.py, as of October 2021.
7github.com/voreille/hecktor/tree/hecktor2020, as of October 2021.

github.com/voreille/hecktor/blob/hecktor2020/src/data/dicom_conversion.py
github.com/voreille/hecktor/tree/hecktor2020
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also plan on using these annotations in future editions as an auxiliary task of lymph node segmentation. Radiomics

studies including lymph nodes may carry important information about patient prognosis and response to treatment.

3.3. Ranking and Assement Method

Participants were given access to the test cases without the ground truth annotations and were asked to submit the

results of their algorithms on these cases on the AIcrowd platform. We only accepted binary segmentations in the NIfTI

file format.

Results were ranked using the 3D Dice Similarity Coefficient (DSC) computed on images cropped using the provided

bounding boxes (see Section 3.1) in the original CT resolution as:

DSC =
2TP

2TP + FP + FN
, (1)

where TP, FP, and FN are the number of True Positive, False Positive, and False Negative at the voxel level, respectively.

Prior to the challenge opening, we decided to handle missing predictions by attributing a DSC of 0 to them. However,

this never happened during the submission phase. If the submitted results were in a resolution different from the CT

resolution, we applied nearest-neighbor interpolation before evaluation. We also computed other metrics for comparison,

namely precision ( TP
TP+FP ) and recall ( TP

TP+FN ) to investigate whether the methods were rather providing a large FP or

FN rate. The evaluation implementation can be found on our GitHub repository8 and was provided to the participants

to maximize transparency.

Each participating team had the opportunity to submit up to five valid runs, in case of formatting errors the

participant was informed by an error message and the run was not counted. No immediate feedback was displayed on

how their run was performing to avoid iterative overfit. The best result of each team was used in the final ranking, which

is detailed in Section 4 and discussed in Section 5.

4. Results

This section regroups results in terms of challenge participation, algorithms used, segmentation performance, inter-

observer agreement, ensembling “super-algorithm”, simple PET thresholding, the relation between tumor size and seg-

mentation performance, false-positive analysis, and alternative ranking of the methods.

4.1. Participation

The number of registered teams, as of September 10, 2020 (submission deadline), was 64. At the same date, we had

also received and approved 85 signed end-user agreements, received 83 results submissions, including valid and invalid

submissions. For the first iteration of the challenge, these numbers are high and show an important interest in the task.

4.2. Algorithms Summary

Baselines.

We trained several baseline models using standard 3D and 2D U-Nets as in our preliminary results in Andrearczyk et al.

(2020b). It is worth noting that (Andrearczyk et al., 2020b) used a dataset that was different from HECKTOR 2020, and

that the same algorithms were re-trained and evaluated using the HECKTOR 2020 data. We trained on multi-modal

PET/CT as well as individual modalities with a combination of non-weighted Dice and cross-entropy losses and without

data augmentation.

8github.com/voreille/hecktor/tree/hecktor2020/src/evaluation, as of October 2021.

github.com/voreille/hecktor/tree/hecktor2020/src/evaluation
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Table 2: Summary of the algorithms in terms of main components used: 2D or 3D U-Net, resampling, preprocessing, training or testing
data augmentation, loss used for optimization, an ensemble of multiple models for test prediction and postprocessing of the results. We use
the following abbreviations for the preprocessing: Clipping (C), Standardization (S), and if it is applied only to one modality, it is specified
in parentheses. For the image resampling, we specify whether the algorithms use Isotropic (I) or Anisotropic (A) resampling and Nearest
Neighbor (NN), Linear (L), or Cubic (Cu) interpolation. We use the following abbreviation for the losses: Cross-Entropy (CE), Mumford-Shah
(MS), and Mean Absolute Error (MAE). More details can be found in the respective participants’ publications.

Team 2D/3D preproc. resampling augm. loss ensemble postproc.
andrei.iantsen Iantsen et al. (2021b) 3D C+S I/L 3 soft Dice+Focal 3 7

junma Ma and Yang (2021) 3D S(PET) I/Cu 7 Dice+Top-K 3 3
badger Xie and Peng (2021) 3D C(CT)+S(PET) A/Cu 3 Dice+CE 7 7

deepX Yuan (2021) 3D C(CT)+S I/L 3 Jaccard distance 3 7
AIView sjtu Chen et al. (2021) 3D C+S A/NN 3 Dice 7 7
xuefeng Ghimire et al. (2021) 3D C(CT)+S A/L 3 Dice+CE 3 3

QuritLab Yousefirizi and Rahmim (2021) 3D S I/L 7 MS+MAE 7 7
HFHSegTeam Zhu et al. (2021) 2D C+S I/L 3 soft Dice 7 7

Fuller MDA Lab Naser et al. (2021) 3D C+S A/Cu 3 Dice+CE 7 7
Maastro-Deep-Learning Rao et al. (2021) 2D/3D C A/Cu 7 Top-K 3 3

Our baseline 3D PET/CT Andrearczyk et al. (2020b) 3D C+S I/Cu 7 Dice+CE 7 7
Our baseline 2D PET/CT Andrearczyk et al. (2020b) 2D C+S I/Cu 7 Dice+CE 7 7

Participants’ Methods.

In Table 2, we summarize some of the main components of the participants’ algorithms, including model architecture,

preprocessing, training scheme and postprocessing. We only report the methods of the participants with an associated

publication, which was crucial to ensure the scientific relevance of the challenge. More details on the individual methods

can be found in Appendix 1 as well as in the corresponding participants’ papers (Chen et al., 2021; Ghimire et al.,

2021; Iantsen et al., 2021b; Ma and Yang, 2021; Naser et al., 2021; Rao et al., 2021; Xie and Peng, 2021; Yousefirizi

and Rahmim, 2021; Yuan, 2021; Zhu et al., 2021). In the results section (4), we also include results of the participants

without publication for comparison.

All the participants used a U-Net-based architecture. Eight used 3D architectures, one used a 2D architecture and

one used a combination of the two. All participants used some sort of preprocessing prior to training their model,

generally with standard data augmentation (except for three participants), using various combinations of losses, most

often including the Dice loss. The participants used various cross-validation schemes to optimize the generalization

performance of their models. Half of the participants used an ensemble of multiple models.

4.3. Segmentation Performance

The results, including average DSC, precision, recall, and challenge rank are summarized in Table 3. We also report

the average Surface Dice SCore at 1mm (SDSC) and the median Hausdorff Distance at 95% (HD95) as defined in Nikolov

et al. (2021). Our baseline method, developed in Andrearczyk et al. (2020b) and provided to participants as an example on

our GitHub repository, obtains an average DSC of 0.6588 and 0.6610 with the 2D and 3D implementations, respectively.

Results on individual modalities are also reported for comparison.

The results from the participants (excluding post-challenge submissions) range from an average DSC of 0.5606 to

0.7591. Iantsen et al. (2021b) (participant andrei.iantsen) obtained the best overall results with an average DSC of

0.7591, an average precision of 0.8332 and an average recall of 0.7400. This result (DSC) is not significantly higher than

the second-best participant (Ma and Yang, 2021) (p-value of 0.3517 with a one-tailed Wilcoxon test). The statistical

comparison of the score of each team is done in Figure B.10 with the one-tailed Wilcoxon test and corrected for multiple

hypotheses testing. Across all participants, the average precision ranges from 0.5850 to 0.8479. The recall ranges

from 0.5022 to 0.8534, with the latter surprisingly obtained by the 3D PET/CT baseline (although with low precision,
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Table 3: Summary of the challenge results as of April 2021. The average DSC, precision, recall, SDSC and median HD95 are reported for the
baseline algorithms and every team (the best result of each team). The unit of the HD95 is [mm]. The participant names are reported when
no team name was provided. The ranking is only provided for teams that presented their method in a paper submission. The post-challenge
results are denoted by an asterisk ∗. Bold values represent the best scores for each metric, excluding post-challenge results since we do not
have any information about their method.

Team DSC HD95 Precision Recall SDSC Rank
paar∗ 0.7624 3.27 0.8304 0.7490 0.6167 -

andrei.iantsen (Iantsen et al., 2021b) 0.7591 3.27 0.8333 0.7400 0.6010 1
junma (Ma and Yang, 2021) 0.7525 3.27 0.8384 0.7174 0.6003 2

Fuller MDA Lab∗ 0.7523 3.27 0.7838 0.7685 0.6168 -
supratik bose∗ 0.7440 3.27 0.8350 0.7085 0.5822 -

badger∗ 0.7377 3.27 0.8143 0.7160 0.5800 -
badger (Xie and Peng, 2021) 0.7355 3.27 0.8326 0.7024 0.5735 3

deepX (Yuan, 2021) 0.7318 3.54 0.7851 0.7319 0.5528 4
flash∗ 0.7280 3.54 0.8020 0.7083 0.5650 -

AIView sjtu (Chen et al., 2021) 0.7241 3.33 0.8479 0.6701 0.5598 5
DCPT 0.7049 4.10 0.7651 0.7047 0.5562 -

xuefeng (Ghimire et al., 2021) 0.6911 5.06 0.7525 0.6928 0.5011 6
ucl charp 0.6765 5.42 0.7231 0.7257 0.5194 -

QuritLab (Yousefirizi and Rahmim, 2021) 0.6677 5.64 0.7289 0.7164 0.5086 7
Unipa 0.6674 4.10 0.7143 0.7039 0.4902 -

Baseline 3D PET/CT 0.6610 21.88 0.5909 0.8534 0.4502 -
Baseline 2D PET/CT 0.6588 26.81 0.6242 0.7629 0.4796 -

HFHSegTeam (Zhu et al., 2021) 0.6441 14.27 0.6938 0.6670 0.4922 8
UESTC 501 0.6382 5.16 0.6455 0.6874 0.4339 -

Fuller MDA Lab (Naser et al., 2021) 0.6373 5.06 0.7546 0.6283 0.4730 9
Yone∗ 0.6341 5.92 0.7690 0.6640 0.4513 -

Baseline 3D PET 0.6306 24.95 0.5768 0.8214 0.4399 -
Baseline 2D PET 0.6284 27.62 0.6470 0.6666 0.4231 -

Maastro-Deep-L. (Rao et al., 2021) 0.5874 29.56 0.6560 0.6142 0.4118 10
Yone 0.5737 21.46 0.6606 0.5590 0.4216 -
SC 109 0.5633 5.64 0.7652 0.5022 0.3542 -
Roque 0.5606 14.94 0.5850 0.6843 0.3601 -

Baseline 2D CT 0.3071 27.54 0.3477 0.3574 0.1847 -
Baseline 3D CT 0.2729 32.02 0.2154 0.5874 0.1218 -
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(a) CHUV017, DSC=0.8159 (b) CHUV023, DSC=0.6832

(c) CHUV001, DSC=0.1118 (d) CHUV019, DSC=0.0000

Fig. 2: Examples of results of the winning algorithm (andrei.iantsen (Iantsen et al., 2021b)). The automatic segmentation results (green)
and ground truth annotations (red) are displayed on 2D slices of PET (right) and CT (left) images. The reported DSC is computed on the
entire image (see Eq. 1). (a), (b) Excellent segmentation results, detecting the GTVt of the primary oropharyngeal tumor localized at the
base of the tongue and discarding the laterocervical lymph nodes despite high FDG uptake on PET. (c) Incorrect segmentation of the top
volume at the level of the soft palate; (d) Incorrect segmentation of the smaller volume below the level of the hyoid bone.

reflecting a trend to over-segment as compared to other algorithms). The median HD95 ranges from 3.27 to 32.02 [mm].

We chose to report the median since a value of +∞ is attributed when the prediction is null. 3.27 [mm] is a highly

observed value for HD95, which is probably due to the coarse axial resolution of the CT on the test set as we computed

the performance in the original CT resolution (see C.4).

Note that two participants decided to withdraw their submissions due to very low scores. We allowed them to do so

since their low scores were due to incorrect post-processing (e.g. setting incorrect pixel spacing or image origin), which

was not representative of the performance of their algorithms. The distributions of DSCs across patients and across

participants are reported in Figures. 3 and 4 respectively. Examples of segmentation results (TPs on top row, and FPs

on bottom row) are shown in Fig. B.11.

4.4. Inter-Observer Agreement

We realized that it was crucial to also define the baseline for human observers performing the GTVt delineation

task (i.e. segmentation), as well as their agreement. Three observers, i.e. two experts in radiation oncology and one

nuclear physician, annotated the same 21 cases drawn randomly from the training and test sets and coming from all five

centers. These 21 cases were chosen to represent approximately 10 % of the dataset. It is worth noting that annotating

the entire dataset four times was too costly. They were asked to delineate as close as possible the true tumoral volume

as the aim is for radiomics studies. Together with the official challenge delineations, it amounts to four observers. All

unique pairs of observers were considered, resulting in six pairs of comparisons. We computed the average DSC of all

the pairs, i.e. all possible pairs of the four observers, which resulted in an average DSC of 0.6110. It is worth noting that

for a faithful delineation of the tumor, a contrast-enhanced CT or an MRI image is required. Furthermore, there are no
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Fig. 3: Box plots of the distribution of the 53 test DSCs for each participant, ordered by decreasing rank.
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Fig. 4: Box plots of the distribution of DSCs across the 10 participants for each of the 53 patients in the test set.
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clinical guidelines for the task of segmenting GTVt on PET/CT fusion. Moreover, the clinical information (e.g. physical

examination) brings essential information to decide whether an abnormal structure is malignant. In this agreement,

the observers were asked to perform this task with the PET/CT images only. Similar agreements were reported in the

literature. Gudi et al. (2017) reported the agreement of three observers with an average DSC of 0.57 using only the CT

images for annotation and 0.69 using both PET and CT.

4.5. Ensemble of Participants

In this section, we evaluate the possibility to ensemble the different participants’ results into a ”super-algorithm”. Such

analyses often revealed superior performances to all submitted runs (Menze et al., 2014), leveraging the diversity of the

different methods (Hastie et al., 2009). We ensemble the (binary) predictions of all participants (with paper submissions,

i.e. 10 participants) using the Simultaneous Truth And Performance Level Estimation (STAPLE) algorithm (Warfield

et al., 2004). This ensemble of predictions obtains an average DSC of 0.7574, a precision of 0.7301, and a recall of 0.8439.

This result is better than the average performance of all participants (0.6931) and is slightly, but not significantly,

outperformed by the best score of 0.7591 (p-value= 0.9230). A simpler ensembling method is computed by taking the

average of the 10 teams for each patient, and then, thresholding to 0.5 to obtain a binary prediction. This average

prediction scores a DSC of 0.7426 which is not as good as the STAPLE ensembling (p-value= 0.044). Note that several

participants already reported results obtained as an ensemble of multiple independent network predictions. (see Table 2).

4.6. PET Thresholding

PET thresholding is de facto the most widely used method for lesion segmentation, at least in clinical routine, often

via an initial manual delineation of the field of interest. As a comparison to the results obtained by the participants

using deep learning automatic segmentation algorithms, we evaluate simple PET thresholding methods (automatic and

semi-automatic). For the fully automatic threshold method, we simply threshold the PET image at a given percentage

of the maximum SUV value within the bounding box.

For the semi-automatic threshold method, we mimic a manual indication of the GTVt followed by a threshold of the

PET values. To this end, we threshold the PET image, compute the 26-connected components and retain the component

that overlaps with the ground truth GTVt (or multiple components if more than one overlap with the ground truth

GTVt). In Fig. 5, we report the results of both methods on the test set when varying the percentage of the maximum

SUV used for thresholding. Finally, we also evaluate the same semi-automatic thresholding method with an additional

threshold on the CT images (at -150 HU) to remove the air from the predictions. The best results, with an average

DSC of 0.7409, are obtained with this semi-automatic PET/CT threshold at 30% of the maximum SUV value, which

is aligned with previous findings, including in the context of the identification of predictive biomarkers (Castelli et al.,

2017).

4.7. Tumor Size and Segmentation Performance

In this section, we evaluate how the algorithms perform for different tumor sizes. To this end, we explore the

correlation of tumor size with the performance of the algorithms. The tumor size is calculated as the voxel count inside

the ground truth GTVt multiplied by the voxel volume. The Spearman correlation across all ten participants and all

tumors is 0.4301 (p-value< 0.001). In Fig. 6, we illustrate this correlation with a scatter plot of the DSC as a function

of tumor size. Fig. 7 relates the performance for each of the 10 algorithms for four tumor size groups. This figure was
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Fig. 5: Segmentation performance of PET thresholding-based method at different percentages of maximum SUV. Three results are reported:
the automatic PET threshold, the semi-automatic PET threshold (indicating the location of the ground truth GTVt), and the semi-automatic
PET and CT (for removing the air) threshold.

generated by grouping the 53 test cases in 4 bins (i.e. intervals) of 13, 13, 13, and 14 cases, respectively. The average

DSC was then computed for each team in each bin.

4.8. Analysis of False Positives

In this section, we want to evaluate, for a given algorithm, whether FPs are generally occurring in the surroundings

of the ground truth GTVt, or biased towards other regions with high FDG uptakes such as the lymph nodes or other

zones with inflammation. To this end, we compute the shortest Euclidean distance of each FP voxel to the ground

truth GTVt. We then aggregate these distances for all test cases and report these values into a histogram in Fig. 8.

Similarly, we compute the distance of each FP voxel to the ground truth GTVn (lymph nodes) and report the histogram

on the same figure. We compute this analysis for the best participant (andrei.iantsen), as well as for the baseline (3D

PET/CT U-Net) since it was the approach with the largest recall but low precision. Note that we only compute the

histogram of the FP voxels to avoid squashing the counts of the non-zero bins due to the large number of TPs with a

distance to the GTVt of zero (first bin).

4.9. Ranking Robustness

Ranking robustness against changes in the test set is assessed by evaluating the variation of the ranking on 1000

bootstrap repetitions of the test set. We also compared the current ranking against an alternate ranking defined as

follows. This alternative ranking was computed based on the average ranking across all cases. If multiple teams obtain

the same rank for one case, the average rank is attributed to these teams. For instance, if three participants score 0 on

a given case, the average rank of 8+9+10
10 = 9 is attributed to all of them for this case.

Fig. 9 depicts the results of the bootstrap analysis for the two rankings. We also computed the Kendall rank

correlation coefficient between the ranking of each bootstrap and the ranking on the whole test set. We obtained 0.8772

(0.7333 - 1.0000) and 0.7335 (0.4658 - 0.9111) for the current ranking and alternate ranking, respectively. The numbers

in parenthesis are the confidence intervals at 95 % computed with the bootstrap eanalysis. The methodology used in

this section to report ranking robustness is inspired by the challengeR toolkit (Wiesenfarth et al., 2021).
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Fig. 6: Scatter plot of DSC vs. tumor volume (voxel count in the VOI) for 10 participants. The corresponding Spearman correlation is 0.43.
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Fig. 7: Average DSC of each team’s algorithm in function of the volume of the tumors. This figure was generated by distributing the 53 test
volumes in 4 bins of n =13, 13, 13, and 14 each and then computing the average DSC for each bin.
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(a) andrei.iantsen (b) baseline 3D PET/CT

Fig. 8: Histogram of the Euclidean distance of the FP voxels to the closest ground truth GTVt voxel and GTVn voxel. We evaluate here the
prediction of the first ranked participant (andrei.iantsen) (a) and our baseline 3D PET/CT (b). For comparison, the False Discovery Rate
(FDR), i.e. FP/(FP+TP) is 0.15, with 544,343 TPs in (a) and FDR = 0.37 with 621,413 TPs in (b).
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(a) Rank based on average DSC
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(b) (Alternative) rank based on average rank DSC

Fig. 9: Ranking robustness against changes in test data. The robustness is assessed by ranking 1000 bootstraps of the test set. The size of
the circles is proportional to the number of times a team obtained the corresponding rank for each bootstrap. The dashed lines represent the
confidence intervals at 95 % computed from the bootstrap analysis. The current ranking, i.e. the one used in this challenge, is obtained by
averaging the DSCs across all test cases. The alternative ranking is computed by averaging the rankings of each team across the test cases.
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5. Discussion

This section interprets and discusses the results reported in Section 4. We first discuss and report the overall challenge

participation and main lessons learned. Second, the segmentation performance achieved by all participating methods is

interpreted. Finally, we report the current limitations and sources of errors of this challenge.

5.1. Participation and Main Lessons Learned

This challenge allowed us to compare state-of-the-art algorithms developed by 18 teams across the world on the task

of primary H&N tumor segmentation in PET/CT images. Excellent results were obtained with the first ranked team

reaching 0.7591 average DSC, 0.8332 precision, and 0.7400 recall. In Table 2, we attempted to group the results based

on important elements of the algorithms. In particular, we identified several elements important for addressing the

task. All participants used U-Net based architectures, mostly 3D. Preprocessing, normalization, data augmentation, and

ensembling seem to play an important role in the final results. Most of these trends (see also algorithms description in

Section 4.2) and results can be found in other medical imaging segmentation challenges (Ma, 2021; Menze et al., 2014).

An interesting comparison of several challenges (including HECKTOR 2020) and algorithms focusing on automatic

segmentation in medical images can be found in Ma (2021).

We note, however, that it is a difficult task to characterize algorithms with only a few descriptions and to assign good

performance to specific parts. The methods are highly complex with high degrees of freedom and many hyper-parameters

that can all have a strong influence on segmentation performance. Simple modifications such as the number of training

iterations or the learning rate can have a large impact on the results and cannot be exhaustively listed and compared.

For this analysis, we asked the participants to specifically report a set of characteristics of their algorithms to be able to

compare them in Table 2. More information will be asked in the future editions of HECKTOR to enhance comparison.

The ranking used in this edition was based on the average DSC. The results of Section 4.9 show that this approach is

more robust to changes in the test set. These findings are corroborated by Maier-Hein et al. (2018) where they showed

that ranking based on averaged metrics are more consistent for changes in test data.

5.2. Overall Segmentation Performance

As shown in Fig. 4, some cases were incorrectly segmented by most or all participants, e.g. CHUV01 and CHUV36.

On the contrary, some cases were correctly segmented by most participants (e.g. CHUV22 and CHUV53), and others

showed a large variability across participants’ algorithms (e.g. CHUV16 and CHUV41). These differences, as confirmed

by further evaluations in Sections 4.8, 4.7, originate from the tumor size, the SUVs within the GTVt, and the presence

of lymph nodes or other regions with high SUVs. Some examples are illustrated in Fig. B.11.

The participants’ algorithms obtained better results than the inter-observer agreement. This comparison, however,

should be put into perspective. First, the cases used in the agreement were different from the test set. Second, one

annotator, the one who annotated the entire dataset for the challenge, had extra information since he corrected the

radiotherapy annotations whereas the others were asked to draw the segmentation from scratch without any further

information than the raw PET/CT data. Finally, some annotators delineated closer to radiotherapy requirements,

i.e. with large annotations, resulting in higher disagreement. To alleviate this issue, we are currently developing clear

guidelines for the next iteration of the challenge.
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The results can also be compared with a simple PET thresholding method (see Section 4.6), often used in radiomics

studies (Castelli et al., 2017; Erdi et al., 1997). The latter obtained an average DSC of 0.7409 when used in a semi-

automatic manner. This result is significantly lower than the performance of the best participants (0.7591, p-value of

0.0237) and must be considered with precaution since the segmentation was highly guided toward the true tumor location

and the threshold was optimized on the test set. With a fully automatic threshold of the PET image in the oropharynx

region, we only obtain 0.2652 due to various regions, including lymph nodes, with high SUVs. The best semi-automatic

threshold method was obtained with a threshold around 30% of the maximum SUV, as frequently used to measure the

metabolic response characteristic of the tumor, e.g. 36-44% for best approximation of tumor volume (Erdi et al., 1997),

40 to 68% of SUV max for best radiomics results in DFS prediction (Castelli et al., 2017; Creff et al., 2020). Overall,

this suggests that the segmentation algorithms can leverage the wealth of both PET and CT images (i.e. metabolic and

anatomical/structural tumor properties) to provide more advanced segmentation rules when compared to simple PET

thresholding. This is also corroborated by the consistent superiority of algorithms using both PET and CT imaging

modalities when compared to using PET only.

The ensemble of participants’ methods (see Section 4.5) reached a good consensus with an average DSC of 0.7574

and a rather high recall (0.8438) and low precision (0.7301) as compared to other results in the same range. While this

is not better than the first rank result, it would likely achieve an excellent generalization to other data.

5.3. Detailed Performance Analysis

The analysis of tumor sizes in Section 4.7 (Figs. 6 and 7) showed that they are correlated with the segmentation

performance. These results seem to show that the small tumor sizes are more difficult to segment than the large ones.

More precisely, smaller tumors are less consistently well segmented, resulting in a large variation of performance. This

is not surprising since small lesions suffer from a higher partial volume effect which increases the relative difficulty to

define the boundary of the tumor (Foster et al., 2014). Moreover, the volumetric (or 3D) DSC is largely dependent on

the volume sizes. A contour deviation of ±1mm around the true tumor boundary, for instance, will affect DSC values

more for small tumors than the large ones, resulting in a negligible chance for the latter.

In Fig. 8 (Section 4.8), we analyzed the spatial arrangement of FPs segmented voxels. We conducted this experiment

for the first ranked results and our baseline. In both cases, the majority of FP voxels are located in the surrounding of

the GTVt, as shown in Fig. 8. As illustrated in the same figure, the FPs of the best results are not located near the

lymph nodes, whereas a lot of FPs of the baseline are located in the lymph nodes and their surroundings. This suggests

that, unlike the baseline, the best algorithm relies on true tumoral patterns and not only on FDG uptake.

5.4. Limitations and Sources of Errors

The main limitation of the current challenge is the lack of more precise GTVt ground truth. The annotations

were made on the PET/CT fusion without using other modalities such as contrast-enhanced CT or MR which allow

delineating the tumor more faithfully. This limitation is illustrated by the results of the inter-observer agreement

mentioned in Section 4.4, where the average DSC of 0.6110 highlighted the difficulty of the task. A source of error,

therefore, originates from the degree of subjectivity and the lack of guidelines in the annotation and correction of the

expert.

Another limitation of this challenge is the lack of test data with exact ground truth. To obtain such data, phantom

and simulation can be used. This enables the evaluation of performances of models on data where the exact ground



18 Oreiller et al. / Medical Image Analysis (2021)

truth is known. Hatt et al. (2017) claim that for a good benchmark in PET segmentation, one must include simulated

and phantom test images in addition to clinical test data.

In this challenge, we provided the participants with a bounding box to decrease the difficulty of the task. This can be

seen as a limitation since the resulting methods are not fully automatic, but these bounding boxes cover a large portion

of the original image and are easy to detect automatically (Andrearczyk et al., 2020a).

6. Conclusions

This paper presents the HECKTOR 2020 challenge on the segmentation of the primary tumor of oropharyngeal

H&N cancer in FDG PET/CT. Detailed information was reported on the dataset, participation, and segmentation

performance. Good participation with 18 teams and 10 participants’ publications allowed us to compare state-of-the-art

segmentation methods on this challenging task. The results are very satisfactory with the winning team achieving an

average DSC of 0.7591, which is superior to the inter-observer agreement (average DSC 0.6110). These results were

obtained with a strict testing scheme as the test cases were all from an unseen center. It is reasonable to expect better

results if the proposed methods are fine-tuned on few examples from this center. All participants used U-Net based

deep learning models, most of them with a 3D architecture and standard pre-processing techniques. We could identify

several key elements that seem to have led to good results, including normalization, data augmentation, and ensembling

of multiple models.

Preliminary experiments show that fully automatic radiomics methods are on pair or surpass radiomics models based

on feature extraction from manual annotations (Andrearczyk et al., 2021a; Fontaine et al., 2021). These preliminary

results are very encouraging and demonstrate that we are one step closer to analyzing very large-scale cohorts for

radiomics validation.

While focusing on H&N cancer in HECKTOR, we believe that many of the methods developed and lessons learned

will generalize to the automatic segmentation of other types of cancer imaged in PET/CT images (e.g. lung, melanoma).

In future editions, we aim to increase the size of the dataset and propose other clinically relevant tasks such as the

segmentation of lymph nodes and the prediction of patient outcome (e.g. disease-free survival).
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2013. Salivary gland-sparing other than parotid-sparing in definitive Head-and-Neck intensity-modulated radiotherapy does not seem to
jeopardize local control. Radiation Oncology 8, 132.

Chen, H., Chen, H., Wang, L., 2021. Iteratively refine the segmentation of head and neck tumor in FDG-PET and CT images, in: Lecture
Notes in Computer Science (LNCS) Challenges.

Creff, G., Devillers, A., Depeursinge, A., Palard-Novello, X., Acosta, O., Jegoux, F., Castelli, J., 2020. Evaluation of the prognostic value of
FDG PET/CT parameters for patients with surgically treated head and neck cancer: A systematic review. JAMA Otolaryngology–Head
& Neck Surgery 146, 471–479.

Erdi, Y.E., Mawlawi, O., Larson, S.M., Imbriaco, M., Yeung, H., Finn, R., Humm, J.L., 1997. Segmentation of lung lesion volume by adaptive
positron emission tomography image thresholding. Cancer: Interdisciplinary International Journal of the American Cancer Society 80,
2505–2509.

Fontaine, P., Andrearczyk, V., Oreiller, V., Castelli, J., Jreige, M., O. Prior, J., Depeursinge, A., 2021. Fully automatic head and neck cancer
prognosis prediction in PET/CT, in: Multimodal Learning and Fusion Across Scales for Clinical Decision Support (ML-CDS at MICCAI).

Foster, B., Bagci, U., Mansoor, A., Xu, Z., Mollura, D.J., 2014. A review on segmentation of positron emission tomography images. Computers
in biology and medicine 50, 76–96.

Fu, X., Bi, L., Kumar, A., Fulham, M., Kim, J., 2021. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor
segmentation. IEEE Journal of Biomedical and Health Informatics .

Ghimire, K., Chen, Q., Feng, X., 2021. Patch-based 3D UNet for head and neck tumor segmentation with an ensemble of conventional and
dilated convolutions, in: Lecture Notes in Computer Science (LNCS) Challenges.

Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D.I., Wang, G., Eaton-Rosen, Z., Gray, R., Doel, T., Hu, Y., et al., 2018. NiftyNet: A
deep-learning platform for medical imaging. Computer methods and programs in biomedicine 158, 113–122.

Gillies, R.J., Kinahan, P.E., Hricak, H., 2016. Radiomics: Images are more than pictures, they are data. Radiology 278, 563–577.
Groendahl, A.R., Knudtsen, I.S., Huynh, B.N., Mulstad, M., Moe, Y.M., Knuth, F., Tomic, O., Indahl, U.G., Torheim, T., Dale, E., et al.,

2021. A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of head and neck cancers.
Physics in Medicine & Biology 66, 065012.

Gudi, S., Ghosh-Laskar, S., Agarwal, J.P., Chaudhari, S., Rangarajan, V., Paul, S.N., Upreti, R., Murthy, V., Budrukkar, A., Gupta, T.,
2017. Interobserver variability in the delineation of gross tumour volume and specified organs-at-risk during IMRT for head and neck
cancers and the impact of FDG-PET/CT on such variability at the primary site. Journal of medical imaging and radiation sciences 48,
184–192.

Guo, Z., Guo, N., Gong, K., Li, Q., et al., 2019. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense
multi-modality network. Physics in Medicine & Biology 64, 205015.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. Springer Series in Statistics, Springer New York, New
York, NY.

Hatt, M., Laurent, B., Ouahabi, A., Fayad, H., Tan, S., Li, L., Lu, W., Jaouen, V., Tauber, C., Czakon, J., Drapejkowski, F., Dyrka, W.,
Camarasu-Pop, S., Cervenansky, F., Girard, P., Glatard, T., Kain, M., Yao, Y., Barillot, C., Kirov, A., Visvikis, D., 2018. The first
MICCAI challenge on PET tumor segmentation. Medical Image Analysis 44, 177–195.

Hatt, M., Le Rest, C.C., Turzo, A., Roux, C., Visvikis, D., 2009. A fuzzy locally adaptive Bayesian segmentation approach for volume
determination in PET. IEEE transactions on medical imaging 28, 881–893.

Hatt, M., Lee, J.A., Schmidtlein, C.R., Naqa, I.E., Caldwell, C., De Bernardi, E., Lu, W., Das, S., Geets, X., Gregoire, V., et al., 2017.
Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211. Medical physics
44, e1–e42.

Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu, G., Lin, Z., Han, M., et al., 2021. The state of the art in
kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge. Medical Image Analysis 67,
101821.

Huang, B., Chen, Z., Wu, P.M., Ye, Y., Feng, S.T., Wong, C.Y.O., Zheng, L., Liu, Y., Wang, T., Li, Q., et al., 2018. Fully automated
delineation of gross tumor volume for head and neck cancer on PET-CT using deep learning: A dual-center study. Contrast media &
molecular imaging 2018.

Iantsen, A., Ferreira, M., Lucia, F., Jaouen, V., Reinhold, C., Bonaffini, P., Alfieri, J., Rovira, R., Masson, I., Robin, P., Mervoyer, A.,
Rousseau, C., Kridelka, F., Decuypere, M., Lovinfosse, P., Pradier, O., Hustinx, R., Schick, U., Visvikis, D., Hatt, M., 2021a. Convolutional
neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. European
Journal of Nuclear Medicine and Molecular Imaging , 1–13.

Iantsen, A., Visvikis, D., Hatt, M., 2021b. Squeeze-and-excitation normalization for automated delineation of head and neck primary tumors
in combined PET and CT images, in: Lecture Notes in Computer Science (LNCS) Challenges.

Jemaa, S., Fredrickson, J., Carano, R.A., Nielsen, T., de Crespigny, A., Bengtsson, T., 2020. Tumor segmentation and feature extraction
from whole-body FDG-PET/CT using cascaded 2D and 3D convolutional neural networks. Journal of digital imaging 33, 888–894.

Lambin, P., Leijenaar, R.T., Deist, T.M., Peerlings, J., De Jong, E.E., Van Timmeren, J., Sanduleanu, S., Larue, R.T., Even, A.J., Jochems,
A., et al., 2017. Radiomics: The bridge between medical imaging and personalized medicine. Nature reviews Clinical oncology 14, 749–762.

Lapuyade-Lahorgue, J., Visvikis, D., Pradier, O., Cheze Le Rest, C., Hatt, M., 2015. SPEQTACLE: An automated generalized fuzzy C-means
algorithm for tumor delineation in PET. Medical physics 42, 5720–5734.

Li, L., Zhao, X., Lu, W., Tan, S., 2019. Deep learning for variational multimodality tumor segmentation in PET/CT. Neurocomputing .
Ma, J., 2021. Cutting-edge 3D medical image segmentation methods in 2020: Are happy families all alike? arXiv preprint arXiv:2101.00232 .
Ma, J., Yang, X., 2021. Combining CNN and hybrid active contours for head and neck tumor segmentation, in: Lecture Notes in Computer



20 Oreiller et al. / Medical Image Analysis (2021)

Science (LNCS) Challenges.
Maier-Hein, L., Eisenmann, M., Reinke, A., Onogur, S., Stankovic, M., Scholz, P., Arbel, T., Bogunovic, H., Bradley, A.P., Carass, A., et al.,

2018. Why rankings of biomedical image analysis competitions should be interpreted with care. Nature communications 9, 1–13.
Maier-Hein, L., Reinke, A., Kozubek, M., Martel, A.L., Arbel, T., Eisenmann, M., Hanbury, A., Jannin, P., Müller, H., Onogur, S., et al.,

2020. BIAS: Transparent reporting of biomedical image analysis challenges. Medical Image Analysis , 101796.
Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al., 2014.

The multimodal brain tumor image segmentation benchmark (BRATS). IEEE transactions on medical imaging 34, 1993–2024.
Moe, Y.M., Groendahl, A.R., Mulstad, M., Tomic, O., Indahl, U., Dale, E., Malinen, E., Futsaether, C.M., 2019. Deep learning for automatic

tumour segmentation in PET/CT images of patients with head and neck cancers, in: Medical Imaging with Deep Learning.
Naser, M., van Dijk, L., He, R., Wahid, K., Fuller, C., 2021. Tumor segmentation in patients with head and neck cancers using deep learning

based-on multi-modality PET/CT images, in: Lecture Notes in Computer Science (LNCS) Challenges.
Nikolov, S., Blackwell, S., Zverovitch, A., Mendes, R., Livne, M., De Fauw, J., Patel, Y., Meyer, C., Askham, H., Romera-Paredes, B., et al.,

2021. Clinically applicable segmentation of head and neck anatomy for radiotherapy: Deep learning algorithm development and validation
study. Journal of Medical Internet Research 23, e26151.

Parkin, D.M., Bray, F., Ferlay, J., Pisani, P., 2005. Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians 55, 74–108.
Rao, C., Pai, S., Hadzic, I., Zhovannik, I., Bontempi, D., Dekker, A., Teuwen, J., Traverso, A., 2021. Oropharyngeal tumour segmentation

using ensemble 3D PET-CT fusion networks for the HECKTOR challenge, in: Lecture Notes in Computer Science (LNCS) Challenges.
Ren, J., Eriksen, J.G., Nijkamp, J., Korreman, S.S., 2021. Comparing different CT, PET and MRI multi-modality image combinations for

deep learning-based head and neck tumor segmentation. Acta Oncologica , 1–8.
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional networks for biomedical image segmentation, in: International Conference

on Medical image computing and computer-assisted intervention, Springer. pp. 234–241.
Song, Q., Bai, J., Han, D., Bhatia, S., Sun, W., Rockey, W., Bayouth, J.E., Buatti, J.M., Wu, X., 2013. Optimal co-segmentation of tumor

in PET-CT images with context information. IEEE Transactions on Medical Imaging 32, 1685–1697.
del Toro, O.A.J., Goksel, O., Menze, B., Müller, H., Langs, G., Weber, M.A., Eggel, I., Gruenberg, K., Holzer, M., et al., . VISCERAL–VISual

Concept Extraction challenge in RAdioLogy: ISBI 2014 challenge organization .
Vallieres, M., Kay-Rivest, E., Perrin, L.J., Liem, X., Furstoss, C., Aerts, H.J., Khaouam, N., Nguyen-Tan, P.F., Wang, C.S., Sultanem, K.,

et al., 2017. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Scientific reports 7, 1–14.
Wahl, R.L., Jacene, H., Kasamon, Y., Lodge, M.A., 2009. From RECIST to PERCIST: evolving considerations for PET response criteria in

solid tumors. Journal of nuclear medicine 50, 122S–150S.
Warfield, S.K., Zou, K.H., Wells, W.M., 2004. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation

of image segmentation. IEEE transactions on medical imaging 23, 903–921.
Wiesenfarth, M., Reinke, A., Landman, B.A., Eisenmann, M., Saiz, L.A., Cardoso, M.J., Maier-Hein, L., Kopp-Schneider, A., 2021. Methods

and open-source toolkit for analyzing and visualizing challenge results. Scientific Reports 2021 11:1 11, 1–15.
Wu, X., Bi, L., Fulham, M., Kim, J., 2020. Unsupervised positron emission tomography tumor segmentation via GAN based adversarial

auto-encoder, in: 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE. pp. 448–453.
Xie, J., Peng, Y., 2021. The head and neck tumor segmentation using nnU-Net with spatial and channel ‘squeeze & excitation’ blocks, in:

Lecture Notes in Computer Science (LNCS) Challenges.
Yousefirizi, F., Rahmim, A., 2021. GAN-based bi-modal segmentation using Mumford-Shah loss: Application to head and neck tumors in

PET-CT images, in: Lecture Notes in Computer Science (LNCS) Challenges.
Yu, H., Caldwell, C., Mah, K., Poon, I., Balogh, J., MacKenzie, R., Khaouam, N., Tirona, R., 2009. Automated radiation targeting in

head-and-neck cancer using region-based texture analysis of PET and CT images. International Journal of Radiation Oncology* Biology*
Physics 75, 618–625.

Yuan, Y., 2021. Automatic head and neck tumor segmentation in PET/CT with scale attention network, in: Lecture Notes in Computer
Science (LNCS) Challenges.

Zhao, X., Li, L., Lu, W., Tan, S., 2018. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network. Physics
in Medicine & Biology 64, 015011.

Zhong, Z., Kim, Y., Zhou, L., Plichta, K., Allen, B., Buatti, J., Wu, X., 2018. 3D fully convolutional networks for co-segmentation of tumors
on PET-CT images, in: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE. pp. 228–231.

Zhou, T., Ruan, S., Canu, S., 2019. A review: Deep learning for medical image segmentation using multi-modality fusion. Array , 100004.
Zhu, S., Dai, Z., Ning, W., 2021. Two-stage approach for segmenting gross tumor volume in head and neck cancer with CT and PET imaging,

in: Lecture Notes in Computer Science (LNCS) Challenges.

Author contributions

Valentin Oreiller and Vincent Andrearczyk:

Design of the task and of the challenge, organization of the challenge, development of baseline algorithms and post-

challenge analyses, writing of the paper.

Mario Jreige: Design of the task and of the challenge, organization of the challenge, quality control/annotations,

annotations for inter-annotator agreement.

Martin Vallières:

Design of the task and of the challenge, provided the initial data and annotations for the training set Vallieres et al.

(2017), revision of the paper.



Oreiller et al. / Medical Image Analysis (2021) 21

Joel Castelli, Hesham Elhalawani and Sarah Boughdad:

Design of the task and of the challenge, annotations for inter-annotator agreement.

Simeng Zhu, Juanying Xie, Ying Peng, Andrei Iantsen, Mathieu Hatt, Yading Yuan, Jun Ma, Xiaoping Yang,

Chinmay Rao, Suraj Pai, Kanchan Ghimire, Xue Feng, Mohamed A. Naser, Clifton D. Fuller, Fereshteh Yousefirizi,

Arman Rahmim, Huai Chen and Lisheng Wang:

Participation to the challenge, publication of their method, revision of the paper.

John O. Prior:

Design of the task and of the challenge, organization of the challenge, revision of the paper.

Adrien Depeursinge:

Design of the task and of the challenge, organization of the challenge, development of baseline algorithms and post-

challenge analyses, writing of the paper.



22 Oreiller et al. / Medical Image Analysis (2021)

Appendix 1: Participants’ Algorithms Summary

In Iantsen et al. (2021b), Iantsen et al. proposed a model based on a U-Net architecture with residual layers and

supplemented with ’Squeeze and Excitation’ (SE) normalization, previously developed by the same authors for brain

tumor segmentation. An unweighted sum of soft Dice loss and Focal Loss was used for training. The test results

were obtained as an ensemble of eight models trained and validated on different splits of the training set. No data

augmentation was performed.

In Ma and Yang (2021), Ma and Yang used a combination of U-Nets and hybrid active contours. First, 3D U-Nets

are trained to segment the tumor (with a cross-validation on the training set). Then, the segmentation uncertainty is

estimated by model ensembles on the test set to select the cases with high uncertainties. Finally, the authors used a hybrid

active contour model to refine the high uncertainty cases. The U-Nets were trained with an unweighted combination of

Dice loss and top-K loss. No data augmentation was used.

In Zhu et al. (2021), Zhu et al. used a two steps approach. First, a classification network (based on ResNet) selects

the axial slices which may contain the tumor. These slices are then segmented using a 2D U-Net to generate the binary

output masks. Data augmentation was applied by shifting the crop around the provided bounding boxes and the U-Net

was trained with a soft Dice loss. The preprocessing includes clipping the CT and the PET, standardizing the HU within

the cropped volume and scaling the range of the PET to correspond to the CT range by dividing it by a factor of 10.

In Yuan (2021), Yuan proposed to integrate information across different scales by using a dynamic Scale Attention

Network (SA-Net), based on a U-Net architecture. Their network incorporates low-level details with high-level semantics

from feature maps at different scales. The network was trained with standard data augmentation and with a Jaccard

distance loss, previously developed by the authors. The results on the test set were obtained as an ensemble of ten

models.

In Chen et al. (2021), Chen et al. proposed a three-step framework with iterative refinement of the results. In this

approach, multiple 3D U-Nets are trained one-by-one using a Dice loss without data augmentation. The predictions and

features of previous models are captured as additional information for the next one to further refine the segmentation.

In Ghimire et al. (2021), Ghimire et al. developed a patch-based approach to tackle the memory issue associated with

3D images and networks. They used an ensemble of conventional convolutions (with small receptive fields capturing fine

details) and dilated convolutions (with a larger receptive field of capturing global information). They trained their model

with a weighted cross-entropy and dice loss and random left-right flips of the patches were applied for data augmentation.

Finally, an ensemble of the best two models selected during cross-validation was used for predicting the segmentation of

the test data.

In Yousefirizi and Rahmim (2021), Yousefirizi and Rahmim proposed a deep 3D model based on SegAN, a generative

adversarial network (GAN) for medical image segmentation. An improved polyphase V-net (to help preserve boundary

details) is used for the generator and the discriminator network has a similar structure to the encoder part of the former.

The networks were trained using a combination of Mumford-Shah (MS) and multi-scale Mean Absolute Error (MAE)

losses, without data augmentation.

In Xie and Peng (2021), Xie and Peng proposed a 3D scSE nnU-Net model, improving upon the 3D nnU-Net by

integrating the spatial and channel ’Squeeze and Excitation’ (scSE) blocks. They trained the model with a weighted

combination of Dice and cross-entropy losses, together with standard data augmentation techniques (rotation, scaling
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etc.). To preprocess the CT images an automated level-window-like clipping of intensity values is performed based on

the 0.5 and 99.5th percentile of these values. The intensity values of the PET are standardized by subtracting the mean

and then, by dividing by the standard deviation of the image.

In Naser et al. (2021), Naser et al. used a variant of 2D and 3D U-Net (we report the best result, with the 3D model).

The models were trained with a combination of Dice and cross-entropy losses with standard data augmentation.

In Rao et al. (2021), Rao et al. proposed an ensemble of two methods, namely a 3D U-Net and another 2D U-Net

variant with 3D context. A top-k loss was used to train the models without data augmentation.

Appendix 2: Additional plots
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Fig. B.10: The significance matrix represents significant tests for the one-sided Wilcoxon signed-rank test at a 5% significance level, adjusted
for multiple comparisons with the Holm-Bonferroni method for 45 hypotheses. For each pair, the alternative hypothesis is that the best team
has a greater score. For instance, for the andrei.iantsen-junma pair the alternative is that andrei.iantsen has a better DSC than junma.
The yellow color indicates that the team on the line of the matrix has significantly better DSC than the team on the column. Blue color
means no significant difference. Orange color is used as a visual guide to show pairs of identical teams.

Appendix 3: Centers statistics

In Table C.4, we report the differences between the five centers in terms of image properties such as devices, pixel

spacing and slice spacing. We also disclose the distribution of GTVt volumes in Fig. C.15 and Table C.5.

Table C.4: Statistics of the different centers. GTVt volumes are computed after iso-resampling at 1 × 1 × 1 mm3. The GTVt volumes are
reported in cm3 as average plus the 5th and 95th percentile in parenthesis. All devices are hybrid PET/CT.

Center Pixel spacing CT Slice spacing CT Pixel spacing PT Slice spacing PT Device
HGJ 0.98 (0.98 - 0.98) 3.27 (3.27 - 3.27) 3.52 (3.52 - 4.69) 3.27 (3.27 - 3.27) Discovery ST, GE Healthcare
CHUS 1.17(0.68- 1.17) 3.00 (2.00 - 5.00) 4.00 (4.00 - 4.00) 4.00 (4.00 - 4.00) GeminiGXL 16, Philips
HMR 0.98 (0.98 1.37) 3.27 (3.27 - 3.27) 3.52 (3.52 - 5.47) 3.27 (3.27 - 3.27) Discovery STE, GE Healthcare
CHUM 0.98 (0.98 - 1.37) 1.50 (1.50 - 3.27) 4.00 (3.52 - 5.47) 4.00 (3.27 - 4.06) Discovery STE, GE Healthcare
CHUV 1.37 (0.98 - 1.37) 3.27 (1.00 - 4.25) 2.73 (2.73 - 3.91) 3.27 (3.27 - 4.25) Discovery D690 TOF, GE Healthcare
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(a) CHUV017, DSC=0.8101 (b) CHUV023, DSC=0.7628

(c) CHUV001, DSC=0.000 (d) CHUV019, DSC=0.0905

Fig. B.11: Examples of results of the second algorithm (junma (Ma and Yang, 2021)). The automatic segmentation results (green) and ground
truth annotations (red) are displayed on 2D slices of PET (right) and CT (left) images. The reported DSC is computed on the entire image
(see Eq. 1). (a), (b) Excellent segmentation results, detecting the GTVt of the primary oropharyngeal tumor localized at the base of the
tongue and discarding the laterocervical lymph nodes despite high FDG uptake on PET. (c) Incorrect segmentation of the top volume at the
level of the soft palate; (d) Incorrect segmentation of the smaller volume below the level of the hyoid bone.
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Fig. B.12: Box plots of the distribution of the precision on the 53 test cases for each participant, ordered by decreasing rank.

Table C.5: Average GTVt volume for the five center used in this challenge. The numbers in parenthesis represent the 5th and 95th respectively.

Center GTVt volume
HGJ 14.913 (2.263 - 38.879)

CHUS 14.209 (1.837 - 42.967)
HMR 23.622 (2.412 - 88.785)

CHUM 9.866 (1.358 - 24.884)
CHUV 13.317 (1.725 - 41.212)
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Fig. B.13: Box plots of the distribution of the recall on the 53 test cases for each participant, ordered by decreasing rank.
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Fig. B.14: Box plots of the distribution of the 53 test SDSCs for each participant, ordered by decreasing rank.
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Fig. C.15: Box plots of the distribution of the GTVt volumes per center.
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