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ABSTRACT

The overall lower survival rate of patients with rare cancers can be explained, among other factors, by the
limitations resulting from the scarce available information about them. Large biomedical data repositories, such
as PubMed Central Open Access (PMC-OA), have been made freely available to the scientific community and
could be exploited to advance the clinical assessment of these diseases. A multimodal approach using visual deep
learning and natural language processing methods was developed to mine out 15,028 light microscopy human
rare cancer images. The resulting data set is expected to foster the development of novel clinical research in this
field and help researchers to build resources for machine learning.
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1. INTRODUCTION

The U.S. National Cancer Institute (NCI) at the National Institute of Health (NIH) designates a cancer as
“rare” when it affects less than 15 out of 100,000 people per year.1 Such a low prevalence is a major challenge
in the study of rare cancers, frequently resulting in a shortage of the robust clinical models needed for their
detection and treatment using image analysis tools.2 The overall lower survival rate of patients with these
types of cancers can then be explained, among other factors, by difficulties in their clinical research due to the
scarcity of available information about them.3 Large biomedical data repositories i.e. PubMed Central Open
Access (PMC-OA) are freely available to the scientific community∗. These large repositories can be exploited to
advance clinical assessment of these diseases, namely through knowledge aggregation from multiple high-quality
scientific studies.

The data elements from the biomedical and life science journal articles contained in PMC-OA can be either
visual, i.e. article figures, or textual i.e. information from the full-text articles or figure captions. Although
multiple approaches have been proposed to classify the articles in PMC-OA using text, classification algorithms
for the images of the articles are rare.4 Among the approaches that have been proposed, the majority have reached
only a generic modality classification level or similar, e.g. light microscopy images, computed tomography images
and similar categories.5,6 A more detailed curation is required to fully benefit from such data, one that goes
further than the general modality classification task and also considers the information contained in the images
from the publications.

We expand the scope of previously proposed methods for the curation of full-text journal articles to mine out
a large multimodal (images and text) data set of rare human cancer studies. In particular, the most pressing
challenges in identifying rare cancer images and articles are assessed in this work through the comparison of
both text and state-of-the-art visual machine learning methods. This study aims to pinpoint the advantages and
limitations of the approaches to curate the various data elements from PMC-OA journal articles.
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Figure 1: A typical MedLine record explaining the 1:1 association between the journal publication images, the
full-text of the article and the manually-annotated MeSH controlled vocabulary.

2. METHODS

The current study is restricted to the curation of Diagnostic Light Microscopy Images (DLMI) from PMC-OA
journal articles, as this type of image is fundamental to diagnose cancer cases. Classifying DLMI is a challenging
task due to the large variety of staining procedures and slide preparation methods available, as well as the
various scale levels of the images.7 For this work, we initially extract DLMI images from the PMC-OA using
a state-of-the-art approach for modality classification, relying only on the images from the publications.8 An
evaluation is then performed for visual and text machine learning approaches for three classification tasks: 1)
human vs. non-human 2) neoplastic (tumor-related) vs. non-neoplastic and 3) rare cancer vs. non-rare cancer.
The data sets used in the study and the methods developed for each task are explained in this Section.

2.1 Data sets

Medline is one of the largest biomedical citation databases indexing about 30 million biomedical and life science
journal publications, online books and their related bibliographic metadata. Medline data can be freely queried
and downloaded using the PubMed interface†. However, not all the data indexed by Medline, and accessible
through PubMed, is available for redistribution and reuse. PubMed Central Open Access (PMC-OA) subset is
a free archive for full-text biomedical and life science journal articles, including over 2.09 million publications
in 2019. All the publications in the PMC-OA subset are available with CC-BY and CC0 license allowing more
liberal redistribution and reuse.9 An estimated total of 6,736,759 images are present in the full data set of
journal publications. The journal publications stored in MedLine are structured as MedLine records that can
be accessed using the PubMed interface. A typical MedLine record comprises the publication text, the set
of images included in this particular publication as jpg or png files, if available the manually-attached MeSH
(Medical Subject Headings) terms, and other metadata.10,11 Hence, all the data elements within an individual
Medline record, share a 1:1 relationship with each other as shown in Fig. 1. MeSH is a hierarchically-organized
terminology used for cataloguing the biomedical documents in MedLine‡ It is organized in a tree structure with

†https://www.nlm.nih.gov/bsd/difference.html
‡https://www.nlm.nih.gov/mesh/meshhome.html



Figure 2: Sample images from the PMC-OA dataset classified as DLMI by the reference method from the
ImageCLEF 2018 challenge.

its root node branching into 16 broad thematic categories like “Eukaryota” (organisms), “Diseases”, “Chemical
and Drugs”, etc. These categories are further divided into subcategories§ or MeSH headings. Each MeSH
heading in the MeSH tree has its unique MeSH ID and a unique code indicating its location in the tree.10 It
is to be noted that MeSH terms were manually assigned to only a subset of documents in MedLine by the
indexers at NLM (National Library of Medicine) and that a large part of MedLine records do not have them.
These manually-attached MeSH terms, however, can be considered as the gold standard annotations for the
corresponding documents.11

2.2 Image classification with convolutional neural networks

In the past few years, deep learning approaches have outperformed classical machine-learning algorithms in many
tasks related to the analysis of histopathology images.12 Unlike methods based on hand-crafted features, deep
learning approaches build increasingly abstract representations of the data that are learned in a hierarchical
fashion. Moreover, convolutional neural networks (CNN), a commonly used deep learning architecture in image
analysis, have shown promising results in the supervised and unsupervised automatic classification of light
microscopy images.13

As an initial step in this work, a DenseNet-169 convolutional neural network was used to generate a primary
modality classification of all the images contained in the PMC-OA journal articles.14 The approach classified
all of the PMC-OA images into 31 image modality types from the ImageCLEF 2018 challenge.15 The classes
include modalities of diagnostic images (e.g. DLMI, ultrasound and computed tomography), types of generic
biomedical illustrations (e.g. tables and flowcharts) and compound figures (images consisting of several sub-
figures). The network originally pretrained on ImageNet was fine-tuned with an Adam optimizer and enhanced
with data augmentation for this task. More details on the implementation and training setup are given in.8 Each
individual DLMI image classified by the network in this step was then linked to its respective PMC-OA record
using the corresponding PMC identifier (PMCID). In Figure 2, a few examples images classified as DLMI by
this approach are shown.

To evaluate the performance of a classification strategy, that relies only on the images from the PMC-OA
publications, CNN models were then fine-tuned for the selected classification tasks. After the initial modality
classification step, the resulting set of DLMIs were further classified with VGG19 networks, trained both with
and without data augmentation.16 Their performance was evaluated for each classification task and compared
against text-based approaches.

2.3 Text data preprocessing

Different machine learning methods were built using the text information from the journal articles and the
manually-annotated MeSH terms, when available. However, text requires a thorough preprocessing before it can

§https://meshb.nlm.nih.gov/treeView



Table 1: List of the corpus-specific stop-words.

introduction abstract background method(s)
materials objective(s) aim(s) outcome(s)

conclusion(s) result(s) discussion methodology
also may level(s) show

be used for any extrinsic natural language processing task. All the MedLine text records were first lowercased
before being tokenized into words by Natural Language Toolkit (NLTK)¶. The most frequent and noisy tokens
were removed using a set of predefined stop words provided by NLTK together with specific stop words from
PubMed‖. Additional corpus specific stop words were identified during the experiments and the terms were
removed accordingly (see Table 1). These stop-words were present in all the texts in the corpus and were assumed
to not help the classification process. By any means the list of corpus-specfic stop-words is not complete and
could be improved further. Then, a process of text normalization converted British English terms into American
English. Lemmatization was performed using the word net lemmatizer.17 A corpus vocabulary was constructed
from all the unique corpus tokens. To scale this vocabulary down, uninformative short tokens with fewer than
three characters and also the tokens with vocabulary count lower than five were removed assuming they were
not representative of the classes.

2.4 Text representation

Proper representation of text is critical when classifying documents using machine learning methods. Text
representation methods convert text documents into a mathematical form or numeric vector understood by
machine learning systems. To convert the pre-processed texts from each MedLine record into a numeric vector,
three methods for text representation were tested: 1) count-based vectors, 2) word vectors and 3) paragraph
vectors.

Count-based representation: One of the earliest count-based representations is the bag-of-words (BoW)
representation which involves representing a document by word counts for the words in the document. Term
Frequency/Inverse Document Frequency (TF/IDF) is a weighted, count-based method for vectorized text repre-
sentation. It is a traditional, sparse representation of text and is also a strong baseline.18 TF-IDF is defined by
term frequency (TF) multiplied by inverse document frequency (IDF) as shown in the equation 1. TF measures
how frequently a term (t) occurs in a document (d) normalized by the document length. IDF weighs a term
based on the number of documents (N) a particular term (t) occurs in divided by the document frequency of that
term. This increases the weights for the meaningful words in the corpus and reduces the weights for frequently
occurring stop-words like a, an, the, in, if, of, etc.

TF − IDF = TFt,d ∗ log(N/DFt) (1)

Word vectors: Word2vec and Global Vectors for Word Representation (GloVe), also called word embeddings,
are the two unsupervised algorithms for the extraction of dense, semantic, real-valued vectors from words based
on their context.19,20 While word2vec is a predictive model, GloVe is a count-based model that takes into account
the co-occurrence of neighbouring words for the generation of vectors. Both methods capture word semantics,
unlike TF-IDF. In the semantic space of a word embedding, vectors for two similar words will be located near
each other and have a high cosine similarity. For example, the cosine similarity for the word2vec google news
model between the terms “woman” and “patient” is 0.7299, while for the terms “mouse” and “patient” it is
0.3211. For this work, three pre-trained word2vec embeddings, one pre-trained GloVe embedding and a corpus-
specific word2vec embedding (see Table 2 for the details) were tested.19–21 Corpus-specific 300-dimensional word
vectors were trained using the word2vec algorithm implemented by Facebooks’ fastText.22 This work considers

¶https://www.nltk.org/api/nltk.tokenize.html
‖https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/



Table 2: List of word embeddings used in this work. Details are provided on the types of embeddings, the text
corpus used to train them and their two characteristic parameters: vector length and window size used to train
the embeddings.

Embedding name Corpus length and window size (WS)
word2vec Google news 300-dimensional, WS 5
bio2vec PubMed 300-dimensional, WS 2
bio2vec PubMed 300-dimensional, WS 30
GloVe Wikipedia 2014, English Gigaword 200-dimensional, WS 6

word2vec Corpus-specific 300-dimensional, WS 5

additive compositionality of word vectors and averages over all the word vectors in a single MedLine study text
to get a document-level representation.

Paragraph vectors: Paragraph vectors are generated in an unsupervised manner and learn distributed
representation for pieces of text rather than for the individual words. Paragraph vectors learn to associate words
with document labels rather than with the other words in context. This work used two kinds of paragraph
vectors: 1) a distributed memory model of paragraph vectors (PV-DM) and 2) a distributed bag of words model
of paragraph vectors (PV-DBOW).23

2.5 Ontology-assisted text classification

All the MeSH-labeled text records were exploited to serially train and evaluate multiple classifiers (Logistic
Regression (LR), Support Vector Machines (SVM) with linear kernel and K-nearest neighbor (KNN)) in order
to retrieve human rare cancer publications. At each classification step, the classifier performance was evaluated
on an independent validation set with the corresponding MeSH terms regarded as the ground truth. GridSearch
was used to identify the best text representation, best model and model parameters. Only the setups with the
best F1-scores on an unseen validation set were then used to classify the unlabeled text data (without manual
MeSH terms).

3. EXPERIMENTAL SETUP

3.1 Mining out “human” images

All the Medline records with images initially classified as DLMI (see section 2.2) were divided into two groups
corresponding to the availability of manually-attached MeSH terms. The records with MeSH terms, considered to
be the ground truth in this work, were further divided and labeled with three mutually-exclusive labels (“human”,
“non-human” and “ambiguous”). A MedLine record was labeled “human” if and only if (iff) its corresponding
MeSH-term list contained the MeSH code Humans ∗∗ (B01.050.150.900.649.313.988.400.112.400.400) and no
other organism code from the B01 tree-branch. A record was labeled “ambiguous” iff its corresponding MeSH-
term list contained MeSH code Humans, but also other organism code from B01 tree-branch, for example,
mice†† (B01.050.150.900.649.313.992.635.505.500) or rat‡‡ (B01.050.150.900.649.313.992.635.505.700). A record
was labeled “non-human” iff no MeSH code Humans was present in the MeSH term list. The purpose of this
experiment was to precisely retrieve “human” instances. As the “ambiguous” class records mostly represent the
animal models of human tissue, this class was merged with the other instances from the class “non-human”.

To evaluate the performance of the visual and text approaches in this classification task, the MedLine records
with manually-annotated MeSH terms were then divided into independent training, validation and test sets (60-
20-20%). The training, validation and test sets used in this and the following tasks were balanced accordingly to
have an equal distribution of both classes in each set. Performance measures including F1 score, precision and
recall were used.
∗∗https://meshb.nlm.nih.gov/record/ui?ui=D006801
††https://meshb.nlm.nih.gov/record/ui?ui=D051379
‡‡https://meshb.nlm.nih.gov/record/ui?ui=D051381



For the approaches using text, the title and abstract from the selected journal publications were considered.
The vectors mentioned in Section 2.4 were extracted from the text corpus in the training set and were used to
train and evaluate LR, SVM and KNN models. Exhaustive GridSearch was used to identify the best performing
text representation, model and model hyper-parameters.24

3.2 Mining out “neoplastic” images

All the images that are MeSH-labeled and predicted “human” in the previous step were carried forward. To
obtain the images with a MeSH label “neoplastic”, the “human” MeSH-labeled text records were divided into
“neoplastic” and “non-neoplastic” based on the presence vs. absence of the MeSH tree code (C04) covering the
concept for neoplasms∗. This new corpus was again divided into training, validation and test sets (60-20-20%)
for this classification task.

For the text approach, the title and abstract from the selected journal publications were considered. The
vectors mentioned in Section 2.4 were again extracted from the text corpus in the training set and were used to
train and evaluate LR, SVM and KNN models. Exhaustive GridSearch was used to identify the best performing
text representation, model and model hyper-parameters.24

3.3 Mining out “rare cancer” images

Since there are no manually annotated MeSH terms targeting the concept of “rare cancer”, a predefined list of
rare cancers provided by the U.S. National Center for Advancing Transnational Sciences (NCATS) at NIH was
taken as reference criteria for selecting rare cancer studies†. Only the records classified in the previous tasks
as “human” and “neoplastic” were retained as candidate publications for identifying “rare cancer” studies. A
keyword-based, string-matching approach was used to filter the text records, extracting only those publications
mentioning “rare cancer” terms. The resulting “rare cancer” data set, assembled with text records and their
corresponding images, was used as ground truth for assessing the performance of the visual approaches. A
convolutional neural network was fine-tuned to differentiate between “rare cancer” images and “non-rare cancer”
studies, with and without data augmentation. No text-based classification approach was evaluated for this task,
as the text records were used to generate the ground truth.

4. RESULTS

The initial modality classification approach using visual deep learning features classified 241,728 images as
“DLMI”. Exploiting the 1:1 association (Section 2.1), all the MedLine text records (64,640) and the available
MeSH terms corresponding to these “DLMI” images were used. Out of these, a total of 31,733 MedLine text
records had manually-attached MeSH terms and 32,907 were unlabeled.

Tables 3 and 4 report the classification performance on the corresponding test sets for the “human” (Sec-
tion 3.1) and “neoplastic” (Section 3.2) tasks. The best text-based approaches for each classification task reach
at least 90% for the F1 score. For the “human” identification step, the TF-IDF tri-gram representation with
L2-regularized SVM reached a 90% F1 score. Therefore, the TF-IDF tri-gram with an L2-regularized SVM
model was selected as the reference method to classify the unlabeled MedLine records into “human” and “non-
human”.23 The wordclouds shown in Figure 3 show similarities between the most frequent terms for Medline
text records labelled as “human” (left) and predicted as “human” (right). For instance, the phrases year old,
patient, case, report and breast repeat in both the wordclouds, which qualitatively supports the generated classi-
fication model. The wordclouds in Figure 4 show the difference between “human” (left) and “non human” (right)
MedLine records identified during the text classification task. In this wordcloud images, prominent phrases like
patients, case report, year old, old male, and breast cancer associate more with “human” group, while the phrases
like stem cell, effect, observed, mouse model and treatment associate more with experiments or studies concerning
animal models. As a result of this classification step, a total of 40,314 MedLine text records corresponding to the
“human” class were identified. For the DLMI “neoplastic” image identification, the two best approaches reached
an F1 close to a perfect classification, with the TF-IDF-bi-grams being slightly better at identifying “neoplastic”

∗https://meshb.nlm.nih.gov/record/ui?ui=D009369
†https://rarediseases.info.nih.gov/diseases/diseases-by-category/1



Table 3: Summary and assessment for best visual and text classifier-feature combinations for the “human”
classification task, described in Section 3.1.

human vs. non-human classification
Classifier Feature type Feature Settings Precision Recall F1

Visual classification
VGG19 deep learning no data augmentation 0.68 0.67 0.67
VGG19 deep learning with data augmentation 0.69 0.71 0.68

Text classification
SVM count-based TF-IDF tri-grams 0.89 0.90 0.90
SVM word vectors Corpus-specific embeddings 0.88 0.89 0.89
LR paragraph vectors PV-DBOW (100, 30, 2) 0.87 0.89 0.88

Figure 3: Word cloud for the 100 most frequent words in MedLine text records labeled “human” vs. the MedLine
text records predicted “human” by the experiment in Section 3.1

Figure 4: Word cloud for 100 words most frequent tokens in MedLine text records labeled “human” vs. the
MedLine text records predicted “non-human” by the experiment in Section 3.1



Table 4: Summary and assessment for best visual and text classifier-feature combinations for the “neoplastic”
classification task, described in Section 3.2 and its comparison to the visual classification

neoplastic vs. non-neoplastic classification
Classifier Feature type Features Precision Recall F1

Visual classification
VGG19 deep learning no data augmentation 0.64 0.61 0.63
VGG19 deep learning with data augmentation 0.68 0.65 0.64

Text classification
SVM count-based TF-IDF bi-grams 0.99 0.99 0.99
SVM word vectors Pretrained bio NLP vectors 0.98 0.94 0.96
LR paragraph vectors PV-DBOW 0.98 0.98 0.98

publications. The wordclouds shown in Figure 5 show similarities between the most frequent terms for Med-
line text records labelled as “neoplastic” (left) and predicted as “neoplastic” (right). For instance, the phrases
cell carcinoma, tumor, lymph node repeat in both the wordclouds, which qualitatively supports the generated
classification model. The wordclouds shown in Figure 6 show the difference between the most frequent terms
for “neoplastic” (left) vs. “non-neoplastic” (right) MedLine text records identified during the text classification
task. Phrases like cell carcinoma, breast cancer, cancer cell, tumor cell, and lymph node clearly associate with
“neoplastic” class.

Figure 5: Word Cloud for the 100 most frequent words in Medline text records labeled “neoplastic” vs. the
Medline text records predicted “neoplastic” by the experiment described in Section 3.2

Figure 6: Word cloud for 100 most frequent words in Medline text records labeled “neoplasm” vs. the Medline
text records predicted “non-neoplastic” by the experiment in Section 3.2



Table 5: Summary and assessment for the visual classification of “rare cancer” vs. “non-rare cancer” images.

rare cancer vs. non-rare cancer classification
Classifier Feature type Features Precision Recall F1

Visual classification
VGG19 deep learning no data augmentation 0.61 0.77 0.68
VGG19 deep learning with data augmentation 0.62 0.77 0.69

When compared to the VGG19 deep learning model, relying on visual features from the images, the text
approaches obtained a much higher precision and better recall as well (Table 4). As a result of the “neoplastic”
vs. “non-neoplastic” classification, a total of 12,738 Medline text records corresponding to the “neoplastic” class
were identified. The setup with best F1-score from the two previous classification tasks was used to classify the
remaining Medline text records with no manually-attached MeSH terms. By applying a keyword-based filtering
to the classified data set, 2,669 Medline text reccords and 15,028 light microscopy human rare cancer open-
access images were identified together with their corresponding journal articles containing highly-correlated text
information. The visual classification for this final task, using deep learning features with data augmentation,
resulted in an F1 score of 0.69.

5. DISCUSSION

To the best of our knowledge, this is the first study targeting the automatic extraction of rare cancer images
from journal publications from the biomedical literature. The proposed approach relied on both the visual and
text information from the freely available publications in the PMC-OA repository. The final pipeline contained
the following steps: 1) mining out “DLMI” images, 2) mining out “human” images, 3) mining out “neoplastic”
(tumor-related) images, and finally 4) mining out human “rare cancer” light microscopy images with their
corresponding journal articles. The output data set contains a large and heterogeneous collection of rare cancer
images and publications that could be useful to train and develop novel approaches for these diseases. When
comparing the textual vs. visual classification performance in both the “human” vs. “non-human” task, and
the “neoplastic” vs. “non-neoplastic” task, text features performed considerably better compared to the visual
features. The TF-IDF bi/tri-gram approach with an SVM classifier was the best approach for both tasks, relying
on count-based features. Nevertheless, visual features could correctly classify some test images with a recall of
up to 0.71 in the “human” identification task. It is important to note that the class “ambiguous” was merged
with the class “non-human”, thus influencing the classification results for both visual and text features. For the
“neoplastic” vs. “non-neoplastic” classification, the visual features gave a worse performance with a maximum
F1 score of 0.64. In the final classification task, the developed textual approach was selected as ground truth,
since there are no MeSH terms targeting “rare cancers”. On the other hand, the visual approaches in the “rare
cancer” vs. “non-rare cancer” task, had better results than in the previous 2 classification tasks, but there is
still room for improvement. Some of the images and diseases that were identified in this pipeline are shown in
Figure 7.

In this work, we compared the advantages and limitations of the visual classification of the images vs. the text
classification of some text elements from the corresponding journal publications (title, abstract). The results show
that with the current number of images available, the simpler and more interpretable text mining approaches
(TF-IDF) outperform state-of-the-art visual strategies. However, it is important to consider that the classification
performed on the individual images from a publication is not on the same level as the classification of the full-
text records. With the combination of an initial DLMI classification based only on the visual features, and the
subsequent text mining non light microscopy images were excluded from the final data set. The PubMed Central
Open Access repository includes more than 2.09 million publications and is continuously being updated with novel
full-text biomedical scientific publications, including the latest rare cancer studies. Since the PMC-OA dataset
will continue to grow in the following years, this is an initial framework to automatically generate high-quality
multimodal data sets that could potentially improve the understanding of these type of diseases. Our future
research direction is towards experimenting with the multimodal fusion of visual and textual representations
from individual images and journal articles.25



Figure 7: Sample light microscopy human rare cancer images mined out with the proposed approach. Some of
the samples come from PMC-OA publications with no MeSH terms available.

6. CONCLUSIONS

A framework that relies on visual deep learning and natural language processing methods to mine out 32,486
light microscopy human rare cancer images is presented. The generated multimodal dataset can fill the void
of information regarding the study of these diseases and be further used by researchers as an automatically
annotated database for the development of new clinical models. A more comprehensive understanding of the
changes present in these cancers, can potentially help to improve the outcome of these patients.
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