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Abstract

Despite the approximate invariance to scale learned in deep Convolutional Neural Networks (CNNs)
trained on natural images, intermediate layers have been shown to contain information of scale while the
invariance is only obtained in the final layers. In this paper, we experimentally analyze how this scale
information is encoded in the hidden layers. Linear regression of scale is used to (i) evaluate whether scale
information can be encoded, at a given layer, by individual response maps or a combination of many of them
is necessary; (ii) evaluate whether the encoding of scale is shared among classes. If we can find a direction
representative of scale variations in the hidden space, is this consistent across the data manifold? Or is it
rather encoded locally within class-specific neighborhoods? We observe that scale information is encoded
as a combination of a few response maps (around 3%) and that the encoding is relatively consistent across
classes, with some amount of class-specific encoding.

1 Introduction

Convolutional Neural Networks (CNNs) can implicitly learn an approximate invariance to transformations and
variations in the training data [1]. Excellent generalization to unseen images has been obtained in natural
images (ImageNet [2]), despite their large intra-class variability. In particular, CNNs must learn invariance to
scale to be able to recognize textures, objects and scenes regardless of the point of view. Scale plays a crucial
role in computer vision and medical imaging [3]. Besides, transfer learning has been extensively used in many
domains. Various empirical studies, e.g in medical imaging, compared vanilla CNNs with pre-trained models
with little attempts in understanding why one may work better than another in different scenarios besides
the speed of convergence. Studying scale equivariance in pre-trained CNNs informs us on the adaptability
to domains distant from natural images, in which scale often carries crucial information. Motivated by the
transfer learning of CNNs trained on natural images to other domains in which the scale and object size may
be informative (e.g. fixed viewpoint in medical imaging), we studied the presence of scale information in
intermediate activations in [4, 5]. It was shown that, for a given class, the scale can be linearly regressed within
intermediate activations and that the invariance is learned in the final layers. In [5], this finding was used to
improve the regression of magnification in histopathology images using pretrained CNNs.

In this paper, we build on top of the analyses in [4, 5] to better understand how the scale information is
encoded in the internal activations of commonly used state of the art CNNs [1]. We evaluate empirically two
key questions related to the learning process and data processing of CNNs. Is scale encoded by a single or
by multiple response maps? Is scale encoded differently for different classes? To address the first question,
we evaluate if a minimal combination of response maps suffices to encode the scale information, starting from
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a single response only. While individualized neuron responses to a specific representation of a concept (e.g.
scale, lighting or texture) were analyzed in [6, 7] by visualizing activations for exemplar input images, this
paper provides a quantitative analysis. Second, the initial evaluation of scale regression in [4] considered only
individual classes, leaving opened the question of whether scale is learned individually for each class or as
a general feature that comprises multiple classes. We evaluate the consistency of the direction of increasing
values of scale in the deep hidden space. This helps to understand whether scale encoded in the same way across
the data manifold or if local regression and manifold learning should be used to capture the scale encoding.

As described in Section 3, the analysis is based on linear regression of scale at intermediate layers of CNNs
trained on ImageNet. The scale is measured as a ratio based on manually annotated bounding boxes from
the Pascal-VOC annotations. Section 4 is dedicated to the alignment of the scale regression along individual
response maps. The consistency of the scale encoding across the data manifold is studied in Section 5.

2 Related Work

Several researchers have studied the invariance and equivariance to scale learned in CNNs by evaluating in-
ternal activations for images at different scales [6, 8]. More generally, the equivariance to geometric image
transformations such as flips and rescaling in the intermediate feature space was studied in [9], concluding that
scale invariance is implicitly learned in CNNs as prediction results are not improved by reversing the scaling
transformations in the feature space. Contrasting these results, the vulnerability of standard CNNs to adversarial
attacks with transformations including scaling was studied in [10], supporting the need for built-in invariance.
A supervised training method was proposed in [11] to disentangle the transformations including rotations and
scales, providing built-in equivariance properties.

Particularly related to our work, post-hoc interpretability methods, as defined in [12], interpret trained mod-
els without modifying their optimization. Among these methods, linear models have been used as probes to
explain intermediate network layers, in line with our strategy to analyze scale equivariance. Linear classifier
probes [13] were proposed to analyze class-separability at intermediate network layers in terms of the clas-
sification of the class labels by a linear model. Testing with Concept Activation Vectors (TCAV) [14] and
Regression Concept Vectors (RCVs) [15, 16] were developed to analyze the presence of concepts (binary and
continuous measures) in intermediate layers of a deep network by linear classification and regression, respec-
tively. Linear probes, and particularly concept-based ones, have shown relevant results in different analyses
and applications [17, 18]. This approach is well suited for our task of investigating scale equivariance in deep
representation by modeling a linear probe for scale variations.

3 Methods

This section describes the notations and methods used in the experiments. We use an InceptionV3 [1] CNN
trained on ImageNet [2]1. We analyze this model at an intermediate layer by looking at the activations for
different images of varying scale. In this paper, we evaluate the mixed8 layer in InceptionV3 as it is a rather
deep layer with large receptive fields and was particularly shown to encode scale in [4, 5].

We consider a scaling transformation of an input image I , gσ(I ), parameterized by a scaling factor σ. We
search a predictable linear transformation g ′

σ(φ(I )) in the d-dimensional feature space φ(·) of the scaling gσ(·)
in the input space. If such a property is found, the representation φ(·) is linearly equivariant to scale. To find a
linear equivariance, one can search a regression vector v in the feature space to predict the scaling factor σ as a
linear combination of the features φi (gσ(I )):2

σ=
d∑

i=1
viφi (gσ(I )) = v ·φ(gσ(I )). (1)

1Similar results were observed with ResNet50.
2For simplicity, we omit the intercept. In Eq. (1), the intercept would be v0 with φ0(gσ(I )) = 1



Figure 1: Overview of the scale analysis. The scale equivariance is analyzed at a given CNN layer (in yellow).
Each data point I projected into this hidden space φ(I ) is associated with its scale ratio r . We represent a
regression plane corresponding to the vector v in two dimensions.

In this scenario, we can represent g ′
σ(·) as a translation matrix in Rd by σ along v, so that g ′

σ(φ(I )) =φ(I )+v·σ.
To approximate g ′

σ(·) and generalize to multiple input images, we consider images of objects that appear
at various scales as shown in Fig. 2, and learn the regression of their corresponding scale ratios as in (1). The
correlation of hidden features with the scale can be evaluated for rescaled versions of an image as in [8]. The
rescaling, however, induces artifacts that can be highly correlated with response maps, as shown in [4, 19].

The approach used to analyze the scale information at a given layer is summarized in Fig. 1 and detailed in
the following. We extract the activations for a set of inputs and spatially average the d response maps to obtain
a d-dimensional feature vector φ(I ) for each input image I . The averaging step is needed to remove locality and
to reduce dimensionality as discussed in [16]. When dealing with flattened final layers, the spatial averaging
does not apply. We also normalize the φ(I )’s to have zero mean and unit variance on each dimension using the
set of regression training data (not to be mistaken with the CNN training data). We then learn the regression

vector v in (1). To this end, we regress a scale ratio which we define as r =
√

hb×wb
hi×wi

, where hb , wb , hi and wi

are the height and width of the object bounding box and of the image. Additionally to the standard residual sum
of squares regression, we use a Lasso (L1 norm minimization) regularization. It is used as a feature selection
to evaluate the regression with a few features. The Lasso optimization function of the linear regression can be
written as the residual sum of squares with L1 penalization as follows.

n∑
j=1

(y j − ŷ j )2 +α
d∑

i=0
|vi |, (2)

where n is the number of training images, y j and ŷ j are the ground truth and predicted scale ratio r , α is the
weight given to the Lasso regularization. Once optimized for a set of training images, the regression is evaluated
on held-out images either from the same class or from another class using the R2 coefficient of determination.
R2 > 0 means that the model is doing better than predicting the mean of the test set, while R2 = 1 represents a
perfect prediction. In the experiments, 220 training images from the albatross ImageNet class (ID: n02058221)
are randomly drawn to regress the scale. Similarly, 220 test images are used as test set either from the same or
from a different class as specified in the experiments.

Examples of images used in the analysis are illustrated in Fig.2. These three classes were selected from the
ImageNet so that images contain a single object and these objects either share similarities across classes (two
types of birds), or are fundamentally different (birds and racing cars).

4 Alignment of Scale Information Along Individual Dimensions

In this section, we consider training and test images of the scale regression of a single class (albatross) as in [4].

4.1 Measuring Alignment

In this section, we evaluate whether the scale information is encoded by individual feature maps or as complex
combinations of several feature maps. The alignment thus refers to scale values varying along a single feature
map. After training the regression model, the regression vector is normalized: v̂ = v

|v| . We then compute the



(a) r = 0.08 (b) r = 0.393 (c) r = 0.724 (d) r = 0.987

(e) r = 0.124 (f) r = 0.389 (g) r = 0.723 (h) r = 0.997

(i) r = 0.124 (j) r = 0.395 (k) r = 0.723 (l) r = 0.970

Figure 2: Examples of images and their respective scale ratio r =
√

hb×wb
hi×wi

. Top row: albatross class; middle
row kite bird class and bottom row: racing car class.

norm of the vector when retaining only a portion d ′ of its d dimensions sorted by their value v̂i . In this paper,
we evaluate the layer mixed8 of InceptionV3 which has d = 1280 feature maps. |v̂1···d ′ | = 1 means that all the
scale information captured by the regression model is contained in the corresponding d ′ feature maps. This
measure reflects how many feature maps (dimensions) are necessary to regress the scale. The first value, for
a single coefficient, is max(v̂), which represents the largest alignment with an individual dimension. In Fig. 3
(’Non-reg’ orange line), we report this contribution of dimensions in the regression of scale. We remind here
that a dimension represents the spatial aggregation (average) of a deep response map.

With the Lasso regression (Fig. 3 ’Lasso reg.’ blue line) the regression vector aligns with few dimensions
(40 out of 1280) while obtaining good generalization to new data. This means that the scale information can be
represented by only a small portion of the response maps.

To complete this analysis of alignment along individual dimensions, we report the prediction performance
of the Lasso scale regression for different values of α (see Eq. (2)), together with the number of non-zero
coefficients in Fig. 4. The coefficient of determination R2 is averaged across 10 runs (for each run, different
splits are randomly drawn for the training and test sets). The results show that a good prediction of scale
is obtained with a few dimensions (feature maps) retained by the Lasso regression. Even when drastically
reducing the number of dimensions up to 1% of the original 1280, a good scale prediction is maintained with
R2 > 0.6. This compares well to the maximum value of 0.874 when using all dimensions. With 70 dimensions,
no significant performance drop is observed as compared to this value. These results suggest that a combination
of 1% of the features linearly encodes the scale information.

Yosinski et al. [6] showed by examples of activations that important features are learned in hidden layers
and are encoded by individual neurons. It is generally referred to as local, as opposed to a representation
distributed across multiple neurons. Our results are in line with previous work that showed the encoding of
complex concepts distributed across response maps [7, 20].



Figure 3: Analysis of the contribution of response
maps for linear regression of scale. The norm
|v̂1···d ′ | of the normalized regression vector is re-
ported for an increasing number d ′ of dimensions
(sorted by decreasing contribution v̂i ). We limit
this analysis to the 200 largest values of v̂i . The
non-regularized regression predicts the scale of
the test data with a coefficient of determination
R2 = 0.874. The regularized Lasso regression is
set to α= 0.001. Only 40 coefficients out of 1280
are non-zero (∼3%) and the scale is predicted on
the test data with R2 = 0.839.

Figure 4: Evaluation of the scale prediction (R2)
of Lasso regression with different values of α.
The model is trained and evaluated on images of
the albatross class. The numbers of non-zero co-
efficients are reported on the x-axis instead of the
corresponding α values (ranging from 0 to 0.01).
The results are averaged across 10 runs and the
95% confidence intervals are reported. For com-
parison, we also report the results on the training
data.

5 Directional Consistency of Scale Regression Across the Data Manifold

The data (ImageNet images here) lie on a complex manifold both at the input and hidden activations levels.
The directions found with the scale regression lie in this space of (pooled) activations. Images from different
classes can be far apart in this space and the question arises of whether learning a scale regression in one
neighborhood (of a given class for instance) will generalize to the rest of the manifold. In other words, can we
find a direction that is constantly equivariant with the scale information across the manifold? To empirically
address this question, we adopt two complementary approaches. First, the generalization of a regression model
trained on images from a given class will be evaluated on images from a different class. Second, the regression
coefficients obtained from different classes will be compared (angle and cosine similarity between vectors).

A point that we have not mentioned yet is that the scale information does not come only from the averaging
operation on response maps (see Section 3). Spatially large objects (i.e. large ratio r ) cover a large region
of the response maps thus resulting in larger averaged values that could be regressed. Note that this is one
of the reasons why we use deep features (mixed8 layer) with large effective receptive fields [21]. If the scale
information, however, was solely contained in the size of the region covered by the object in the response
maps, the regression would not generalize to new classes as different neurons activate for different objects or
parts. We will show that the scale regression is, to some extent, similarly encoded for very different classes,
suggesting that some neurons specifically encode scale information regardless of the object type. We can also
analyze activations at the center of the object instead of a spatial average to get rid of the information contained
in the region covered by the object in the response maps. In practice, we found this difficult to implement as the
center of the object can vary substantially within the bounding box. Besides this, the effective receptive field,
depending on the depth and input image, can be larger or smaller than the object of interest.

5.1 Predicting Scale in Unseen Classes

In this section, we evaluate the generalizability of a scale regression to images from unseen classes (unseen
in the regression training phase). The regression model trained on images of a single class is evaluated on
unseen images coming from a different class using the R2. These results are compared with those obtained on
images of the same class (results in Fig. 4) as reported in Table 1. We report the results for α = 0.001 (for a



Table 1: Comparison of scale prediction within and across classes. The scale regression is trained with Lasso
(α = 0.001) on the training class and evaluated on held-out data of the same or a different class. Average
accuracy across 10 runs and standard deviation are reported.

Training class testing class R2 non-reg. R2 Lasso reg.
albatross albatross 0.843±0.012% 0.839±0.023%

albatross kite 0.672±0.076% 0.745±0.042%

albatross car 0.086±0.240% 0.560±0.069%

(a) test class: kite bird (b) test class: racing car

Figure 5: Evaluation of the scale prediction (R2) of Lasso regression with different values of α. The model
is trained on the albatross class and evaluated on (a) kite bird class and (b) racing car class. The numbers of
non-zero coefficients are reported on the x-axis instead of the corresponding α values (ranging from 0 to 0.01).
The results are averaged across 10 runs and the 95% confidence intervals are reported. For comparison, we also
report the results on the training data.

good compromise between dimensionality reduction and performance), averaged across 10 runs. As mentioned
previously, we train on the albatross class with 220 images and test on one class relatively similar (kite birds,
ID: n01608432, 220 images) and one radically different (racing cars, ID: n04037443 220 images).

In Fig. 5, we report the scale prediction performance in different classes for varying values of α in the Lasso
regression (see Eq. (2)). Unlike the prediction of images of the same class (Fig. 4), the best results are obtained
with Lasso regression when it retains approximately 3% of the regression coefficients (39 out of 1280). The
regression without regularization overfits the training class and does not generalize to new types of objects.

Table 1 and Fig. 5 show that the prediction of scale for images of a different type than the regression training
data is relatively accurate, yet lower than on the same class (R2 = 0.745 and 0.560 vs R2 = 0.839). The prediction
is also better for similar classes (two types of birds) than radically different classes (bird and car). It suggests
some encoding of scale information relatively consistent across the data manifold, with some encoding more
specific to each specific class or group of classes.

5.2 Comparing Regression Coefficients

In this section, we compare regression coefficients between multiple regression models to understand whether
the scale encoding is the same for very different images (i.e. of different classes). For comparison of the
regression vectors, we use the angle and cosine similarity between pairs of vectors. Both measures evaluate
the alignment of two vectors, although the cosine similarity takes into account their magnitude while the angle
does not. The angle, expressed in degrees, is bounded in [0,90]. The cosine similarity is bounded in [0,1] and
is 1 for an angle of 0◦. To obtain a baseline, we first train and compare two regression models on images from
the same class. To evaluate the generalization, we then train and compare models on images from different
classes. In Table 2, we report the angle between the coefficient vectors of different models as well as the
cosine similarity, i.e. for two vectors v1 and v2, v1·v2

‖v1‖‖v2‖ . The angle and cosine similarity are approximately 90°
and 0 respectively when we regress randomly shuffled ratios. In a high-dimensional space, vectors are likely



Table 2: Comparison of regression models trained on several classes using angle and cosine similarity between
vectors in the 1280-d space.

non-reg. Lasso
Train test angle cos. angle cos.

albatross albatross 67.7° 0.410 46.2° 0.66
albatross kite 72.4° 0.315 64.1° 0.414
albatross car 86.7° 0.058 76.9° 0.227

to be orthogonal (angle 90° and cosine similarity of 0). The number of “almost-orthogonal” vectors grows
exponentially with the dimension of the space (here d = 1280). Therefore, even an angle slightly below 90°
and a cosine similarity slightly larger than zero can still reflect similarities in these high-dimensional vectors.
These results further support the hypothesis of scale encoding being common across the data manifold, with
some local encoding specific to different types of objects.

6 Conclusion

This paper proposed an experimental evaluation of scale equivariance inside CNNs. We built on top of our pre-
vious research using bounding-box-to-image ratios to train and evaluate regression models in deep activations.
As an extension, we first showed that the scale information is encoded as a combination of a few response
maps. Indeed, a good scale prediction was obtained when retaining less than 3% of the feature maps. A single
response map, however, is not sufficient to encode scale information. We showed that the concept of scale is
distributed across multiple response maps. As a second main result, we showed that scale information is en-
coded in a relatively consistent way across the data manifold. By learning a scale regression on a set of images
from a given class, we can infer the scale of images from a completely different class. This result explains
the generalization to scale regression in histopathology images from ImageNet pre-trained models in [5]. A
limitation of our analysis is that we have only considered a linear regression. Besides, we considered only three
classes for this exploratory work with a limited number of images.

With a similar approach, this analysis can be performed for other transformations (e.g. rotation) as well as
binary or continuous measures (e.g. presence of a specific object part, first or second-order statistics) of the
input images to understand how CNNs learn to detect and encode various types of information. Understanding
the internal behavior of CNNs, “opening the black-box”, is important to build intuition both for researchers de-
signing or applying new models and end-users who lack understanding of the networks’ behaviors. The benefits
of interpreting deep representations are multiple. Understanding the encoding of scale can help, for instance,
to debug deep models, to modify how scale is compressed and to compare its representation across different
architectures. The analysis equivariance to transformations is important to ensure that the network preserves
important information (not discarding scale if relevant), while evaluating the redundancy of the representation
can be used, for instance, for pruning or compression purposes and ensuring generalization to new data.
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