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ABSTRACT

Hematoxylin and Eosin (H&E) are one of the main tissue stains used in histopathology to discriminate be-
tween nuclei and extracellular material while performing a visual analysis of the tissue. However, histopathology
slides are often characterized by stain color heterogeneity, due to different tissue preparation settings at differ-
ent pathology institutes. Stain color heterogeneity poses challenges for machine learning-based computational
analysis, increasing the difficulty of producing consistent diagnostic results and systems that generalize well. In
other words, it is challenging for a deep learning architecture to generalize on stain color heterogeneous data,
when the data are acquired at several centers, and particularly if test data are from a center not present in the
training data. In this paper, several methods that deal with stain color heterogeneity are compared regarding
their capability to solve center-dependent heterogeneity. Systematic and extensive experimentation is performed
on a normal versus tumor tissue classification problem. Stain color normalization and augmentation procedures
are used while training a convolutional neural networks (CNN) to generalize on unseen data from several cen-
ters. The performance is compared on an internal test set (test data from the same pathology institutes as
the training set) and an external test set (test data from institutes not included in the training set). This also
allows to measure generalization performance. An improved performance is observed when the predictions of the
two best-performed stain color normalization methods with augmentation are aggregated. An average AUC and
F1-score on external test are observed as 0.892± 0.021 and 0.817± 0.032 compared to the baseline 0.860± 0.027
and 0.772 ± 0.024 respectively.

Keywords: Histopathology, stain color heterogeneity, normalization, data augmentation, machine learning,
computational pathology, CNN, generalization

1. INTRODUCTION

Histopathology is increasingly getting digital and with the digitization it is also moving towards computer-
assisted solutions using machine learning on these large images. Visual inspection is currently the clinical
standard in the field. However, computer-aided diagnosis tools can be particularly useful when visual inspection
is time-consuming or when many quantitative parameters are requested to complete a diagnosis. For instance,
analyzing tumor buddings as a prognostic marker in H&E stained images requires extensive visual studies.1 The
diagnostic outcome of a computer-aided system should not be related to color heterogeneity (such as differences
due to center-dependent H&E staining procedures). However, image variability exists due to the variations in
the thickness of the specimen, staining chemicals and properties of digital scanners (as shown in Fig. 1). These
variations are then reflected in the diagnosis, and it is challenging to produce identical diagnostic results of the
same tissue prepared with different pathology settings.2

Providing a correct diagnosis when dealing with stain color heterogeneous data is a challenging research
topic. Various approaches have been developed to homogenize the stain color to generalize computational
analysis.3–8 Deep learning based solutions for various diagnostic tasks in histopathology have been extensively
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Figure 1: Visible stain color heterogeneity when the same tissue slide is scanned by three different scanners (top
row) and zoom in version of the scans (bottom row).

explored.9–12 Stain heterogeneity in digital pathology does not only affect the computational analysis performed
by the research community but it is also a problem for the pathologists when they perform visual analysis on
the whole slide images (for instance in telepathology). Such a problem is highlighted in,13 where extensive
experiments are performed to calibrate display systems using different color filters for H&E staining. In this
study, staining, the thickness of the specimen, scanner and scanning process, viewing software, and displaying
systems were considered responsible for color heterogeneity. The display systems study via the Macbeth color
chart was helpful to calibrate the color of the displays across the entire department to make the visual effects
homogeneous in histopathology data. Stain normalization in histopathology is not new to the digital image
processing domain, especially when it comes to color variation in the image due to incandescent illumination,
where it is essential to bring different images of the same scene to a standardized color distribution. This
problem was already identified in,4 where the authors suggested to transfer the color distribution of data to
the color characteristics of one standard reference image among the data. The experimental results presented
in4 were mostly focused on outdoor scenes; however, due to the simplicity of the method, it has been used for
histopathology slide normalization as well. In,4 the authors presented a method based on the color distribution
model in each channel of the Lab (L is lightness and a,b are color components) color space.

In digital pathology, the digitizing process of histopathlogy slides is quite similar to image acquisition in other
domains. However, digitized slides contain variable microscopic information depending on the magnification used.
In the slide scanning process, the appearance of the stain depends on the intensity absorbed by the tissue and
it further depends on the amount of the stain added to the tissue and its handling and storage methods. The
corresponding optical density describes the linear relationship between the stains and the absorbed intensity in
the tissue for stain normalization using a deconvolution model.3 In this method, the stain colors were estimated
using a singular value decomposition (SVD) matrix. Then, source image values are mapped to the target matching
through linear per channel normalization based on the 99th percentile. Furthermore, the method modifies the
color distribution of both source and target images, which is undesirable in some cases where a suitable reference
image is used to map the characteristics to the rest of the data. In order to overcome the problems faced by
the method presented in,3,4 a non-linear mapping of channel statistics based on the normalization method from
source to target images is introduced in.5 The method was mainly focused on the estimated stain matrix, color
deconvolution, and reconstruction steps. The stain matrix estimation was performed by color classification. In
the color classification, a Relevance Vector Machine (RVM) was trained on the red-green-blue color model. The
significance of the method depends on the robust deconvolution matrix estimation and mapping function. The



color deconvolution separates the variation of each stain to correct it independently. However, the pre-trained
RVM color classifier makes the method unstable in the test cases that deviate from the train cases due to varying
dye color.

In,6 the authors proposed a color standardizing technique for whole slide images by using the color and spatial
information to classify the pixels into stain components. The density and chromatic distribution of the data in
the hue-saturation-density (HSD) color space is aligned with a template slide. However, the performance of the
method in the new data relies on expert opinion about the chosen reference template slide by considering the
color and cellular information into account. In14 a contrast limited adaptive histogram equalization(CLAHE)
method is illustrated, based on intensity centering the model on bringing the color distribution to the center point
within aggregated data. The method avoids the reference and target image statistics. However, the histogram
equalization is limited to the spatial dependency of pixels. In order to preserve the biological structural informa-
tion while performing the color normalization tasks15 presented the structure-preserving color normalization. In
this method, the stain density map was considered as sparse and non-negative. In sparsity, it was assumed that
the biological material occupies exactly one given pixel location but not several. Similarly, the non-negativity
describes that either a biological material is absorbing the light or not, and optical density cannot be negative.
Based on the above assumptions, the color appearance and stained density matrices for both source and target
images were estimated for color transformation.

Stain color normalization techniques can cope with the variability of the stain and the appearance of the
digital histopathology slides for visual observations. The stain heterogeneity is also dealt with when usin machine
learning-based approaches. These techniques focus on generalization improvement in the computational analysis
by considering the features learned along with color information during the normalization process. In this
context, deep convolution feature-aware normalization was presented in.16 The study mainly focused on the
visually relevant deep image features and style transfer. The feature-aware normalization was inspired by batch
normalization17 and long term memory18 mechanisms. The method performed pixel-wise transformation based
on features contained in the plasma or nucleus in the tissue. The color was treated as a form of a style to
integrate into the network by shifting and scaling parameters of batch normalization layers. A pretrained VGG19
architecture mainly performed the features extraction process in both reference and source images. The mean
and variance of the reference image features were used for color normalization by shifting and scaling network
parameters. Similarly,19 normalized the histopathology images by adopting the deep learning model that has
been used on natural scenes colorization.20 ResNet-v3 was used to extract the features from the images, and
then these features were fused with the encoder-decoder model. The model was trained to estimate ab color
values of Lab color space by minimizing the mean squared distance error between actual and estimated values.

In,21 an unsupervised stain normalization method was introduced where the sparse auto-encoders were used
to normalize moving images to a template image. The pixels were clustered by using k-means according to the
respective tissue partitions in the sparse auto encoded feature space. Then, the color distribution of each partition
in the moving data was aligned with its respective color distribution of the template. Finally, a histogram
equalization was performed across the color channels. The method was used on several data sets of various tissue
types with heterogeneity due to their domains or scanners. In digital histopathology, the color normalization
techniques often require the reference image to transfer the color characteristics to the other images. However,22

proposed to use end-to-end generative adversarial networks (GANs) to transfer the stain style by eliminating
the requirement of an expert to choose a reference image. The experimentation was performed on the MITOS-
ATYPIA dataset, which is acquired from the same tissue section with two different scanners.23 The method
mainly consisted of two pairs of generators and discriminator to map the stain style of the images belonging to
one domain to the other. Similarly, GAN architectures were also employed by24 to transfer the stain style from
source to target images. The conditional GANs were trained to learn both color distribution and histopathological
patterns present in the Camelyon16 data set.25 The images from two different centers were normalized to gray-
scale, then a style generator was used to color the gray-scale images again to a standard stain style. Inspired by
style transfer and generative learning methods,26 presented a stain normalization technique by preserving the
structural information. The method avoided relying on a single reference image. The matching was performed
on stain statistics over the entire domain of images. Instead of pixel-level matching, the feature representation of
the images was used to normalize them. The proposed network was divided into stain transfer and task-specific
parts to perform both stain normalization and classification or segmentation tasks simultaneously. The stain



transfer network learned the probability distribution of the images of one domain by minimizing the adversarial
loss function to map the input image to a stain normalized image. In contrast, the task-specific model was used
to maximizing the likelihood of the input image according to a given task. The proposed technique was evaluated
on three data sets of mitosis, colon, and ovary,23,26,27 that contained color variability. Similarly,28,29 used an
adversarial training framework to subtract the features that arise from the origin of the tissue from the features
used to classify the images, showing significant improvements when combined with color augmentation techniques.
Apart from stain transfer and feature-based stain normalization, the generalization in convolution neural networks
for computational pathology can be improved by data augmentation methods. In,30 a data augmentation based
technique was developed to improve the generalization of the convolutional network for histopathology data. Each
patch of the train set was modified in terms of hematoxylin, eosin, and residual channels, then a combination
of rotation, color stain, scaling, elastic deformation, image enhancement, blurring, additive Gaussian noise was
used as data augmentation techniques. Extensive experimentation was conducted to improve the generalization
performance on different data sets of various tissues from multiple centers.31–33 Finally, a recent review34 is
considered a reference for further analyses on various global, supervised, and unsupervised color normalization
methods. This paper focuses on systematic and extensive experimentation of CNN generalization improvement
when dealing with stain color heterogeneous data by minimizing the effects of stain color heterogeneity (mainly
when the data are acquired at different centers). Improving the computer-aided diagnosis system capability to
deal with staining color heterogeneity can foster the development of more reliable algorithms to improve the
quality and reduce the workload of pathologist’s clinical routine.

2. MATERIAL AND METHODS

In this paper, several stain color normalization methods and data augmentation techniques are evaluated using a
convolution neural network classifier to improve the generalization, especially on the external data. The overall
work-flow is shown in Fig. 2 and each of the blocks is described in the following subsections.

Figure 2: The block diagram presents the systematic experimentation approach to improve the generalization
performance on stain heterogeneous data with main steps such as data preparation, stain normalization, data
augmentation and classification of tissue regions with the CNN classifier.

2.1 Dataset

A dataset of 50 whole slide images (WSIs) of lymph node sections of the breast with local annotations of tumor
regions from the CAMELYON 17 challenge is used.25 WSIs were prepared at five pathology centers (10 slides
from each center) and were scanned with three different scanners under pixel resolution of 0.23µm to 0.25µm and



provided in TIFF format. In order to train a CNN classifier, around 500 patches of 224×224 pixels are extracted
from each tumor and normal region of every WSI (see Fig. 3). Then, the extracted patches from all slides are
distributed into training, validation, internal test, and external test sets. In order to evaluate the generalization
performance, this distribution is repeated each time by considering the patches from one pathology center as an
external test set and removing them from all other sets. For extensive generalization evaluation of CNNs, five
sub-data folds are obtained. A few examples of extracted patches from five pathology centers are presented in
Fig. 4, in order to highlight stain color heterogeneity.

Figure 3: Patch extraction process, (a) Whole slide image, (b) segmented tissue mask, (c) annotated tumor
lesions (red) and normal tissue (green) and (d) extracted patches.

Figure 4: Stain color heterogeneity: tumor and normal tissue examples of the five CAMELYON17 pathology
centers.

2.2 Stain Color Normalization

In order to minimize the stain color variations across data, various stain color normalization methods can be
used to homogenize each fold (i.e., train, validation, internal test, and external test sets). The data partitions
in each data fold are normalized to the same stain color distribution as of a template or target image. In this
paper, three stain color normalization methods are evaluated on tumor versus normal tissue classification task.35

Firstly, the histogram specification or matching is evaluated for stain color normalization in our data,7,8 where
histogram of each patch in the data is matched to the histogram of specified target or template image with the
help of cumulative distribution function as given in Eq. 1 and Eq. 2.

cdfsrc(R,G,B)(si) =

i∑
j=0

psrc(R,G,B)(sj) (1)

cdftmp(R,G,B)(ti) =

i∑
j=0

ptmp(R,G,B)(tj) (2)



i is total amount of gray level in each channel of the RGB (Red, Green, Blue) image, cdfsrc(R,G,B)(si) and
cdftmp(R,G,B)(ti) are cumulative distribution functions of each gray level si and ti in source and template image
respectively. Similarly, psrc(R,G,B)(sj) and ptmp(R,G,B)(tj) are representing the probability density function of
each gray level si and ti in source and template image respectively. The probability density functions are
calculated from the histogram of both images, by considering the ratio of the frequency of the gray value to the
total number of pixels in the channel. Finally, ti in the template image is mapped to si in each source image
for a uniform stain color distribution. Similarly, the stain color distribution among all the patches from train,
validation, internal and external tests are specified to a single template image distribution in the RGB channels.

Second, the stain color normalization approach in 3 is evaluated where the normalization is performed in
the H&E channels. All patches from each fold are mapped to a template image by estimating stain colors in
optical density. Singular value decomposition (SVD) is used to get the optimal stain vectors from both input
and template images to perform the linear per channel normalization based on the 99th percentile intensity
values. Third, the stain color normalization of4 is evaluated. The method is mainly based on a color distribution
model in each channel of the Lab color space. Both source and template images are converted from RGB to
Lab. Then mean and standard deviation of each channel of both images are calculated. The color distribution
of the template image is transferred to the source images in the Lab color space by using the calculated mean
and standard deviation as shown in Eq. 3.

Inorm(L,a,b) =

[
Isrc(L,a,b) − µsrc(L,a,b)

]
× stdtmp(L,a,b)

stdsrc(L,a,b) × µtmp(L,a,b)
(3)

Isrc(L,a,b), µsrc(L,a,b) and stdsrc(L,a,b) are the respective channels, mean and standard deviation values of source
image in Lab. Similarly, µtmp(L,a,b) and stdtmp(L,a,b) are representing mean and standard deviation of the
corresponding template image respectively. Finally, the normalized image in Lab Inorm(L,a,b) is converted back
to RGB. Besides the above-mentioned stain color normalization methods, images are also converted to grayscale,
and the grayscale histogram stretched versions are evaluated on the CNN model. Fig. 5 presents a few examples
of the different patches from five centers with color variability, and then the above-mentioned normalization
methods are used for uniform stain color distribution.

2.3 Data Augmentation

We hypothesized that a CNN can generalize to external data by learning more stain color variability. Therefore,
the training samples are augmented in terms of color and stain, along with other symmetric data augmentation
techniques. In order to augment the color variability, the training patches are modified in both the RGB and
the HSV (Hue, Saturation, Value) color spaces by modifying, shuffling and shifting the channels. For RBG
channels, the shifting values are between [-80:80, -45:45, -40:40] whereas the HSV channels are randomly shifted
with a range of [-180:180, -20:20,-27:27]. The brightness and contrast variations are also produced with ranges
between [-1.2:1.2] and [-0.9:0.9], respectively. Various H&E stain variations are produced by rescaling the stain
vectors.3 For the symmetric transformation, images are randomly rotated between [-100:100] degrees and flipped
horizontally and vertically. A few examples of these augmentations are presented in Fig. 6 and Fig. 7.

2.4 Network and Training

In order to classify tumor versus normal tissue in the extracted patches, MobileNetV2 (showm in Fig. 8) is
used.36 The network is extended to two fully connected layers with 256 and 128 neurons. The probabilities of
two classes are obtained with a layer of 2 neurons by using Softmax as an activation function. The network is
pre-trained on ImageNet and then fine-tuned on our data by minimizing the cross-entropy loss with stochastic
gradient descent as optimizer having an initial learning rate of 1 × 10−3 and dropping 50% neuron connections.
The network is trained for 25 epochs with a learning rate halved every five epochs. A best-trained model is
selected based on validation accuracy. This training procedure is repeated five times for each experiment, and
average performance measures are reported.



Figure 5: Stain color normalization, in the first column (a) A target or template image is used to distribute stain
color homogeneously (b) original images with the help of different color normalization methods ((c) Histogram
specification, (d) Macenko, (e) Reinhard ) and also original images were homogenized to (f) gray-scale and (g)
gray-scale histogram stretched images.

Figure 6: An example of data augmentation, on the original images (a) and (e), by (b) RGB channel shuffle, (c)
RGB channel shifting, (d) HSV channel shifting, (f) brightness, contrast, inversion operations on gray version,
(g) RGB inversion and symmetric operations and (h) brightness and contrast operations on RGB.



Figure 7: Stain augmentation, on (a) the original image by obtaining different stain augmented versions from
(b) to (g).

Figure 8: The architecture of aconvolutional neural network (MobileNetV2).

2.5 Evaluation and Statistical Metrics

In order to evaluate the generalization performance of the CNN on an external test set in each data fold, AUC
(area under the receiver operating characteristics curve) and F1-score are used. Each normalization method
with and without augmentation techniques is also evaluated by McNemar’s statistical test applied to the class
predictions.37,38The statistical comparison is performed based on p-value to obtain the most significant stain
color normalization methods with or without augmentation on CNN classification when compare with the baseline
(training of CNN classifier without any stain color normalization). This statistical analysis further helped in the
ensemble process to choose the most significant normalization methods to fuse their probabilities for performance
improvement.

3. RESULTS

An extensive and systematic experimentation approach is followed in each data fold by using normalization and
augmentation techniques as well as their combination. A baseline is trained without any normalization method
in each data fold. To compare the impact of having sample augmentations with each technique, the training
samples are used with and without augmentation. The performance of each stain normalization method, along
with the baseline, is presented in Table 1. The evaluation is based on averaged AUC and F1 score measures along
with a standard deviation of 5 training repetitions with best-validated model weights for internal and external
test sets of each data fold. In order to make the results more interpretive, the average performance scores across
all five data folds for each of the techniques, including baseline are presented in Fig. 9(a)&(b). In the case
of the experimentation without augmentation, the baseline obtained an average AUC across five data folds as
0.866 ± 0.026 and 0.833 ± 0.026 on internal and external test samples, respectively. The corresponding F1 score
is measured as 0.780±0.022 and 0.731±0.051. Among the stain color normalization methods none scored higher
than the baseline when evaluated on an internal test set with AUC. However, the histogram specification and



Reinhard outperformed on external test set with 0.864±0.029, 0.856±0.029 AUC and 0.777±0.032, 0.765±0.026
F1 scores respectively. It is evident from the results that all normalization techniques, including the baseline,
show improved performance when evaluated on internal and external test samples with data augmentation.
This suggests that including data-augmentations in training makes the training of the CNN models more robust
to data heterogeneity. The average AUC across all data folds on the baseline is raised to 0.871 ± 0.027 and
0.860 ± 0.027 with corresponding F1 scores of 0.802 ± 0.025 and 0.772 ± 0.024 on internal and external test
sets, respectively. Reinhard normalization with augmentation outperformed others, including the baseline with
0.878 ± 0.026, 0.877 ± 0.022 AUC, and 0.810 ± 0.023, 0.801 ± 0.024 F1 score in both internal and external test
data respectively. After Reinhard, the histogram specification with data augmentation achieved 0.871 ± 0.022
AUC and a 0.782 ± 0.019 F1 score on the external test set. However, Macenko showed better performance than
histogram specification on the internal test set, with 0.868 ± 0.026 AUC and 0.799 ± 0.023 F1 score.

McNemar’s significance test37,38 is performed to assess the most significant preprocessing settings on the
classification compared to baseline on the obtained results, as shown in Table 1. The test is evaluated on the
combinations of augmentation and normalization methods with their prediction on both internal and external
test sets. The calculated p-values of each technique are presented in Table 1, where the last column contains the
maximum p-value of internal and external test sets. From the statistical evaluation, histogram specification and
Reinhard with and without augmentation on both test sets obtain an average p-value <0.017 at a significance level
of 0.05. Smaller p-values then significance level showed that model on both methods predicted better than others.
Therefore, predictions of both histogram specification and Reinhard are ensembled by fusing their probabilities
through an element-wise multiplication, as shown inf Fig. 9(c).39 Ensemble results on AUC and F1 measures
are shown in Fig. 9(a)&(b). Average ensemble AUC scores without augmentation 0.881 ± 0.029, 0.882 ± 0.024
and with augmentation 0.885±0.025, 0.893±0.022 are obtained on internal and external tests respectively. The
corresponding F1 scores are recorded as 0.822±0.027, 0.795±0.037 and 0.823±0.024, 0.817±0.032 respectively.

4. DISCUSSION

In this paper, the stain color heterogeneity in histopatholgy images was explored by minimizing its effects
on a CNN-based classification task with the help of various stain color normalization techniques and data
augmentation methods. For a combination of stain color normalization and data augmentation methods, a
CNN classifier is trained to classify tumor and normal tissues acquired for the Camelyon17 challenge, containing
heterogeneous stains from five histology centers. The prepared dataset is separated into five folds by considering
each time the images from a center as an external source of patches for an external test evaluation. A baseline
classifier is trained on each fold of data without any stain normalization or augmentation technique. As first
experiments, patches from each fold are normalized in terms of stain color before passing to the CNN classifier
to quantify their performance with the baseline. The stain color is normalized by histogram adaptations, namely
Reinhard and Macenko. The experiments are also performed on grayscale and grayscale histogram stretched
versions. By analyzing the obtained results on the normalization approaches, it is evident that the classifier
performed well on external data when normalized with histogram specification and Reinhard. However, the
Macenko and grayscale enhanced version shows almost identical performance on the external test set. In the
second series of the experiments, the assessed data augmentation techniques are applied to the baseline and
normalization based training. By introducing augmentation in training, we were able to improve the overall
performance of the classifer. However, histogram specification and Reinhard again performed well on the external
test set among other techniques. Then a statistical test is performed to obtain the best normalization methods
along with augmentation to ensemble their probabilities. Where the McNemar’s paired test also validated both
histogram specification and Reinhard with a significance difference from the baseline at the class probability
level. Therefore, in the third series of experiments, the probabilities of both outperformed methods along
with augmentation are fused by element-wise multiplication. Interestingly, the CNN classifier learned different
features on both normalization methods and results are improved on both internal and external test sets when
their probabilities are fused. The best AUC and F1 score on external test are obtained as 0.893 ± 0.022 and
0.817 ± 0.032 respectively. One of the hypotheses was that the CNN classifier can learn better on a pattern
instead of colors. In order to evaluate this hypothesis, the stain color was removed by converting the patches to
grayscale versions. In a few cases the grayscale versions showed better performances. Overall results in the above



Table 1: Experimental results of tumor and normal tissue classification on the internal and external test sets
with different normalization and augmentation techniques using a CNN. The values show the AUC and F1
scores averaged across 5 repetitions with standard deviation between the parenthesis along with p-values (paired
McNemar’s statistical test).

Data Fold Normalization Augmentation
Internal Test set External Test set

p-valueAUC F1-score AUC F1-score

1

Baseline NA 0.847(0.016) 0.765(0.007) 0.860(0.006) 0.766(0.006) -
Histogram Specification NA 0.852(0.015) 0.773(0.018) 0.862(0.014) 0.762(0.031) <0.0001*
Reinhard NA 0.842(0.004) 0.751(0.016) 0.871(0.007) 0.774(0.015) 0.0206*
Macenko NA 0.841(0.005) 0.763(0.010) 0.827(0.021) 0.747(0.025) 0.0019*
Grayscale NA 0.834(0.020) 0.751(0.011) 0.845(0.011) 0.722(0.029) 0.0181*
Grayscale-HS NA 0.840(0.010) 0.773(0.012) 0.839(0.003) 0.765(0.003) 0.6870
Baseline CS,BCS 0.867(0.009) 0.809(0.005) 0.874(0.003) 0.782(0.009) -
Histogram Specification CS,BCS 0.857(0.005) 0.791(0.010) 0.862(0.018) 0.780(0.018) 0.0016*
Reinhard CS,BCS 0.869(0.003) 0.798(0.008) 0.889(0.003) 0.810(0.001) 0.0080*
Macenko CS,BCS 0.874(0.002) 0.819(0.006) 0.854(0.003) 0.787(0.005) 0.0308*
Grayscale BCS 0.855(0.005) 0.748(0.050) 0.842(0.014) 0.710(0.073) <0.0001*
Grayscale-HS BCS 0.850(0.006) 0.777(0.008) 0.844(0.003) 0.772(0.003) 0.1098

2

Baseline NA 0.876(0.010) 0.780(0.017) 0.816(0.009) 0.734(0.010) -
Histogram Specification NA 0.867(0.017) 0.785(0.018) 0.838(0.011) 0.748(0.006) <0.0001*
Reinhard NA 0.861(0.021) 0.775(0.010) 0.823(0.015) 0.746(0.005) <0.0001*
Macenko NA 0.848(0.003) 0.759(0.003) 0.812(0.003) 0.734(0.008) 0.6863
Grayscale NA 0.860(0.003) 0.761(0.023) 0.814(0.005) 0.726(0.014) 0.2538
Grayscale-HS NA 0.855(0.003) 0.743(0.0292) 0.829(0.008) 0.692(0.030) <0.0001*
Baseline CS,BCS 0.876(0.005) 0.795(0.005) 0.834(0.006) 0.751(0.008) -
Histogram Specification CS,BCS 0.866(0.004) 0.785(0.013) 0.852(0.006) 0.751(0.015) 0.1383
Reinhard CS,BCS 0.888(0.006) 0.814(0.005) 0.843(0.002) 0.767(0.001) <0.0001*
Macenko CS,BCS 0.881(0.005) 0.781(0.021) 0.832(0.006) 0.727(0.006) 0.5349
Grayscale BCS 0.868(0.007) 0.776(0.006) 0.843(0.002) 0.761(0.009) 0.0236*
Grayscale-HS BCS 0.863(0.003) 0.772(0.014) 0.844(0.006) 0.755(0.016) 0.4895

3

Baseline NA 0.862(0.006) 0.772(0.015) 0.797(0.013) 0.646(0.023) -
Histogram Specification NA 0.850(0.002) 0.805(0.003) 0.858(0.002) 0.773(0.008) <0.0001*
Reinhard NA 0.853(0.006) 0.777(0.012) 0.860(0.005) 0.745(0.031) <0.0001*
Macenko NA 0.829(0.011) 0.748(0.025) 0.824(0.026) 0.735(0.010) 0.0048*
Grayscale NA 0.847(0.007) 0.760(0.021) 0.828(0.003) 0.731(0.017) 0.5986
Grayscale-HS NA 0.851(0.002) 0.784(0.012) 0.830(0.011) 0.733(0.013) 0.1465
Baseline CS,BCS 0.866(0.003) 0.789(0.013) 0.830(0.011) 0.742(0.003) -
Histogram Specification CS,BCS 0.863(0.001) 0.804(0.008) 0.877(0.006) 0.798(0.003) 0.0090*
Reinhard CS,BCS 0.869(0.002) 0.812(0.004) 0.872(0.004) 0.796(0.001) 0.0001*
Macenko CS,BCS 0.850(0.002) 0.799(0.002) 0.857(0.004) 0.787(0.007) 0.0390*
Grayscale BCS 0.857(0.014) 0.780(0.024) 0.827(0.014) 0.733(0.008) 0.3717
Grayscale-HS BCS 0.851(0.001) 0.797(0.008) 0.838(0.009) 0.757(0.012) 0.6867

4

Baseline NA 0.839(0.010) 0.766(0.009) 0.839(0.028) 0.773(0.017) -
Histogram Specification NA 0.835(0.008) 0.751(0.024) 0.913(0.013) 0.831(0.011) 0.0665
Reinhard NA 0.845(0.011) 0.786(0.011) 0.883(0.013) 0.807(0.006) <0.0001*
Macenko NA 0.810(0.006) 0.717(0.043) 0.867(0.043) 0.782(0.033) 0.0048*
Grayscale NA 0.815(0.018) 0.736(0.048) 0.876(0.007) 0.759(0.045) 0.5986
Grayscale-HS NA 0.833(0.012) 0.739(0.020) 0.898(0.010) 0.806(0.016) 0.1465
Baseline CS,BCS 0.835(0.003) 0.777(0.005) 0.857(0.005) 0.799(0.006) -
Histogram Specification CS,BCS 0.829(0.015) 0.733(0.040) 0.890(0.024) 0.786(0.032) <0.0001*
Reinhard CS,BCS 0.848(0.001) 0.781(0.019) 0.900(0.003) 0.832(0.003) 0.0154*
Macenko CS,BCS 0.834(0.001) 0.771(0.003) 0.870(0.001) 0.812(0.003) 0.1813
Grayscale BCS 0.827(0.009) 0.736(0.033) 0.897(0.016) 0.801(0.004) <0.0001*
Grayscale-HS BCS 0.842(0.010) 0.781(0.009) 0.902(0.034) 0.838(0.040) 0.0998*

5

Baseline NA 0.905(0.005) 0.819(0.002) 0.852(0.014) 0.736(0.052) -
Histogram Specification NA 0.903(0.003) 0.828(0.007) 0.847(0.008) 0.766(0.003) 0.0098*
Reinhard NA 0.920(0.006) 0.849(0.006) 0.841(0.011) 0.752(0.005) 0.0341*
Macenko NA 0.885(0.014) 0.802(0.006) 0.830(0.003) 0.719(0.034) 0.0122*
Grayscale NA 0.887(0.004) 0.808(0.001) 0.728(0.043) 0.550(0.083) 0.1282
Grayscale-HS NA 0.897(0.005) 0.824(0.009) 0.811(0.009) 0.705(0.035) 0.2006
Baseline CS,BCS 0.911(0.004) 0.841(0.007) 0.867(0.008) 0.786(0.005) -
Histogram Specification CS,BCS 0.901(0.002) 0.830(0.003) 0.872(0.021) 0.794(0.021) <0.0001*
Reinhard CS,BCS 0.918(0.007) 0.844(0.005) 0.882(0.002) 0.801(0.007) 0.0660*
Macenko CS,BCS 0.900(0.003) 0.823(0.003) 0.851(0.014) 0.775(0.011) 0.0291*
Grayscale BCS 0.892(0.004) 0.822(0.002) 0.804(0.005) 0.719(0.009) <0.0001*
Grayscale-HS BCS 0.898(0.001) 0.838(0.003) 0.857(0.013) 0.766(0.013) 0.2979

Note: NA: No Augmentation, CS: Color and Stain, BCS: Brightness, Contrast and Symmetric, HS: Histogram Stretched
*p-value<0.05 (paired McNemar’s Test)



Figure 9: Average (a) AUC and (b) F1-score (and standard deviations) across 5 sub-data folds of each stain color
normalization method with augmentation and without augmentation comparing with the baseline individually
as well as the results when (c) ensemble technique is used to fuse two best-performed methods at prediction
level. (Note: A:Augmentation, NA:No Augmentation, HS:Histogram Stretched.)

experiments make evident that the stain colors are important and effect the CNN classification based decisions
along with morphological patterns.

5. CONCLUSIONS AND FUTURE WORK

In this paper, extensive and systematic experimentation is presented to improve the CNN generalization on
heterogeneous H&E stained pathology images for breast tumor versus normal tissue classification tasks. Various
stain color normalization methods, augmentation techniques and combinations of both are investigated while
training the CNN on a stain color heterogeneous dataset. The performance is compared on the test data from
the same pathology institutes of the training set (internal test set) and test data from institutes not included in
the training set (external test set). Experimental results show better performance when stain color normalization
and augmentation are used together on external test samples. However, results further improved when the two
best-performing methods are fused. In future, this work can be extended further to validate the best-performing
methods on other types of tissue with H&E stain color heterogeneity such as colorectal and prostate with the
aim of cancer classification or grading. In present work, normalization is limited to a single template image.
However, in future work several template images can be used to analyze the robustness of the normalization
method as well as by including more normalization techniques to the comparison.
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