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Abstract—Deep learning explainability is often reached by
gradient-based approaches that attribute the network output to
perturbations of the input pixels. However, the relevance of input
pixels may be difficult to relate to relevant image features in
some applications, eg. diagnostic measures in medical imaging.
The framework described in this paper shifts the attribution focus
from pixel values to user-defined concepts. By checking if certain
diagnostic measures are present in the learned representations,
experts can explain and entrust the network output. Being post-
hoc, our method does not alter the network training and can
be easily plugged into the latest state-of-the-art convolutional
networks. This paper presents the main components of the
framework for attribution to concepts, in addition to the in-
troduction of a spatial pooling operation on top of the feature
maps to obtain a solid interpretability analysis. Furthermore,
regularized regression is analyzed as a solution to the regression
overfitting in high-dimensionality latent spaces. The versatility of
the proposed approach is shown by experiments on two medical
applications, namely histopathology and retinopathy, and on one
non-medical task, the task of handwritten digit classification. The
obtained explanations are in line with clinicians’ guidelines and
complementary to widely used visualization tools such as saliency
maps.

Index Terms—Machine learning, Interpretable Al, Image anal-
ysis, Biomedical imaging.

I. INTRODUCTION

D eep Neural Networks (DNNs) operate on raw input
values and internal neural activations that appear rather
incomprehensible to humans [1]. The black-box decision-
making process of DNNs is a limiting factor for their de-
ployment in high-risk daily practices, where end-users are not
necessarily familiar with deep learning [2]-[5]. For example,
a DNN outputting a strong medical diagnosis can motivate
the need for more aggressive treatment, highly impacting the
life of the patient. While physicians can provide the reasons
for a decision in clinical terms, the network output can only
be explained in terms of its internal status. The values of
weights, internal layer activations (latents) and input pixels
are, however, far from the semantics of the physicians, who
focus on affected region size, shape and aspect. Can we align
the two representations? Can we find the representation of a
concept inside the CNN and use it to interpret its relationship
to the network output?

Numerous explainability techniques were developed to gen-
erate heatmaps of salient regions [6], [7]. Most of these
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Fig. 1. Example of concept attribution for a breast cancer classifier. In phase
1, visual concepts are modeled on the basis of well-established guidelines
for cancer diagnosis. In phase 2, this knowledge is used to explain the CNN
trained to automatically diagnose a tumor.

are obtained from the backpropagation of the gradients, for
instance, by checking how individual pixel perturbations affect
the decision. In medical imaging, however, perturbations of
biomarkers are more meaningful than those of individual
pixels. How would the decision change if there was less
stroma in the tissue? What if the nuclei appeared larger
and with less regular texture? Some of these questions were
shown as useful to the clinicians using the image retrieval
system in [8]. The hallmark of concept attribution, compared
to existing explainability tools [1], [9]-[11], is that clinically
relevant measures are directly used to produce explanations
that match the semantics of the end-users. CNN decisions
are explained by directly relating to well-known prognostic
factors and clinical guidelines. This promotes a more intuitive
interaction between the physicians and black-box systems
aiding the diagnosis, with a consequent increase of confidence
in automated support tools [8]. Besides, concept attribution is
a complementary technique to saliency heatmaps [6], [10],
[11], giving concept-based explanations rather than pixel-
based ones.

As a concrete example, one of the applications in this paper
focuses on finding tumorous tissue in histopathology slides, a
tedious operation to perform manually [12], [13]. Clinicians
alternate several zoom-in and zoom-out phases to identify
prognostic factors such as those in the Nottingham system
(NHG), namely a low degree of tubular formation, alterations
in the nuclei morphology and high mitotic activity [14]. Con-
volutional Neural Networks (CNNs) aid the detection process
by suggesting tumorous regions, but are they relying on the
same criteria to distinguish the tissue abnormalities? This can
be investigated by concept attribution as in Figure 1.



In the first step, indicators of nuclei pleomorphism are
modeled as numeric features (top row in Figure 1). For
these features, called concept measures, a relevance score is
computed that explains their importance in the network output.

Since the explanations are sought only in a post-training
phase, our method can potentially be applied to any network
without the need of retraining. The interpretability analysis
can be applied to the latest state-of-the-art models, without
impacting the network performance. Introducing the concept-
based explanations in a computer-assisted tumor localization
pipeline can improve the interaction between clinicians and the
CNN model, for example by explaining why a certain area was
highlighted as tumorous (see Figure 5 in Sec. III-E). Moreover,
this framework can be helpful in a variety of application
fields beyond medicine, as suggested by our experiments
on handwritten digits. Other applications are, for example,
highlighting the causes of eventual faults in assisted driving
or robotic systems. Our primary focus in this paper, however,
is the application in the medical context.

The main contribution of this paper is the formulation of
a framework for concept-based attribution that generates ex-
planations for CNNs decisions. Besides, we address important
limitations of previous works on concept-based explainability
[1], [15], [16]. Our contributions can be summarized as
follows:

1) The framework of concept attribution is defined for
multiclass classification tasks in Sec. III-E.

2) The learning of concepts in the CNN is improved by
removing spatial dependencies of the convolutional fea-
ture maps and introducing regularization. Experimental
results show more accurate RCVs in Sec. IV-D1.

3) The well-known dataset of handwritten digits is added
to the analysis, broadening the applicative focus. The
experiments in Sec. IV-C show that the network outcome
can be explained by characteristics such as digit shape
and extension.

Besides, we test the computational complexity of inter-
preting the network with RCVs and we present an in-depth
discussion about the potential of concept-based explanations
for automated diagnosis systems.

II. RELATED WORK
A. Attribution to features

Several efforts have been made to unify the definition of
deep learning interpretability [2], [3]. Clear distinctions were
made between models that introduce interpretability as a built-
in additional task [4], [17]-[21] and post-hoc methods. While
the former may result in decreased performance on the main
task due to the interpretability constraint, the latter can explain
any machine learning algorithm (including better-than-human
networks [1], [3], [5]) without altering the original perfor-
mance. Several post-hoc techniques [6], [9]-[11] highlight the
most influential set of features in the input space, a technique
known as attribution to features [22]. Given a CNN with
decision function f : IR™ — [0,1] and an input image
x = (21,...,2,) € IR", each a; in the attribution vector
Af(x,x") = (a1,...,a,) € IR" explains the contribution

of each pixel z; to f(x), ¢ = 1,...,n. Such contribution
is computed with respect to a baseline input x’ with neutral
predictions, for example a black image [22]. The attribution
method identifies the pixels responsible for the classification
of the input image, which is then overlayed with a heatmap.
This was successfully applied to the medical field, for example
highlighting the contours of colorectal polyps in [23]. The
explanations generated by feature attribution are only true
for a single input and may change for another data point
of the same class. Such point-wise explanations are called
local explanations [3]. This paper proposes concept-attribution
as a complementary technique to feature attribution. Besides,
concept-based interpretations that hold true for all inputs of
the same class can describe global relationships between input
and outputs known as global explanations.

B. Learning concepts inside CNNs

An important step in concept attribution is the learning of
concepts in the internal activations of CNNs. Concept learning
can be traced back to machine learning theory. Formally, it
is defined as the binary classification problem of inferring a
Boolean-valued function from input examples of the concept
and the relative model output [24]. This was implemented by
Concept Activation Vectors (CAV) to interpret the activations
of CNNs. The main purpose of CAVs was, in fact, to verify
the presence of human-friendly binary concepts (e.g. striped
texture) inside CNNs [1]. Linear classifiers were also used
as probes to interpret neural activations, being inherently
interpretable and thus constituting a baseline of the linear
interpretability of deep networks [1], [15], [25], [26]. The per-
formance of the linear classifier is indicative of how well the
concept is learned in the network representation. Regression
Concept Vectors (RCVs) [15] extended CAVs to model not
only the presence or absence of a concept, but also continuous-
valued measures. These are important in the medical domain
since often the diagnosis is made on the basis of observed
measurements, such as tumor growth or patient history, e.g.
patient age. The applicability of RCVs to tasks with more
than two classes is missing in their original formulation [15],
[26]. This prevents many future applications, for example
on other histological types or medical tasks, e.g. the five-
grades Gleason system for prostate cancer. Among others, this
important limitation is addressed by the framework presented
in this paper.

III. METHODS
A. Notation

We first clarify the notation adopted in the paper. We
consider a neural network of L layers. The function f(x) is the
network output for an input image x. The activation of layer [
is ®!(x). For convolutional layers, ®(x) € IR*"*P_ where
w is the width, A the height and p the number of channels. The
dataset used to train the network on the main task is X;q sk,
which is split into training (X/7%™) and testing (X/°!). Note
that | X;4sx| = N. The set of class labels Yy, is available. In
binary classification problems, y € {0, 1} and f(x) € [0, 1]. In
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Fig. 2. Concept measure selection workflow. End-users such as experts with
knowledge in the application domain are asked to provide a set of questions
that determine the focus of the interpretability analysis. Similarly, domain-
knowledge can be used to identify potential concepts. If a potential concept
is measurable from the images, then this is kept in the analysis. If the concept
is not measurable, CAVs or other approaches can be adopted.

classification problems with classes £k = 1,..., K, y is a K-
dimensional one-hot encoding of the class label, and f(x) is
a K -dimensional vector of the predicted class probabilities. A
set of M images X o cepts, from which it is possible to extract
measures of the concepts, is used to learn the continuous-
valued concepts in the activation space. The set X oncepts can
be either disjoint or overlap with Xy,sx. A list of ) concepts is
considered for the analysis, e.g. {"area”, "contrast”, "ASM”}.
The function ¢;(x) € IR measures the value of the i-th concept
in the list on the input image x. Thus, in the list of functions
{c1(+), ..., co(+)}, each item corresponds to a different concept,
e.g. c; = “area”.

B. From expert knowledge to continuous concepts

The starting point for the concept attribution analysis is the
formulation of concepts of interest as measurable attributes.
This can be done by directly interacting with experts or by
referring to the literature. The interaction between ophthal-
mologists and developers, for example, led to the use of
pre-existent handcrafted features describing the appearance
of retinal vessels in [26]. In addition to this, the existent
guidelines for decision-making are based on many years of
study and joint efforts by many experts to develop well-
established practices, e.g. the TNM and the Nottingham grad-
ing system (NGH) in breast histopathology, the Gleason score
in prostate cancer grading or RECIST for tumor grading in
radiology. Besides, handcrafted visual features are successfully
employed as image descriptors in radiomics [27], [28], eye
fundus analysis [29] and digital pathology [30].

Our framework exploits this kind of prior information to
delimit the focus of the interpretability method, defining a
list of  measurable concepts that should be part of the
interpretability analysis. Concepts are chosen so that specific
questions can be addressed, for instance by following the
workflow in Figure 2. They can be formulated to verify
that domain-knowledge is reflected in the layer activations
of the network. In our example for breast histopathology
in Figure 3, the analysis focus is on validating whether the
network decisions are in line with the guidelines of clinical
practice. A question of interest could be "Is the nuclei shape
relevant to the automatic classification as tumor?”. Prior
expectations on the network behavior can also be validated
(e.g. "Changes in color appearance do not influence the
classification”). The concept measures are computed on a
small set of visual examples (i.e. around 30 images or more)
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Fig. 3. Concept list derived for the breast histopathology application and how
to compute the measures.

that is X oncepts- For nuclei area and texture, that are repre-
sentative of the NGH nuclear pleomorphism, the segmentation
of the nuclei instances in the image can be obtained by either
manual annotations [15] or by automatic segmentation [31].
Nuclei area is expressed as the sum of pixels in the nuclei
contours, whereas the nuclei texture is described by Haralick’s
descriptors such as Angular Second Moment (ASM), contrast
and correlation [32].

Some concepts can be chosen to allow cross-application
analysis, as the general concept of area in handwritten digit
recognition (Sec. IV-C) and in histopathology (Sec. IV-D).
General concepts describing the image such as texture de-
scriptors can be applied in several imaging applications [16].
Other concepts are specific to the type of data being analyzed,
as undefined for some data types. RGB color measures, for
instance, are undefined for single-channel image modalities,
e.g. computed tomography (CT) scans [16]. In addition, the
exhaustive evaluation of all possible concepts is unfeasible. For
this reason, the selection of concepts is an iterative process
that starts from the more general concepts of texture and
appearance and that is then updated with specific requests by
the interaction with experts, as shown by the feedback branch
in Figure 2. Once extracted, the concept measures are used to
explain the network decisions by CAVs or RCVs.

C. Attribution to concepts

The feature attribution problem described in Sec. II-A is
changed into the problem of evaluating the relevance of
each concept to the deep learning classification task. The
interpretability analysis is a post-hoc step that does not need
the retraining of the network parameters. The network being
analyzed is therefore unchanged and it can be replaced at any
time by newer architectures with better performance. A vector
v, representative of the presence or increase of a concept
measure is found in the activation space of a layer. The at-
tribution is changed into A;(®!(x), {ve, }2,) = (a1, ...,a0)

where each a; is the relevance of concept ¢; to f(x) !.

D. Regression Concept Vectors
RCVs are computed using the output of a CNN layer as
input to a regression problem, as illustrated in Figure 4. We

'In the following sections, we drop the subscript 4 for simplicity and we
refer to the vector v, as the RCV for a concept c.
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Fig. 4. The output of the CNN internal layer is used to find the RCVs.
This does not require the retraining of the CNN parameters. In this two-
dimensional example, the RCV is the direction represented by the regression
plane. In higher dimensions, unwanted pixel dependencies are removed by an
aggregating operation of the internal layer representation.

consider the space of the activations of layer I, ®!(x). We
extract ®!(x) for X € X oncepts- We seek the linear regression
that can model the concept ¢(x) as:

c(x) = v, - D' (x) + error (1)

where v, is the RCV for concept c. The RCV components can
be found by applying linear least squares (LLS) estimation
t0 Xconcepts- If | is a dense layer, v. is a p-dimensional
vector in the space of its activations. If [ is a convolutional
layer the output of ®!(x) has spatial and channel dimensions
(height, width, channels) represented as w x h x p. The simplest
way of solving LLS in this space is to flatten ®!(x) to a
one-dimensional array of whp elements as in [1], [15]. The
number of dimensions of the unrolled convolutional maps
may, however, easily grow to millions. Moreover, the 2D
structure of the space is broken by assigning neighboring
features to independent dimensions. In this paper, we apply
spatial aggregation, i.e. global pooling, along the (height,
width) of each feature map to obtain a representation of ®!(x)
as a one-dimensional array of p elements. This solution, only
briefly mentioned in [25], actually improves the quality of the
regression fit by considering the spatial dependencies in the
representations.

A further solution proposed in this paper involves a regu-
larization term that is added to the optimization:

viia9e — argming, (|le(x) — ve® (x)[|3 + A|velld) ()

The penalty term A controls the strength of the regularization.
The larger the )\, the stronger the regularization. The experi-
mental results in this paper compare the two solutions in Eq. 1
and Eq. 2. The RCV represents the direction of the strongest
increase of the concept measures for the concept ¢ and it is
normalized to obtain a unit vector v,.

E. Sensitivity to a concept

The conceptual sensitivity?> S, represents how much the
concept measure affects the network’s output for the input
image x € X,;qsr. The sensitivity to a concept was defined
for binary concepts in [1]. The same formula is applied to
continuous concepts by projecting the derivative on the RCV

2Note that the term conceptual sensitivity was defined in [1] and it does
not refer to the output classification sensitivity commonly known as recall.
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Fig. 5. Integration of patch-wise concept-based explanations in the system
for assisted diagnosis of breast cancer. The explanations are the concept
sensitivities scores for the individual input images. This visualization can help
physicians to understand the reasons for a certain classification rather than
another. Similarly, developers can inspect and debug the model by looking at
misclassification errors and edge-cases.

direction rather than on the CAV direction. For a binary
classification task, S!(x) € IR is defined as the directional
derivative of the network output f(x) over the RCV direction
v., computed as a scalar product (see Eq. 3).
of(x

Se(%) = Ve o q{l(()g) 3)
S!(x) represents the network responsiveness to changes in
the input along the direction of the increasing values of the
concept measures. The sign of S’(x) represents the direction
of change, while its magnitude represents the rate of change.
When moving along the RCV direction, the output f(x) may
either increase (positive conceptual sensitivity), decrease (neg-
ative conceptual sensitivity) or remain unchanged (conceptual
sensitivity equals zero). In a binary classification network with
a single neuron in the decision layer, the decision function is
a logistic regression over the activations of the penultimate
layer. A positive value of the sensitivity to a concept can be
interpreted as an increase of p(y = 1|x) when the represen-
tation ®!(x) is moved towards the direction of the increasing
values of the concept. Negative conceptual sensitivity can be
interpreted as an increase in p(y = 0|x) when the same shift
in the representation is applied. Conceptual sensitivities scores
are informative about the concept influence on the decision for
the single input image (as shown, for example, in Figure 5).
These scores are gathered for all inputs of a class by the
relevance scores in Sec. III-F.

The derivation of the scores for multiclass classification
tasks is straightforward. Given the class label k, we consider
the corresponding k-th neuron in layer L. The neuron acti-
vation before softmax, <I>L’k(x), is a vector of real numbers
representing the raw prediction values. These values are then
squashed by the softmax into a probability distribution, namely
the probability of the label k£ to be assigned to the input
data point x. The conceptual sensitivity score for class & is
computed as:
0Lk (x)

09! (x)

The sensitivity scores can be computed for each class k, thus
obtaining a vector of K elements. Large absolute values of
the conceptual sensitivity for a single class correspond to a
strong impact in the decision function when the activations are
shifted along the direction of the RCV. In both Eq. 3 and 4 the

Si’k(x) =vVv.- 4



derivative of the decision function can be obtained by stopping
gradient backpropagation at the [-th layer of the network.
The computational complexity for a single input data point
is therefore given by the complexity of the backpropagation
operation. In case the backpropagation is done on (L — [)
fully connected layers of input size p and output size d, the
complexity is O((L — 1)dp).

F. Relevance scores

1) TCAV score: The global relevance of a concept can be
computed from the individual sensitivity scores. Previous work
on CAVs [1] proposed the TCAV score as the fraction of k-
class inputs for which the activation vector of layer [ was
positively influenced by concept C*:

{x € X : SbF(x) > 0}
| Xk

where Xy C Xyusx is the set of inputs with label k. The
TCAV score is bounded between zero and one. If there are
no images influencing the decision with a positive gradient,
TCAV is zero. The TCAV score (computed from the concept
sensitivities as in Eq. 5) is used as a baseline for comparison
with the proposed Br scores in our experiments. In the
original paper, however, TCAV was only defined for binary
concepts [1].

2) Bidirectional scores: Bidirectional relevance (B7) scores
were proposed for computing the relevance of concept mea-
sures in a binary classification task of histopathology tissue
in [15]. Br scores are defined as:

Br = R? x (Z) (6)

The coefficient of determination R? < 1 indicates how
well the RCV represents the concept in the internal CNN
activations. It measures whether the concept vector is actually
representative of the concept by evaluating their predictive
performance on unseen data. The coefficient of variation &/
is the standard deviation of the scores over their average. It
describes their relative variation around the mean. Note that R?
evaluates how a concept is present in the internal activations
in the form of a linear correlation between the features and
the concept values. This, however, is not linked to the final
prediction as it does not quantify the influence of the concept
for a specific decision. This information is given by the mean
average of the concept sensitivity scores p in Eq. 6. Br is
large when two conditions are met, namely R? is 1 and the
coefficient of variation is small (the values of the sensitivity
scores lie closely concentrated near their sample mean). Br
explodes, for instance, to infinite if 6 = 0. After computing
Br for multiple concepts, we scale the scores to the range
[-1, 1] by dividing by the maximum absolute value. Such
scaling permits a fair comparison among concepts since these
are represented by different RCVs. With the set of analyzed
concepts being reasonably large, a score close to the absolute
value of one can be considered as large. This means that the

TCAV =

®)

3The TCAV score for concept ¢ is TCAV.. For simplicity, we drop the
subscript ¢ in the rest of the paper for both TCAV and Br.

concept has a considerable impact on the increase (in case of
positive sign) of the outcome probability.

Bidirectional scores were not defined in the previous work
on RCVs for multi-class classification tasks. We present their
extension in the following. Given a concept ¢, the mean and
the standard deviation of the sensitivities are computed on the
set of inputs belonging to the k-th class, Xj. In multiclass
classification, the vector of sensitivities has a value for neuron
m =1,..., K in the decision layer. We use the notation Br}*
to indicate the bidirectional relevance at the m-th neuron of
the decision layer, for inputs belonging to class k. Therefore,
given the set of k-class inputs X = {xz}‘é’{‘ we define the
mean /i' and standard deviation 67" of the sensitivities of the
m-th neuron as in Eq. 7 and 8.

[ X

L 1
' =y 29" (i) )
b X ;
X l,m ~m
g | Xk —1
Brj* is then computed as:
nm
Br" = R? x (“fn) 9)
Tk

Given a concept measure, Br}" represents its relevance in the
classification of inputs belonging to class k& with respect to the
m — th neuron of the decision layer. We can organize the Br
scores in a square matrix B of dimensions K x K:

[ Bri Br]

k
Bry

K K
| Bri Bry |

In the B matrix, the rows correspond to the m-th neuron in
the decision layer. The columns correspond to computing the
input classes (inputs belonging to the k-th class). The elements
on the diagonal (Br,’j) explain the relevance of the concept
measures on test inputs of class k with respect to the neuron
responsible for the classification of this same class.

These can be interpreted as the relevance of the concept
to the correct classification of each class. The off-diagonal
elements measure the relevance of the concept to the soft-
max output of the neurons that are not responsible for the
classification of the true input class k. These values can be
interpreted as the impact on misclassification of increasing
the values of the concept measures. Similarly to the scalar Br
for binary classification, the B matrix can be computed for
multiple concept measures. The individual matrices can then
be concatenated on a third axis to form a tensor with three
axes: (neuron, class, concept). To allow a proper comparison
between the scores for multiple concepts, the third axis can
be scaled in the range [-1,1]*. The computational complexity

4The scaling is performed as a division of the Br for one concept over the
maximum value of the scores for all concepts



of the Br, as for TCAYV, is a function of the number of
samples used to evaluate the sensitivity scores. If only the
testing split is used, the complexity is O(| X /<51 |), which has
to be multiplied by the complexity of computing the sensitivity
scores of each point. Hence the final complexity, for a network
with L fully-connected layers of input size p and output size
d. is O(|X {3k [ (L = D)dp).

3) Alternative scores: TCAV and Br evaluate the influence
of a concept on the model’s decision for all images of an
input class, gathering the information given by the individual
conceptual sensitivity scores. The global concept influence
cannot be explained by the R2, as this evaluates only the
predictive performance of the RCV on test data, giving a
measure of how the RCV is representative of the concept.
The TCAV and Br score add information to the analysis,
by considering different properties of the sensitivity values.
TCAV estimates whether the concept increases the probability
of a class in the decision function. This is done by counting
the number of positive directional derivatives for inputs of
class k and a given concept. Br scores introduce information
about the magnitude and variation of the influence of the
concept measures. Besides, Br scores are informative on the
influence of a concept to the direction of the decision, namely
by showing if the increase of a concept measure results in an
increase or decrease in the likelihood of a specific class.

Different scores can explore other characteristics of the
gradients such as the largest variation of the gradient (i.e.
with a max operation on the directional derivatives) or the
ratio between positive and negative derivatives. One example
is the layer-agnostic metric proposed in [28], which allows
comparing scores across all the network layers.

IV. EXPERIMENTS AND RESULTS
A. Architectures

We use the following architectures in the experiments:

o A multilayer perceptron (MLP) with one hidden layer of
512 nodes is used to introduce the methodology on binary
and multiclass classification tasks. For the former model,
logistic regression and binary cross-entropy loss are used.
For the latter, we introduce an additional hidden layer of
512 nodes and use softmax and categorical cross-entropy.

« For the breast cancer histopathology application, we use
a ResNet101 pretrained on ImageNet [33]. The last layer
of the network is replaced by a single node with a sig-
moid activation for binary classification. High-resolution
patches of tumor regions are distinguished from patches
of nontumor regions”.

o For the retinopathy application, the last layer of Incep-
tionV1 (pretrained on ImageNet) is replaced with a dense
layer with softmax activation, which is fine-tuned for the
classification of three classes, namely normal, pre-plus
and plus [341°.

SWe refer to the first convolutional layer as conv1 and to the merge layers
at the end of residual blocks of increasing depth as res2a, res2b, etc.

OWe refer to the first convolutional layer as convl, and to the filter
concatenation layers of increasing depth as Mixed3b, Mixed4b, etc.

B. Datasets

We report the datasets used for the experiments. We first
introduce the method on the classification of handwritten digits
as a very simple example to explain the concepts. We then
extend the experiments on two medical applications, namely
the classification of tumor patches in histopathology images
and the classification of the plus disease in ROP images.

1) Handwritten digits: The MLP was trained on the dataset
of handwritten digits MNIST [35]. The concept measures
are automatically extracted from the digit images that are
binarized by applying a threshold of 0.5. From the resulting
binary maps, we extract concept measures describing the shape
of the digit, such as eccentricity (deviation of a curve from
circularity), perimeter (length of the digit contour) and area
(number of pixels in the digit). The input images to the
network are the original images and not the binary masks.

2) Breast histopathology: Three datasets are used for the
breast histopathology experiments. Two of them, namely
Camelyon16 and Camelyon17’ are used to fine-tune the de-
cision layer of ResNetl01. More than 40,000 patches at the
highest resolution level are extracted from random locations
of the Whole Slide Images (WSIs) in Camelyon16 and 17 and
used as Xyqs,. We use only the WSIs for which the annotation
of the tumor area is given. Staining normalization and online
data augmentation (random flipping, brightness, saturation and
hue perturbation) are used to reduce the domain shift between
the different centers. A dataset with manual segmentation of
the nuclei [36]® is used to extract the concept measures and
learn the regression. This dataset contains WSIs of several
organs with more than 21,000 annotated nuclei boundaries.
From this data, we select the WSIs of breast tissue, from
which we extract 300 patches which constitute the Xconcepts-
Concept measures describing the morphology of the nuclei
are extracted from the manual segmentation of the nuclei. For
these patches, the labels of tumor or non-tumor regions are
not available.

3) Retinopathy of prematurity: Images from a private
dataset of 4800 de-identified posterior retinal images constitute
the Xy,sx for the application on Retinopathy of Prematurity
(ROP). A commercially available camera was used to capture
the images (namely RetCam; Natus Medical Incorporated,
Pleasanton, CA). A total of 3024 images (1084 for normal;
1074 for pre-plus; 1080 for plus) were used as the training
split X/rain_ The testing split X[¢5! contains 985 samples
(817 for normal; 148 for pre-plus; 20 for plus). The high
class imbalance between plus and normal cases is due to the
fact that ROP is a disease with a low prevalence (only 3%).
The preprocessing pipeline of the images is as in Brown et
al. [37]°. A CNN is used to segment the retinal vasculature.
After segmentation, the images are resized to 224 x 224 pixels
and data augmentation is applied, i.e. right-angle rotations and
horizontal and vertical flipping. Xon.cepts is built by gathering
the samples of class plus and normal from X!7%™ Samples
of class pre-plus represent the transition from normal to plus

Tdownloadable at https: //camelyonl7.grand-challenge.org/

8dataset available at ht tps : //monuseq.grand-challenge.org/Data/

9source code: https://github.com/QTIM-Lab/qtim_ROP



TABLE I
R? AND Br SCORES FOR THE BINARY CLASSIFICATION OF HANDWRITTEN
ZEROS AND ONES.

concept | area  eccentricity  perimeter
R? 0.95 0.91 091
Br -1.0 0.92 -0.92

TCAV 0 1.0 0

and can be excluded from X o cepts to keep the size of this
dataset smaller ttha? X}rain The interpretability analysis is
€es

performed on X% .

C. Experiments on MNIST digits

Experiments on MNIST were performed because it is a
widely studied dataset in computer vision that can be used
as a well-controlled problem to evaluate the principles of our
method and to verify that expected results are obtained. In the
first part of this section, we consider the binary classification
of zero and one digits, a trivial task to show the application
of concept attribution on networks with a single decision
node. In the second part, we extend the application to all
classes, showing the application of multiclass scores and
the comparison with the TCAV baseline. We select two
concept measures that are complementary to each other by
construction, such as count of black pixels (nyqcx) and count
of white pixels (nyhite). These measures are perfectly linearly
correlated since their summation is equal to the total number
of pixels in the image. Hence, in such a controlled experiment
we expect to find two parallel RCVs that point in opposite
directions. As expected, the angle between the two RCVs is
indeed 180 degrees.

We expand the analysis with concept measures of digit
area, perimeter, eccentricity. The distribution of the concept
measures between the zero and ones classes is shown in
Figure 6. In Figure 7, we visualize the t-Distributed Stochastic
Neighbor Embedding (t-SNE) projection of the representations
of the two classes with the corresponding values of the
concept measures for the concept eccentricity [38]. Measures
of eccentricity are larger for inputs of class one. Pearsons’
correlation coefficient between eccentricity and network output
is 0.84 while, for perimeter, it is —0.96 (p-value < 0.0001
for both). The RCVs of eccentricity and perimeter form an
angle of 174 degrees. The R? of the RCVs are 0.91 for
eccentricity, 0.91 for perimeter and 0.95 for area. By contrast,
the regression of an irrelevant concept such as random values
of the concept measures returns non-positive or zero values of
the R2.

The Br scores (second row in Table I) show that an
increase in the eccentricity shifts the prediction towards the
one class, while an increase in the perimeter or area shifts
the decision towards the zero class. The TCAV scores only
identify eccentricity as a relevant concept.

The next experiments show the extension from binary to
multiclass classification, with all digit classes being consid-
ered. The Pearsons’ correlation coefficient between the net-
work neurons and the concept measures is shown in Figure 8.
The R? are 0.86, 0.88, and 0.95 for the RCVs of respectively
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Fig. 6. Distribution plots of the concept measures area, and eccentricity for
the zero and one MNIST digits. Concept measures of perimeter show a close
distribution to the one for area.
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Fig. 7. t-SNE projection of the concept measures for eccentricity on zero and
one inputs from MNIST digits. Best seen in color.

eccentricity, perimeter and area. Relevance scores are com-
puted for the concept eccentricity on a test set of 30 samples.
The B matrix is compared to the confusion matrix in Figure 9.
A comparison with the TCAV baseline is in Figure 10.

D. Experiments on medical data

We report the experiments on breast cancer histopathology
and ROP. This analysis presents additional experiments on: 1)
applying global pooling to ®!(x); 2) evaluating the RCVs with
R? q;» and 3) using ridge regression. These experiments address
the technical limitations of the method in [15]. Moreover,
they prove the applicability of RCVs to multiple architectures,
datasets and tasks.

The accuracy of ResNetlO1 is close to the state-of-the-
art of the challenge, at 92%. More details on the network
training and performance are described in [15]. Six concept
measures, namely area, eccentricity, Euler number, contrast,
Angular Second Moment (ASM) and correlation, are extracted

area
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Fig. 8. Pearsons’ correlation coefficient of the concept measures area,
eccentricity and perimeter and the network logits (p-value< 0.0001). Best
seen in color.



Confusion matrix MNIST Beccentricity

0.80.02 2 1

1 0307 0a-00ffY 1

1 07-060107 1 1
0.2 0.5 2 -0.2-0.5 0.6-0.G

o
Qo
o

S}
—
~
m
<
n
©
~
©
o

1 05005 1 -0.
2 -0.402

2
1
p
1 2 3 4 5 6 7 8
Input class
[

0 200 400 600 800 1000 -1 0 1 2 3

Fig. 9. Confusion matrix and B matrix comparison for the multiclass
classification of MNIST digits. In the B matrix each cell is Br;*. The rows
correspond to the m-th neuronal activation and the columns to input of class
k. Best seen in color.
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Fig. 10. TCAV baseline and Br scores for each class in MNIST digits
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from patches for which manual segmentations of the nuclei
are available (more details in [15]). The concepts are selected
in order to mirror aspects that are considered by the grading
system conventions for breast cancer. The first four rows in
Table II show the R? of the RCVs for the best performing
concepts, namely area, contrast, ASM and correlation. The
concepts eccentricity and Euler are excluded from the re-
maining analysis because they are not learned successfully in
the activation space, as shown in [15]. These concepts were,
in fact, not appropriate to the task. Our method, however,
highlights non-robust concepts by the evaluation of the RCVs.
For instance, both eccentricity and Euler had low R? over
multiple repetitions on validation data, with broad confidence
intervals. The comparison between Br scores and the TCAV
baseline is shown in Table III.

For the ROP application, the input images of the network are
binary masks of the segmentation of the vessels in the retina,
obtained following the pipeline in [39]. Handcrafted visual
features used in state-of-the-art machine learning approaches
for ROP classification [29] are used as concepts. Six concept
measures are selected from 143 handcrafted features of vessel
curvature, tortuosity and dilation, namely curvature mean
(mnCURV), curvature median (mdCURV), avg point diameter
mean (mnAPD), avg segment diameter median (mnASD), cti
mean (mnCTI) and cti median (mdCTI) (more details in [26]).
In our previous work [26], we compute the R? of the RCVs
at different layers in the network only with examples of one
single class at a time. The results for the classes plus and
normal are provided in [26]. In this paper, we combine the
images of class normal and plus in a single set of examples
Xconcept> from which we regress the concept measures. The

TABLE II
IMPACT OF GLOBAL POOLING ON THE R2 OF THE RCVS FOR BREAST
HISTOPATHOLOGY. THE POOLING STRATEGY IS ON THE TOP LEFT OF EACH
BLOCK. THE LABELS IN THE OTHER COLUMNS REFER TO THE CNN
LAYERS, AS IN THE KERAS IMPLEMENTATION OF RESNET50.

no pooling | convl res2a res2b res2c res3a res4a  resSa
area 0.32 0.32 0.36 036 043 0.47 0.46
contrast 0.37 0.36 0.37 034 037 0.45 0.43
ASM 0.28 0.29 0.31 026 038 0.44 0.50
correlation 0.33 0.35 0.32 0.35 0.41 0.42 0.48
max pool convl res2a res2b res2c res3a resda  resSa
area 0.34 0.00 0.10 006 046  0.60 0.60
contrast 0.24 0.0 0.27 0.21 0.33 0.52 0.63
ASM 0.49 0.24 0.28 024 052 0.65 0.70
correlation 0.43 0.19 0.53 054  0.58 0.65 0.64
avg pool convl res2a res2b res2c res3a res4a  resSa
area 0.0 0.0 0.15 024  0.03 0.32 0.52
contrast 0.0 0.0 0.34 0.18 002 042 0.57
ASM 0.0 0.0 0.18 0.39 0.28 0.52 0.62
correlation 0.0 0.0 0.35 034  0.18 0.54 0.62
TABLE III
Br AND TCAV SCORES FOR BREAST HISTOPATHOLOGY
area  contrast ASM  correlation
TCAV | 0.34 0.72 0.05 0.01
Br 0.10 0.27 -0.53 -1

class pre-plus was excluded to keep the size of X oncept O
a smaller size than the whole training set X;qs;. The R? is
shown in Figure 11 (on the left).

In the following, we report the experimental results obtained
by extending the original framework.

1) Global pooling of the features: We compare the results
of the aggregation of the features at the spatial level at different
layers. For the histopathology application, the results of the
regression on the flattened feature vectors are shown in the
first four rows of Table II and compared to the results with
average-pooling and max-pooling (last eight rows).

For the ROP application, the results of max- and average-
pooling are compared to the results without pooling in Table V
and Figure 11.

2) Adjusted R?: The R? is compared to dej, which
penalizes unnecessary variables. The latter shows how much
variation is explained by more than one independent variable
in the regression model. Table IV shows the R? q; Of the RCVs
computed on the pooled features of the first convolutional layer
(convl) for the histopathology application (with 300 samples
and 64-dimensional data). For the other layers of the network,
the dimensionality of ®!(x) is much larger than the number
of samples used to learn the RCV and it is not possible to
consider Ridj a valid statistic. Table V shows the values of
R? q; of the RCVs for the ROP application. Global pooling was
applied to the convolutional filters (max-pooling is shown in
the top rows, average-pooling in the bottom rows).

3) Regularized regression: We introduce the regularization
of the L2 norm of the RCV by using ridge regression. Ta-
bles VI and VII show the R? of vgdg ¢ for the histopathology
and ROP applications. The regularization term A is tuned with
grid-search over the range [0, 105], as shown in Figure 12.

V. DISCUSSION
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TABLE IV
R? AND Ridj FOR BREAST HISTOPATHOLOGY (CONV1)

max pool | area contrast ASM  correlation
R? 0.34 0.24 0.49 0.43
dej 0.16 0.04 0.35 0.28
TABLE V

COMPARISON OF R? AND R,dj? FOR THE ROP CONCEPTS IN [26]. THE
POOLING STRATEGY IS ON THE TOP LEFT OF EACH BLOCK. THE LABELS
OF THE OTHER COLUMNS REFER TO THE LAYERS OF INCEPTION V1 [34]

max pool convl Mixed3b Mixeddb Mixeddc MixedSc
mdCTI R? 0.59 0.66 0.64 0.63 0.67
mdCTI Ridj 0.58 0.66 0.63 0.63 0.66
mnCTIR? 0.49 0.56 0.50 0.47 0.56
mnCTI Ri " 0.48 0.56 0.49 0.46 0.56
mdCURVR 0.65 0.72 0.69 0.67 0.71
deURVRidj 0.64 0.72 0.69 0.67 0.71
mnCURV R? 0.65 0.70 0.61 0.57 0.72
mnCURVdej 0.64 0.70 0.61 0.57 0.71
mnASD R? 0.55 0.66 0.58 0.56 0.64
mnASD dej 0.54 0.65 0.57 0.56 0.64
mdAPD R? 0.69 0.76 0.69 0.66 0.76
mnASD dej 0.68 0.76 0.69 0.65 0.76
avg pool convl Mixed3b Mixeddb Mixed4c MixedSc

mdCTI R? 0.68 0.75 0.70 0.72 0.72
mdCTI Ridj 0.67 0.75 0.71 0.70 0.69
mnCTIR? 0.56 0.63 0.54 0.55 0.56
mnCTIRZdj 0.55 0.62 0.53 0.55 0.56
mdCURV R? 0.62 0.73 0.75 0.76 0.71
mdCURV Ridj 0.61 0.73 0.75 0.76 0.71
mnCURV R? 0.65 0.74 0.68 0.69 0.71
mnCURV Ridj 0.64 0.74 0.68 0.69 0.71
mdASD R? 0.69 0.74 0.67 0.67 0.64
mdASD Ridj 0.68 0.73 0.67 0.67 0.64
mnAPD R2 0.72 0.80 0.76 0.77 0.76
mnAPD R2 . | 071 0.80 0.76 0.77 0.76

The experiments show the versatility of concept attribution
in handling different tasks. The first experiment in Sec. IV-C
analyzes the RCVs in a controlled setting, i.e. the binary
classification of zero and one handwritten digits. As expected,
the RCVs for the complementary pixel counts (when npqck
increases, N hite decreases) are parallel with opposite pointing
directions, forming an angle of 174 degrees. This result reflects
the organization of eccentricity measures in Figure 6, which

TABLE VI
COMPARISON OF UNREGULARIZED AND RIDGE REGRESSION FOR MNAPD
AND MDASD ON ROP. X IS SET TO 10* FOR UNPOOLED FEATURES AND
TO 1 FOR POOLED FEATURES.

Mixed3b, mnAPD | unregularized L2
no pooling 0.54 0.63
avg pooling 0.73 0.81

Mixed3b, mdASD | unregularized L2
no pooling 0.56 0.59
avg pooling 0.65 0.75

TABLE VII

R? OF RIDGE REGRESSION ON HISTOPATHOLOGY APPLICATION WITH
GLOBAL POOLING (A = 102).EACH COLUMN REFERS TO THE LAYERS OF

RESNETSO0.
res3a  resda  resSa
ASM 0.64 0.66 0.71
correlation 0.64 0.67 0.68

is also kept in the latent space as shown in Figure 7. RCVs,
however, seem to more intuitively represent the direction of
increase of the concept measures than the direct visualization
of the latents.

Figure 10 compares Br and TCAV scores for the concept
eccentricity in the classification of the ten digit classes. This is
an additional contribution to [15], where only binary classifica-
tion problems were considered. The Br scores on the diagonal
of the B matrix in Figure 9 show the relevance of the concept

Mixed3b Mixed3b Average Pooling
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Fig. 12. Impact of A\ on the ridge regression with (on the left) and without
(on the right) global average pooling for the ROP concepts as in [26]. The
pooling operation reduces the need for regularization and leads to higher
values of R?. The lines represent respectively dilation (blue and orange lines)
and tortuosity (green line). For clarity reasons, only a subset of ROP concepts
is shown, representing dilation (mnAPD and mdASD) and tortuosity (mnCTI)
as in [26]. Best seen in color.



eccentricity for the output node matching the input class, while
the off-diagonal values consider the nodes that are different
from the input class. These scores can help developers to
analyze the influence of a concept to misclassification errors.

The concept eccentricity, for example, influences the mis-
classification of the inputs of class three. An image of an
eccentric three, i.e. stretched along the vertical axis, is more
likely to be misclassified by the model as a nine, a seven
or a five. This insight can be used to reduce the importance
of eccentricity when classifying this digit, for example by
learning adversarial representations to the concept eccentricity.
Future applications in medical imaging could use this to
introduce concept-based adversarial learning to remove the
influence of the domain-shifts in medical imaging data.

Besides, the extensions to the work in [15], [26] improve the
quality of the RCVs on both medical applications, as shown by
Tables II and V and Figure 11. The pooling operation leads to
more robust RCVs for all concepts, reducing also the need for
regularization (see Table VI and Figure 12). Ridge regression
further improves the R? in both applications. The adjusted
determination coefficients in (Table IV) shows that correlated
variables in the regression should be removed by an additional
dimensionality reduction, further motivating our pooling of the
feature maps. The large size of the ROP dataset, however,
seems to lead to smaller difference between the Rgdj.

Concept attribution can give multiple benefits to automated
decision support tools. Nor the model accuracy nor the AUC
can explain why the CNNs predicts certain region as cancerous
and not another, for example. Conceptual sensitivity scores can
explain, without any need of model retraining, why the CNN
assigns an input image to a certain class. Br scores, moreover,
give a global picture of the influence of clinically relevant
factors on the model decisions. This can reduce the black-
box perception of CNN and promote their integration in daily
practice. The concept-based explanations of different CNNs
could be compared by their Br scores to see if diagnostic
factors have the same relevance in different architectures or
parameter initializations. Physicians could use concept-based
explanations to verify whether the correct prognostic factors
are used for the decision and to inspect if cause-effect links
are maintained in the CNN. Finally, a list of clinical concepts
that the CNN should prioritize can be used in future work
to introduce concept learning as an extra-task. This could
improve the model performance and generalization on unseen
data.

VI. CONCLUSIONS

This paper presents an in-depth analysis of the interpretabil-
ity framework of concept attribution for deep learning, which
is complementary to the widely used heatmaps of salient pix-
els. Differently from previous works [1], [15], [22], concept-
based explanations are used to quantify the contribution of fea-
tures of interest to the network’s decision-making. Physicians
can use this tool to compare their procedures and guidelines
to the network’s internal process and evaluate whether factors
that are generally relevant in their practice are also used
to influence the network decision. Explanations in terms of

pre-existing guidelines in the applicative field can help to
reduce the gap between the representation of the task in
the deep network and in the mind of domain experts. This
method lays at the frontier of medical sciences and computer
scientists, aiming at bridging two different worlds with the
purpose of making the automated solutions of deep learning
more understandable and less intimidating for physicians. Our
framework can be plugged-in on top of an existent network to
verify that prior beliefs are mirrored by the network decisions.
Undesired behavior can be spotted and new hypotheses can
be tested. For example, this method could highlight if the
presence of watermarks and text annotations, often present
in medical images, is affecting the network decision and thus
corrupting the learning process. This, among others, could be
an important check before deploying a CNN for daily practice.

Future developments can automatically extract concepts,
following the line of work of [40], [41]. The optimization
function, moreover, can be further modified to amplify or
reduce the attention given to particular concepts. Adversarial
training can be used to discard information about unwanted
concepts, for example. In addition, a user-evaluation analysis
can be performed to measure the impact of the generated
explanations in the clinical daily-routine.
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