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Abstract. The opaqueness of deep learning limits its deployment in
critical application scenarios such as cancer grading in medical images.
In this paper, a framework for guiding CNN training is built on top of
successful existing techniques of hard parameter sharing, with the main
goal of explicitly introducing expert knowledge in the training objec-
tives. The learning process is guided by identifying concepts that are
relevant or misleading for the task. Relevant concepts are encouraged
to appear in the representation through multi-task learning. Undesired
and misleading concepts are discouraged by a gradient reversal opera-
tion. In this way, a shift in the deep representations can be corrected
to match the clinicians’ assumptions. The application on breast lymph
nodes histopathology data from the Camelyon challenge shows a sig-
nificant increase in the generalization performance on unseen patients
(from 0.839 to 0.864 average AUC, p-value = 0, 0002) when the internal
representations are controlled by prior knowledge regarding the acquisi-
tion center and visual features of the tissue. The code will be shared for
reproducibility on our GitHub repository.

Keywords: human-machine interaction · histopathology · multi-task
learning · adversarial learning

1 Introduction

The analysis of tissue images by Convolutional Neural Networks (CNNs) is an
important part of computer-aided systems for cancer detection, staging and grad-
ing [1,2,3,4]. The learning process is made very challenging by the costly and
rarely pixel-level precise annotations and the heterogeneity of the data acquisi-
tion procedures [2,3]. Domain shifts in the data can cause the learning process
to be biased towards specific acquisition procedures, an unwanted effect that can
be explicitly corrected by adversarial learning [7,8]. Besides, additional objec-
tives can improve the final performance if added as extra tasks in the end-to-end
network framework [17]. The lack of model interpretability, however, makes it
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difficult to interpret the internal mechanisms of CNN decisions, hindering the
formulation of such additional objectives that could be used to guide the learn-
ing process towards solutions that are in line with the clinical guidelines and
requirements. The recently-developed approach of concept attribution [10,11]
generated new possibilities to explore the combination of additional tasks to
guide the learning process. Explanations in terms of clinical factors can be ob-
tained with high versatility [10,11,12,13,14,15], hence easing the interaction of
domain-experts with deep learning models [16].

This paper uses the idea of concept learning in [14] to guide the learning
of specific concepts (e.g. clinical factors) during training. The resulting CNN
is guided to focus on the desired and undesired control targets specified by the
users. Desired control targets specify the concepts (i.e. features in the data) that
should be encouraged to appear in the internal representations. This is obtained
by auxiliary tasks in a multi-task learning setting [17]. The undesired control
targets represent features in the data that should be discouraged during the
training process. A gradient reversal operation [18,19] is added in this case to
obtain invariance to the undesired feature. Physicians, for example, can rank
clinical factors according to their importance for the diagnosis and encourage
their presence in the internal representations. A deep learning framework of this
type can be used to ensure the users that their inductive bias is transferred to
the network, i.e. a similar set of assumptions is used by the user and by the
network to predict unseen inputs. While multi-task learning [17] and adversarial
learning [18] are widely used techniques, fundamental in our contributions is
their combination for steering the learning process. Moreover, the auxiliary tasks
defined to learn the control targets are inherently interpretable, being modeled
as linear regressors [20].

To demonstrate the benefits of this approach, experiments are proposed on a
patch-based classifier of breast tumor tissue, using the data from the Camelyon16
and 17 challenges [21]. The detection of tumor areas from images at a high
magnification level is the first step in the assessment of the TNM degree of
lymph nodes spreading. Prognostic markers for breast cancer, such as those in
the Nottingham grading system [22], are modeled with continuous or categorical
values that can be extracted from the raw images, from segmentation (automatic
or manual) of nuclei contours or the metadata. Introducing such interpretable
features as control targets during network training leads to significantly higher
performance.

2 Methods

2.1 Framework for Control Targeted Training

Our method combines and extends the techniques of adversarial [7,18,19] and
multi-task learning [17]. In this section, we formulate the problem and describe
a general framework that introduces the desired and undesired control targets
as extra tasks. A set of N observations drawn from an unknown underlying
distribution is split into {xi}ni=1 for training and {xi}Ni=n+1 for testing. The main
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task is defined by the prediction of output labels {yi}ni=1, modeled by the loss
Li
y(θf , θy) = Ly(xi, yi; θf , θy), where θf and θy are respectively the parameters

of a neural network feature extractor and of the label prediction output layers as
illustrated in Figure 1a. The user’s control is introduced by K extra branches.
An extra branch with parameters θck (k ∈ 1, . . . ,K) is trained to predict the
feature values {ck,i}Ni=1, with loss Li

ck
(θf , θck) = Lck(xi, ck,i; θf , θck). Training

the model consists of optimizing the function:

E(θy, θf , θc1 , . . . , θcK ) =
1

n

n∑
i=1

Li
y(θf , θy) + λ

K∑
k=1

N∑
i=1

Li
ck

(θf , θck). (1)

The gradient update is:

θf ← θf − λ

(
∂Li

y

∂θf
+

K∑
k=1

αk

∂Li
ck

∂θf

)
, (2)

θy ← θy − λ
∂Li

y

∂θy
, (3)

θck ← θck − λ
∂Li

ck

∂θck
, (4)

where λ ∈ (0, 1] is the global learning rate, αk ∈ R modulates the rate of update
of the parameters θf for the corresponding extra task. A positive αk encourages
the feature extractor to include information about ck, while a negative value
triggers an adversarial competition between the feature extraction and the cor-
responding kth extra branch. Setting αk = 0 does not impact the main task since
it annihilates the contribution of Li

ck
from the update of θf in (2). Finally, the

main task is only trained on the training data, since Li
y = 0 for i > n in Eq. (2)

and (3). The extra tasks, however, are trained on both training and test data4.
The resulting general architecture is shown in Figure 1a.

2.2 From Expert Knowledge to Extra Tasks

Expert knowledge is a valuable source of information about prior beliefs on
the underlying distribution describing the data. In some cases, experts may
prefer encouraging high relevance for specific features to prevent the learning
of misleading correlations in the training data. As an example, the model in [20]
learned to assign a lower risk of death to cases of pneumonia with concurring
asthma than to the general population. A correct diagnosis would have rather
taken the opposite decision. It was the effective care given to these patients to
actually cause the lower risk reported in the data. By introducing user control,

4 The training of the extra tasks on testing data is optional as it is not always possible
to fully retrain a network for new data.
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(a) General framework (b) Histopathology application

Fig. 1. (a) The proposed framework for guiding CNN training. The hyper-parameters
α1, ..., αK are applied to the gradient back-propagation. The signs control the distinc-
tion between desired and undesired control targets. (b) Network architecture for the
proposed application on breast histopathology. The frozen parameters are in gray.
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the model decision could have been fixed to react appropriately to the concurring
symptom.

In several applications, guidelines for manual decision-making have been per-
fected and validated over several years of study, e.g. the TNM and the Not-
tingham system in breast histopathology, the Gleason score in prostate cancer
grading, etc. Even more, valuable work defined informative handcrafted visual
features (e.g [23]) that were employed before the deep learning era and have
recently been used to complement the deep features in fusion approaches [24].

Fig. 2. Possible control targets for breast cancer. D and C stand for continuous and
discrete respectively.

Figure 2 shows examples of prior knowledge on the breast histopathology
application with the respective clinical references. Continuous or discrete values
representing a conceptual description of a phenomenon of interest are extracted
from the images. For example, abnormality in nuclei size is modeled as variations
in the area of the nuclei segmentation at a high magnification level. Nuclei seg-
mentations are automatically extracted by a multi-instance deep segmentation
model as in [25]. Similarly, nuclei density is estimated by counting the number of
nuclei instances in the image (referred to as nuclei count). The Haralick descrip-
tor of texture contrast [23] is also automatically extracted from the input images,
being informative about the overall tissue texture and thus of eventual changes
in the nuclei morphology. Being continuous, these measures are predicted as an
extra-regression task in our framework. Hematoxylin and Eosin (H&E) stains
often differ across different analysis centers, depending, among others, on the
chemical mixture, temperature, etc. A center-adversarial approach can be im-
plemented to obtain staining invariance as proposed in [7,8]. Information about
the center from which images are acquired is often present in the metadata as
in Camelyon17.

The illustration in Figure 1b shows the framework including the main task
with four extra branches. Differently from feature-fusion approaches, additional
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information is not passed to the model as input but as a target for the extra
branches. This procedure is described in [17] as more robust than feature fusion
since possible sources of noise in the features are better handled during training
when added as outputs.

2.3 Datasets

The experiments are conducted on the Camelyon16 and 17 challenge data [21],
which include Whole Slide Images (WSIs) of lymph node sections together with
slide-level annotations and some local segmentations of tumor regions. The WSIs
were prepared at different pathology centers, i.e. five for Camelyon17 (with avail-
able metadata) and two for Camelyon16. From the two datasets, 468 WSIs are
preprocessed by local adaptive thresholding for background removal as in [26].
Patches are uniformly sampled at the highest magnification level from the an-
notated tumor regions for the tumor class. For the non-tumor class, patches are
sampled not only from the annotated images but also from 297 non-tumor WSIs
in Camelyon17. To evaluate the generalization on an unseen patient coming from
an unseen center the last center of Camelyon17 (named LPON in [21] that is
not present in Camelyon16) was kept out from the training and internal test sets
and used for external testing. More information about the training, validation,
internal and external test splits are given in Table 1.

Table 1. Data splits. Patients were randomly selected for validation and test.

tumor patches non-tumor patches patients WSIs

train 18, 268 120, 015 244 459
val 1, 000 820 2 2

internal test 1, 499 1, 215 4 6
external test 500 500 1 1

total 21, 267 122, 550 251 468

2.4 Architectures and Training

An Inception V3 [27] model is used for the experiments as in [26,28]. Four dense
layers5 are placed on top of the Global Average Pooling layer (GAP) to solve
the main task. Early layers are frozen to avoid overfitting, with only the top four
convolutional layers and the four dense layers being updated during training.
The binary cross-entropy loss is minimized for the main task. Class weights are
used during batch-training to deal with the strong class imbalance in the training
data. Four extra branches composed of a single node with linear activations are
connected to the output of the GAP. The hyperparameters for each branch are

5 dense 2048, ReLU, dropout 0.8, dense 512, ReLU, dropout 0.8, dense 256, ReLU,
dropout 0.8, dense 1, sigmoid
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defined as αk (see Eq. (2)). Hyperparameter tuning was performed with a non-
exhaustive search on the validation set, although a finer tuning could have lead
to different values of the αk and results. The extra tasks consist of either linear
regression (of the continuous targets texture contrast, nuclei area, nuclei count)
or classification (of the center labels). In the first case, the target measures are
normalized to zero mean and unit variance and the Mean Squared Error (MSE)
loss is minimized. The center adversarial branch is trained with categorical cross-
entropy (CCE) loss. The network is trained end-to-end with early stopping on
the validation Area Under the ROC Curve (AUC). Since the validation set is not
sufficiently representative of the external test data, the network is left to train
until a plateau is reached for all methods, i.e. for 35 epochs. The performance on
the main task is evaluated by AUC. The performance on the additional tasks is
monitored to ensure that the information in the internal network representation
is modified (although not reported due to space limitations). The evaluation of
the additional tasks is based on the R2 of the regression (in case of MSE loss)
and the prediction accuracy (in case of CCE loss).

3 Experiments and Results

3.1 Individual Encouraging of Control Targets

We evaluate the impact of activating each extra branch individually by setting
a single non-zero αk at a time. The first experiment evaluates the benefit of
including the regression of the contrast (Haralick feature) of the patches as an
extra task with α1 = 10 (all the other αk = 0 for k 6= 1). We then evaluate
the performances for encouraging the nuclei area with α2 = 10, and nuclei
count with α3 = 10. Center-adversarial is trained in a similar way to [7,8], with
α4 = −10 triggering the gradient reversal operation. This task, in particular, is
modeled as a multi-class classification problem with five center labels, namely the
four centers of Camelyon17 used for training, and an additional center grouping
the data from Camelyon16 for which the centers are unknown6. For comparison,
an experiment is run with an additional task of white noise regression solved by
a single node with linear activations on top of the GAP and with α5 = 1. These
five models are tested on both the internal and external test sets. A baseline
model without any active branch is trained for comparison, together with a
model with intensive data augmentation as in [28].

3.2 Joint Multi-Task Adversarial

Experiments are also performed to observe the performance when multiple extra-
tasks are optimized jointly with the main task. We encourage the learning of con-
trast while being center-adversarial by setting α = (α1, . . . , α4) = (10, 0, 0,−1).
For simplicity, we refer to this experiment as contrast-center. Combinations of
desired control targets are then analyzed by encouraging with α = (10, 1, 0, 0)

6 Better performance would be expected with center information in Camelyon16.
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contrast and nuclei count (referred to as contrast+count). The triplet contrast,
nuclei area and nuclei count is then analyzed with α = (10, 5, 1, 0). This com-
bination is called contrast+area+count.

3.3 Results

Fig. 3. Box plot of AUC on ten repetitions on the internal test set. Apart from noise,
our proposed method is significantly higher than the baseline with p-values ≤ 0.05
(one-tailed heteroscedastic t-test).

Figure 3 shows the performance of the networks described in Sections 3.1
and 3.2. The AUC on the internal test set is used for comparison of the results
over ten repetitions with different initializations of the weights. Of the models
with only one extra task (described in Section 3.1), only the performance of
the model with the additional branch encouraging the learning of noise are
not significantly better than the baseline average. This shows that the control
targets analyzed are relevant for the main task more than the introduction of just
random values. The best result on the internal test set is obtained by combining
two additional branches, namely the contrast and the nuclei count. With average
AUC of 0.8640, this model significantly outperforms the baseline (as well as the
baseline with data augmentation) average AUC at 0.8391 with p-value= 0, 0002.
On the external test set (not reported in a figure for brevity), the model with
only the center-adversarial branch outperforms the baseline, with average AUC
of 0.9228 compared to 0.9067 and p-value= 0.00052. Due to the domain shift
of the external test set, this branch is necessary to obtain good performance on
this set. The performance of the model encouraging nuclei-area, for example, is
increased from 0.9076 to 0.9259 when combining with the center-adversarial.

4 Discussion and Conclusion

The central question of this work was whether expert-knowledge can be used
in deep learning to learn more general representations. Prognostic factors can
indeed be modeled as auxiliary and adversarial tasks to jointly train with the
main task of recognition of breast tumor tissue. Each extra-task requires the
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training of only 2, 049 additional parameters, a very little increase from Incep-
tion V3, i.e. 0.008%. Results show that the performance of purely data-driven
models is significantly improved when encouraging the learning of the diagnostic
measures with either single or multiple branches. Generalization on unseen pa-
tients coming from unseen centers is best obtained when the additional tasks are
learned with the domain invariance previously proposed in the literature [7,8].
Domain-adversarial training is unified by our framework as an undesired con-
trol target. Depending on the application, other undesired control targets could
include rotation, scale, image compression methods and presence of watermarks
or text.

From a design perspective, our framework aligns ethically with the intent
of not replacing humans, but rather making them part of the development of
deep learning algorithms. This method could be used, for example, in human-
computer interfaces to introduce user feedback during training. To achieve better
transfer, an adversarial branch on over-specific representations learned from a
different dataset could be removed, contrasting a phenomenon called overlearn-
ing. A limitation of this approach is, however, the need for labeled data to train
the additional branches. While some information can be extracted automatically,
e.g. the nuclei contours for nuclei count, this may not be possible for some types
of control.

Finally, the control target measures automatically extracted from unlabeled
data could be introduced during training as weak supervision. Data augmen-
tation can also be used in combination with the extra branches to generate
augmented images that correspond to the user’s control targets. These last two
will be the focus of our future work.
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