
Proceedings of Machine Learning Research – Under Review:1–11, 2019 Full Paper – MIDL 2019 submission

Exploring local rotation invariance in 3D CNNs with
steerable filters

Vincent Andrearczyk1 Julien Fageot2 Valentin Oreiller1,3

Xavier Montet4 Adrien Depeursinge1,3
1 University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland

2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
3 Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland

4 Hopitaux Universitaires de Genève (HUG), Geneva, Switzerland
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Abstract

Locally Rotation Invariant (LRI) image analysis was shown to be fundamental in many
applications and in particular in medical imaging where local structures of tissues occur
at arbitrary rotations. LRI constituted the cornerstone of several breakthroughs in tex-
ture analysis, including Local Binary Patterns (LBP), Maximum Response 8 (MR8) and
steerable filterbanks. Whereas globally rotation invariant Convolutional Neural Networks
(CNN) were recently proposed, LRI was very little investigated in the context of deep learn-
ing. We use trainable 3D steerable filters in CNNs in order to obtain LRI with directional
sensitivity, i.e. non-isotropic. Pooling across orientation channels after the first convolution
layer releases the constraint on finite rotation groups as assumed in several recent works.
Steerable filters are used to achieve a fine and efficient sampling of 3D rotations. We only
convolve the input volume with a set of Spherical Harmonics (SHs) modulated by trainable
radial supports and directly steer the responses, resulting in a drastic reduction of train-
able parameters and of convolution operations, as well as avoiding approximations due to
interpolation of rotated kernels. The proposed method is evaluated and compared to stan-
dard CNNs on 3D texture datasets including synthetic volumes with rotated patterns and
pulmonary nodule classification in CT. The results show the importance of LRI in CNNs
and the need for a fine rotation sampling.

Keywords: Local rotation invariance, convolutional neural network, steerable filters, 3D
texture

1. Introduction

Convolutional Neural Networks (CNNs) have been used in various studies to analyze tex-
tures. Orderless pooling of feature maps is used to discard the overall shape and layout
information and, thus, describe repetitive and diffuse texture patterns (Andrearczyk and
Whelan, 2016; Cimpoi et al., 2016; Zhang et al., 2016). By construction, CNN architectures
provide translation equivariance, which is particularly adapted to image analysis. This pa-
per focuses on adding local rotation invariance in the CNN architecture, which is known to
be crucial for biomedical applications (Depeursinge and Fageot, 2018).

Globally rotation equivariant/invariant CNNs have recently been extensively studied
using group theory in order to propagate rotation equivariance throughout the network.
The 2D Group equivariant CNNs (G-CNN) introduced in (Cohen and Welling, 2016) uses
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rotated convolutional filters with right angle rotations of the p4 symmetry group. Invariance
is obtained by pooling across orientation channels after the last convolution layer. The
G-CNN was recently extended to 3D images in (Winkels and Cohen, 2018) showing a
performance increase in the analysis of pulmonary nodule detection. 3D G-CNNs were
shown to improve classification of 3D textures (Andrearczyk and Depeursinge, 2018), yet
the results motivated the use of a finer rotation sampling than right angle rotations from the
Octahedral O group to capture realistic arbitrary 3D orientations of directional patterns.
It is important to remark that G-CNNs are adapted to equivariance with respect to finite
subgroups of the rotation group. In 2D, an arbitrary sampling of rotations can be used in
a group equivariant approach, while the number of 3D finite rotation groups is restrained.
The 2D harmonic network (Worrall et al., 2016) and 2D steerable CNN (Weiler et al., 2017)
present similarities with the method proposed in this paper although in the 2D domain and
not particularly designed for texture analysis. Finally, the 3D steerable CNNs (Weiler et al.,
2018) are very general architectures that implement the global equivariance to rotation
on the network, and the convolutional layer considered in this paper is covered by their
characterization. As detailed below, we differ from their works by making an angular max
pooling after the first convolution layer, what exploits the steerability of the filters, and
more importantly, focuses on local invariances.

In the above approaches, global rotation equivariance is maintained all along the layers
(see Fig. 1, left), and invariance is obtained by using orientation pooling at the end of the
network after spatial average pooling. Global rotation invariance is fundamental in various
applications. However, some images are composed of well-defined structures with arbitrary
orientations. For instance, 3D textures observed in Computed Tomography (CT) and in
Magnetic Resonance Imaging (MRI) exhibit diverse tissue alterations, including necrosis,
angiogenesis, fibrosis, or cell proliferation (Gatenby et al., 2013). These alterations induce
imaging signatures such as blobs, intersecting surfaces and curves. These local low-level
patterns are characterized by discriminative directional properties and have arbitrary 3D
orientations, which requires combining directional sensitivity with LRI. However, rotation
invariance is often antagonist with the will of being sensitive to directional features. The
latter is required to avoid mixing blobs, edges and ridges. For instance, a spatial convo-
lutional operator is equivariant to rotations if and only if the filter is isotropic, therefore
insensitive to the directional features of the input signal. It follows that operators combining
LRI and directional sensitivity (i.e. non-isotropic) require using more complex designs such
as MR8 (Varma and Zisserman, 2005), local binary patterns (Ojala et al., 2002), 3D Riesz
wavelets (Dicente Cid et al., 2017) and Spherical Harmonic (SH) invariants (Depeursinge
et al., 2018) widely used in hand-crafted texture analysis (Depeursinge and Fageot, 2018).

In this paper, we exploit the steerability of SHs to obtain a CNN architecture which is
both globally equivariant and locally invariant to rotations (see Fig. 1 for a 2D illustration).
This is achieved with a fine rotation sampling and controlled operator support. The local
support for the rotation invariance is set by the kernel size of the first layer. LRI is then
obtained by pooling across orientations after this first layer. The implementation will be
made publicly available.
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Figure 1: Illustration of global rotation equivariance and LRI in 2D. Rotating local struc-
tures (i.e. three white segments) in the input I results in the input I ′ on the right. The
green dots illustrate the equivariant/invariant responses. Local and global rotations are
shown in red and the local support G of the operator G (see Section 2.1) is represented as
a dashed red line. It is worth noting that our CNN architecture will both present a global
equivariance and a local invariance to rotations. Best viewed in color.

2. Methods

We first introduce the framework in the continuous domain, hence voxel images, filters,
and response maps are functions defined over the continuum R3. The discretization is then
presented in Section 2.4. Spherical coordinates are defined as (ρ, θ, φ) with radius ρ ≥ 0,
elevation angle θ ∈ [0, π], and horizontal plane angle φ ∈ [0, 2π). The set of 3D rotations is
denoted by SO(3). A 3D rotation transformation R can be decomposed as three elementary
rotations around the z, y′ and z′′ axes as R = RαRβRγ , with the (intrinsic) Euler angles
α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 2π) respectively. We will use interchangeably R as a
rotation transformation acting on R3 and on the two-dimensional sphere S2. Finally, the
function x 7→ f(Rx) is denoted by f(R·).

2.1. Equivariant Local Texture Operators

We introduce the class of texture operators of interest that will be used in the first layer of
our neural network. We consider a filter f : R3 → R, whose support G is assumed to be
finite. For an image I and a position x ∈ R3, we define the operator

G{I}(x) = max
R∈SO(3)

|(I ∗ f(R·))(x)| . (1)

The operator combines a convolutional operator together with a max-pooling operation over
the rotations R, and is an example of texture operator as presented in (Depeursinge and
Fageot, 2018). Then, G has the following properties:

• It is globally equivariant to translations and rotations, in the sense that, for any
position x0 ∈ R3 and rotation R0 ∈ SO(3),

G{I(· − x0)} = G{I}(· − x0) and G{I(R0·)} = G{I}(R0·). (2)
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The proof is provided in Appendix A. In particular, if Rx0 is a rotation around x0 ∈
R3, we have that G{I(Rx0 ·)} = G{I}(Rx0 ·), as illustrated on the left part of Fig. 1.

• It is local in the sense that the filter f has a finite support G = {x ∈ R3, ‖x‖ ≤ ρ0}.
As a consequence, G{I}(x) only depends on the values I(y) for ‖y − x‖ ≤ ρ0.

The global equivariance to translations and rotations together with the locality create an
invariance to local rotations (i.e. LRI) in the following sense: the rotation of an object or
localized structure of interest in the image I around a position x does not affect the value
of G{I}(x), as illustrated on the right part of Fig. 1.

2.2. Steerable Filters and Spherical Harmonics

Computing the texture operator (1) requires to maximize over any 3D rotation R for every
position x of the image I, which can be computationally discouraging. To overcome this
issue, we propose to use steerable filters, which have the advantage to allow for fast and
efficient max pooling rotations (Chenouard and Unser, 2012; Fageot et al., 2018). A filter
is steerable if any of its rotated version can be written as a linear combination of finitely
many basis filters (Freeman and Adelson, 1991; Unser and Chenouard, 2013).

We consider filters f that are polar-separable, in the sense that they can be written
as f(ρ, θ, φ) = h(ρ)g(θ, φ) with h : R+ → R and g : S2 → R. One can expand such
steerable polar-separable filters in terms of the family of SHs (Yn,m)n≥0, m∈{−n···n}, where
n is called the degree and m the order, and which form an orthonormal basis for square-
integrable functions g(θ, φ) on S2. We consider finitely many degrees, N ≥ 0 being the
maximal one. In particular, the number of elements of a SH family of maximum degree N
is
∑N

n=0(2n+ 1) = (N + 1)2. The definition of SHs can be found in Appendix B.
The general form of a polar-separable steerable filter with maximal degree N ≥ 0 is

f(ρ, θ, φ) = h(ρ)g(θ, φ) = h(ρ)

N∑
n=0

n∑
m=−n

Cn[m]Yn,m(θ, φ), (3)

where h(ρ) is the radial profile of f and the coefficients Cn[m] determine the angular profile
g(θ, φ). The condition of f being real is translated into the conditions that h itself is real
and that the SH coefficients satisfy Cn[−m] = (−1)mCn[m] (see Appendix C).

For any R ∈ SO(3), the rotated version Yn,m(R·) of a SH can be expressed as

Yn,m(R·) =
n∑

m′=−n
DR,n[m,m′]Yn,m′ . (4)

where the DR,n ∈ C(2n+1)×(2n+1) are the Wigner matrices (Varshalovich et al., 1988). Then,
the steerable filter f can then be rotated efficiently with any R ∈ SO(3) to obtain a set
of steered coefficients CR,n = DR,nCn of f(R·), with Cn = (Cn[m])m∈{−n,...,n}. Then, the
rotated filter f(R·) is given by

f(R·)(ρ, θ, φ) = h(ρ)
N∑
n=0

n∑
m=−n

n∑
m′=−n

DR,n[m,m′]Cn[m′]Yn,m(θ, φ). (5)

From (5), we see that any rotated version of f can be computed from the coefficients
(Cn[m])0≤n≤N,−n≤m≤n.
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2.3. 3D Steerable Convolution and Max Pooling

Exploiting (5), the convolutional operator I ∗ f(R·) in (1) is then computed as

I ∗ f(R·) =
N∑
n=0

n∑
m=−n

(
n∑

m′=−n
DR,n[m,m′]Cn[m′]

)
(I ∗ hYn,m) . (6)

Therefore, one accesses the convolution with any rotated version of f by computing
∑

n(2n+
1) = (N + 1)2 convolutions (I ∗ hYn,m), which we shall exploit for computing the response
map G{I} of the texture operator (1). It is worth noting that the case N = 0 corresponds
to filters f that are isotropic, i.e. f(R·) = f for any R ∈ SO(3) (Depeursinge et al., 2018).
As low degrees (e.g. N = 1, 2) are sufficient to construct small filters (see Section 2.4), the
gain becomes substantial over a G-CNN approach for a fine sampling of orientations with
a drastic reduction of the number of convolutions.

In practice, one has a set of steerable filters fi of the form (3) with radial profiles hi
and coefficients Ci,n[m]. The number of trainable parameters is reduced to the coefficients
Ci,n[m], the radial profiles hi and the biases (one scalar parameter per output channel i).

2.4. Discretization

The radial profiles hi, and hence the filters fi, have a compact spherical support G = {x ∈
R3, ‖x‖ ≤ ρ0}, where ρ0 > 0 is fixed. For any i, we consider the voxelized version of the
radial profile hi(ρ), with the constraint of being isotropic. The size of the support of the
voxelized version is linked to the radius ρ0 of the filter in the continuous domain and the
level of voxelization. Due to the isotropic constraint, for a support of c3 voxels, the number

of trainable parameters for each hi is then
⌈
(c−1)

2 ×
√

3
⌉

+1. The values of the filter fi(ρ, θ, φ)

over the continuum is deduced from the discretization using linear interpolation.
The maximal frequency N cannot be taken arbitrarily large once the radial profiles are

voxelized. Indeed, the discretized filters fi are defined over c3 voxels, which imposes the
restriction that N ≤ πc/4, what can be interpreted as the angular Nyquist frequency.

Figure 2: Illustration of a 2D slice of the
isotropic radial profile hi. The blue voxels
represent the trainable parameters. The
rest of the cube is linearly interpolated.

To sample the rotations, we uniformly sam-
ple points on the sphere using a triangulation
method that iteratively splits octahedron faces
to obtain the (α, β) Euler angles around z and
y′ respectively. We then sample the last angle
γ around z′′ uniformly between 0 and 2π. The
Octahedral group, for instance, is obtained by
sampling 6 points on the sphere (i.e. six (α, β)
pairs) and four values of γ to obtain 24 right an-
gle rotations. In this paper, we evaluate the fol-
lowing sets of rotations: single rotation, Klein’s
four rotations, octahedral 24 rotations and 96
rotations (24 points on the sphere and 4 values
of γ). In the sequel, we denote by M the number
of tested rotations.
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2.5. Datasets

We evaluate the proposed method on two experiments described in the following.
In the first experiment, we built a dataset containing two classes of 500 synthetic volumes

each. The volumes of size 32 × 32 × 32 are generated by placing two 7 × 7 × 7 patterns,
namely a binary segment and a 2D cross with the same norm, at random 3D orientations
and random locations with overlap. The number of patterns per volume is randomly set to
bd( svsp )3c, where sv and sp are the sizes of the volume and of the pattern respectively and the

density d is in the range [0.2, 0.4]. The two classes vary by the proportion of the patterns,
i.e. 10% segments with 90% crosses for the first class and vice versa for the second class.
800 volumes are used for training and the remaining 200 for testing. Despite the simplicity
of this dataset, some variability is introduced by the overlapping patterns and the linear
interpolation of the 3D rotations, making it challenging and more realistic.

The second dataset is a subsample of the American National Lung Screening Trial
(NLST) that was annotated by radiologists at the University Hospitals of Geneva (HUG)
(Martin et al., submitted). The dataset comprises 485 pulmonary nodules from distinct
patients in CT, among which 244 were labeled benign and 241 malignant. We pad or
crop the input volumes (originally ranging from 16 × 16 × 16 to 128 × 128 × 128) to the
size 64 × 64 × 64. We use the balanced training and test splits with 392 and 93 volumes
respectively. Examples of 2D slices of the lung nodules are illustrated in Fig. 3. The
Hounsfield units are clipped in the range [−1000, 400], then normalized with zero mean and
unit variance (using the training mean and variance).

(a) Benign nodule (b) Malignant nodule

Figure 3: 2D slices from 3D volumes of benign and malignant pulmonary nodules.

2.6. Network Architecture

The first layer of the networks is the LRI layer (1). Global average spatial pooling is then
used similarly to (Andrearczyk and Whelan, 2016). This pooling aggregates the locally
invariant texture responses into a single scalar per feature map and is followed by fully
connected layers. For the nodule experiment, we average the responses inside the nodule
masks instead of across the entire feature maps. For the synthetic experiment, we connect
directly the final softmax fully connected layer with a cross-entropy loss. For the second,
more complex experiment, we use an intermediate fully connected layer with 128 neurons
before the same final layer. Standard ReLU activations are employed. The networks are
trained using Adam optimizer with β1 = 0.99 and β2 = 0.9999 and a batch size of 8. Other
task-specific parameters are: for the synthetic experiment (kernel size 7× 7× 7, stride 1, 2
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filters and 50,000 iterations), for the nodule experiment (kernel size 9 × 9 × 9, stride 2, 4
filters and 10,000 iterations).

We refer to the developed architecture as LRI-CNN and compare it to a network with
the same architecture but with a standard 3D convolution layer, referred to as Z3-CNN.

2.7. Weights Initialization

The SHs are normalized to ‖Yn,m‖2 = 1. The coefficients are then randomly initialized
by a normal distribution with V ar[Ci,n[m]] = 2

nin(N+1)2
, where nin is the number of input

channels (generally 1), the radial profiles are initialized to V ar[hi(ρ)] = 1 and the biases to
zero. This initialization is inspired from (He et al., 2015; Weiler et al., 2017) in order to
avoid vanishing and exploding activations and gradients.

3. Experimental Results

The results for the synthetic experiment (3D textures of synthetic rotated patterns) are
summarized in Table 1. Fig. 4 shows a comparison of standard 3D kernels (Z3-CNN) and
SH parametric representations (LRI-CNN).

Table 1: Average accuracy (%) on the synthetic 3D local rotation dataset with N = 2.

model # orient. (M) # filters # param. accuracy±σ

Z3-CNN - 2 694 81.7±4.4

Z3-CNN - 192 66,434 95.9±0.3

LRI-CNN 1 2 40 74.6±3.2

LRI-CNN 4 2 40 85.4±4.7

LRI-CNN 24 2 40 88.2±2.9

LRI-CNN 96 2 40 90.0±1.3

0 1 2 3 4 5
50

60

70

80

ac
c.

LRI-CNN M = 1
Z3-CNN 694 param.

random 50%

24 30 40 54 72 94
N
# param.

Figure 4: Comparison of standard 3D kernels (Z3-CNN) and SH parametric representation
(LRI-CNN) with varying maximum degree N with a single orientation M = 1 (i.e. not
using the steering capacity) on the synthetic 3D local rotation dataset. When N ≥ 2, the
performance of the SH parametric representation is very close to the Z3-CNN while using
15× fewer parameters.

Results for the nodule classification experiment on the pulmonary nodules classification
(NLST) are summarized in Table 2. The results are averaged over 10 repetitions.
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Table 2: Average accuracy (%) on the pulmonary nodule classification with N = 2.

model # orient. (M) # filters # param. accuracy ±σ

Z3-CNN - 4 3,818 80.0±1.7

Z3-CNN - 96 82,754 81.3±2.2

LRI-CNN 1 4 970 76.3±3.8

LRI-CNN 4 4 970 79.0 ±3.0

LRI-CNN 24 4 970 82.3±3.2

4. Discussions and Conclusion

The results on the synthetic dataset (Table 1) show that increasing the number of orientation
channels significantly improves the performance (74.6% with a single orientation vs 90.0%
with 96 orientations) and outperforms a standard Z3-CNN with the same number of filters
(81.7%). Despite the increased number of orientation channels, the number of trainable
parameters remains extremely low (40 parameters). Note that using data augmentation with
random rotations of the training samples would not help the Z3-CNN as its architecture is
simply inappropriate for LRI and patterns are already present at many random orientations
in the training set. Adding more filters to the Z3-CNN (2× 96 = 192 filters) allows to learn
filters at different orientations and achieves 95.9% accuracy, at the heavy cost of parameters
and convolution operations. As shown in Fig. 4 with a single orientation channel, i.e.
without using the steering capacity, the degree N = 0 of the SH cannot differentiate well
patterns (63.9% accuracy) as it is isotropic. The performance then increases with N and
nearly reaches the standard Z3-CNN accuracy for N ≥ 2 with a significantly lower number
of parameters, underlining the compression power of the parametric SH representation.

Note that LRI can be obtained with a G-CNN implementation (Cohen and Welling,
2016) by pooling across orientation channels after the first layer, yet it is limited to M=24
and requires to convolve the input with every rotated filter.

The results on the pulmonary nodule classification experiment (see Table 2) confirm
the importance of LRI and of the proposed approach in a real medical imaging application.
The improvement using the SH convolution is limited due to the lack of directional texture
patterns in the data. Yet, a significant increase in accuracy is obtained with the LRI-CNN
as well as a reduction of trainable parameters by a factor of four.

In conclusion, we developed a 3D LRI convolutional network using steerable filters. The
main benefits are the low number of trainable parameters, the limited number of convolu-
tions as we only convolve with the limited set of SHs and steer the responses for an arbitrary
number of rotations, and the exactness of the steerability, avoiding approximation for ker-
nel rotations. The results on synthetic 3D textures and 3D pulmonary nodule classification
confirmed the importance of LRI with directionally sensitive steerable filters and the com-
pression power of the proposed approach. In future work, we will look into finding the
maximum orientation responses and/or powerful invariant descriptors without recombining
the responses for all orientations which is a current bottleneck for memory consumption on
the GPUs. We will also explore the benefit and cost of using non-polar-separable filters.
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Appendix A. Equivariant Texture Operator

We prove the following result.

Proposition 1 A texture operator of the form (1) is equivariant to translations and rota-
tions in the sense of (2).
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Proof The equivariance to translations uses that (I(· − x0) ∗ g)(x) = (I ∗ g)(x − x0).
Applying this to g = f(R·), we deduce

G{I(· − x0)}(x) = max
R∈SO(3)

|(I ∗ f(R·))(x− x0)| = G{I}(x− x0), (7)

as expected. For the rotation, we use (I(R0·) ∗ g)(x) = (I ∗ g(R−10 ·))(R0x) applied to
g = f(R·), to deduce

G{I(R0·)}(x) = max
R∈SO(3)

|(I ∗ f(RR−10 ·))(R0x)| = max
R∈SO(3)

|(I ∗ f(R·))(R0x)| = G{I}(R0x),

(8)
where the second equality simply exploits that RR−10 describes the complete space SO(3)
of 3D rotations when R varies.

We remark that the equivariance to translations is simply due to the use of the con-
volution, while the equivariance to rotations requires the presence of the pooling over 3D
rotations in (1).

Appendix B. Spherical Harmonics

The family of SHs is denoted by (Yn,m)n≥0,m∈{−n,...,n}, where n is called the degree and m
the order of Yn,m. SHs form an orthonormal basis for square-integrable functions in the
2D-sphere S2. They are defined as (Driscoll and Healy, 1994)

Yn,m(θ, φ) = An,mPn,|m|(cos(θ))ejmφ, (9)

with An,m = (−1)(m+|m|)/2
(
2n+1
4π

(n−|m|)!
(n+|m|)!

)1/2
a normalization constant and Pn,|m| the asso-

ciated Legendre polynomial given for 0 ≤ m ≤ n by (Abramowitz and Stegun, 1964).

Pn,m(x) :=
(−1)m

2nn!
(1− x2)m/2 dn+m

dxn+m
(x2 − 1)n. (10)

Appendix C. Real Steerable Filters

A filter f is real if f(ρ, θ, φ) = f(ρ, θ, φ) for every (ρ, θ, φ). For filters given by (3), this
means that

h(ρ)
∑
n,m

Cn[m]Yn,m(θ, φ) = h(ρ)
∑
n,m

Cn[m]Yn,m(θ, φ), (11)

We use the symmetry of the spherical harmonics, Yn,m = (−1)mYn,−m, on the left-hand
side and change the sign of m on the right-hand side to get∑

n,m

h(ρ)Cn[m](−1)mYn,−m(θ, φ) =
∑
n,m

h(ρ)Cn[−m]Yn,−m(θ, φ), (12)

The Yn,m being linearly independent, we deduce that the filter is real if and only if, for any

ρ, n,m, h(ρ)Cn[m](−1)m = h(ρ)Cn[−m]. By imposing that h is real, i.e., h = h, we obtain
the expected criterion on the Cn[m] coefficients, which is

Cn[−m] = (−1)mCn[m], (13)

11


	Introduction
	Methods
	Equivariant Local Texture Operators
	Steerable Filters and Spherical Harmonics
	3D Steerable Convolution and Max Pooling
	Discretization
	Datasets
	Network Architecture
	Weights Initialization

	Experimental Results
	Discussions and Conclusion
	Equivariant Texture Operator
	Spherical Harmonics
	Real Steerable Filters

