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A B S T R A C T

The locality and spatial field of view of image operators have played a major role in image analysis, from hand-
crafted to deep learning methods. In Convolutional Neural Networks (CNNs), the field of view is traditionally
set to very small values (e.g. 3 × 3 pixels) for individual kernels and grown throughout the network by
cascading layers. Automatically learning or adapting the best spatial support of the kernels can be done
by using large kernels. Due to the computation requirements of standard CNN architectures, this has been
little investigated in the literature. However, if large receptive fields are needed to capture wider contextual
information on a given task, it could be learned from the data. Obtaining an optimal receptive field with
few layers is very relevant in applications with a limited amount of annotated training data, e.g. in medical
imaging.

We show that CNNs (2D U-Nets) with large kernels outperform similar models with standard small kernels
on the task of nuclei segmentation in histopathology images. We observe that the large kernels mostly capture
low-frequency information, which motivates the need for large kernels and their efficient compression via the
Discrete Cosine Transform (DCT). Following this idea, we develop a U-Net model with wide and compressed
DCT kernels that leads to similar performance and trends to the standard U-Net, with reduced complexity.
Visualizations of the kernels in the spatial and frequency domains, as well as the effective receptive fields,
provide insights into the models’ behaviors and the learned features.
1. Introduction

Descriptors localized in space, i.e. defined by a limited spatial
support, have been extensively used in computer vision [1]: e.g. filter
banks [2], wavelets [3], Local Binary Patterns (LBP) [4]. In Convo-
lutional Neural Networks (CNN), the receptive fields (equivalent to
the spatial support) of the neurons grow throughout the network and
are manually designed (i.e. hardcoded) by kernel sizes and pooling
operations. Small kernels (e.g. 3 × 3) are commonly used in deep
learning [5,6] due to the quick increase (quadratic or cubic growth
in 2D/3D, respectively) of trainable parameters as well as number of
operations for computing the convolution when the size increases. Re-
cent literature suggested that large kernels may, however, be important
and that cascading small kernels do not empower the network to learn
all types of discriminative features [7,8]. In [9], the authors show that
a large kernel design requires fewer layers to obtain large Effective
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Receptive Fields (ERF). An extension to 3D kernels, in which depth-wise
convolutions are ineffective, is proposed in [10] with spatial-wise par-
tition convolutions. Other relevant works on the importance of kernel
size include the application to super-resolution [11], the proposition
of a trainable kernel size in [12], deformable convolutions [13] and
deformable kernels [14].

Recently, kernels with parametric representations have been used in
deep learning, e.g. Discrete Cosine Transform (DCT) [15–18], Circular
Harmonics (CH) [19,20] in 2D, and Spherical Harmonics (SH) [21,
22] in 3D. These architectures can provide, among others, a built-
in equivariance to input transformations and a reduction of trainable
parameters.

More recently, Vision Transformers (ViT), with long-term spatial
dependencies, have obtained state-of-the-art results in various tasks in
computer vision. Based on ViT, the Global Filter Network (GFNet) pro-
posed in [23] learns long-range spatial dependencies in the frequency
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domain with log-linear complexity. CNNs are not designed to capture
long-range dependencies between different image regions. Although
very long-range dependencies may not be required for all imaging tasks,
an optimal locality can be beneficial. For instance, nuclei segmentation
may require a receptive field of approximately the nucleus size. Besides,
CNNs tend to outperform ViTs in low data regimes (unless intensive
pre-training is used) [24].

The use of DCT compression of large CNN kernels has the po-
tential to reduce the computational complexity and speed up model
convergence, yet has not been investigated in the literature. In this
paper, we investigate the value and influence of large kernels in CNNs
and their compression by DCT for the segmentation of multi-organ
nuclei in histopathology images. This task is particularly suited for the
evaluation of the proposed models for two reasons. (i) We expect a
medium-sized optimal receptive field, up to the size of the nucleus;
and (b) the limited amount of data requires fast convergence and
low computational complexity. CNNs are computationally expensive,
require a lot of training data, and are complex to interpret (often
referred to as ‘‘black boxes’’) due to the repeated cascading operations
including convolutions and pooling operations. The large parametric
kernels with DCT compression with a small number of layers help to
reduce the complexity, fasten the convergence, and better understand
the inner mechanism of the models.

The structure of the paper is as follows. The proposed architecture
and DCT-compressed wide kernels as well as the dataset, methods
and metrics for nuclei segmentation in histopathological images are
introduced in Section 2. The results obtained with varying kernel sizes
and the impact of DCT convolutions are presented in Section 3, together
with spectral and spatial visualizations of the learned kernels. Finally,
discussions and a conclusion are proposed in Section 4.

2. Methods

We first introduce the general segmentation architecture, training
and postprocessing in Section 2.1. DCT-compressed kernels and the
corresponding proposed convolutional layer are detailed in Sections 2.2
and 2.3, respectively. The dataset of histopathological images with the
annotated nuclei is detailed in Section 2.4 and evaluation metrics are
explained in Section 2.5.

2.1. Network architecture and training

Following [25], we use a light-weight U-Net [26] which contains
two down-sampling levels with standard shortcut connections between
the encoder and decoder layers. The architecture is illustrated in Fig. 1.
The encoder path includes a first stem convolution as suggested in [7],
followed by two convolutional layers with 2 × 2 max-pooling to reduce
the spatial dimension and another convolution at the bottleneck. The
numbers of feature maps for these layers are 8 (stem), 32, 64 and 64.
The decoder path contains two convolutional layers, both preceded by
a 2 × 2 bi-linear upsampling. The convolutional layers use a kernel size
of 5 × 5, except for the layer after the stem for which we vary the kernel
size from 5 × 5 to 21 × 21. We use wide kernels only in the first layer to
quickly achieve large receptive fields in the first level of the U-Net. The
convolutional layers are also connected to a batch normalization layer
followed by a ReLU activation. The output segmentation prediction
is encoded in the final layer by a 1 × 1 convolution with softmax
activation. The prediction is modeled as a three classes probability,
namely nucleus core, nucleus border, and background.

The output of the U-Net is post-processed to obtain an instance
segmentation of each nucleus. This post-processing consists in taking
the maximum of the three prediction probabilities, then using the
2

core and border predictions as seed and landscape respectively for a
watershed algorithm3 [27]. The borders are thus only used for this
watershed algorithm and the post-processed predictions are binary,
namely nucleus and background. The evaluation metrics are computed
on these binary post-processed predictions. An example of a pre- and
post-processed prediction is illustrated in Fig. 2.

The U-Net models are optimized with an Adam optimizer to mini-
mize the class-balanced cross-entropy at an initial learning rate of 10−3.

he models are trained on patches randomly cropped from the training
et with a batch size of 16. Without padding, convolving with large
ernels results in smaller output maps which limits the computation
f the loss. To maintain the output size constant for different kernel
izes, we vary the size of the patches from 64 × 64 pixels for the
mallest 5 × 5 kernels to 80 × 80 for the largest 21 × 21 pixels.
his operation is equivalent to padding the images for the convolution
perations with values taken from neighboring regions of the crop,
ather than using zero-padding or other methods. In addition to this
andom cropping, data augmentation is performed by random 90◦

otation and random brightness shift. The training is conducted for a
aximum of 200 epochs, with early stopping based on the validation
1-score (see Section 2.5). The experiments are performed on a Nvidia
100. The code for the implementation is available on our GitHub.4

.2. DCT-compressed kernels

We consider 2D images as functions 𝐼 ∈ 𝐿2(R2), where each 𝐼(𝒙) ∈
represents the pixel intensity at a location 𝒙 = (𝑥1, 𝑥2) ∈ R2.
A DCT kernel 𝑓DCT ∈ R𝑘×𝑘 is defined in the discretized spatial

oordinates 𝒙 = [𝑥1, 𝑥2] for a maximal degree 𝑁 as

DCT(𝒙) =
𝑁−1
∑

𝑛1=0

𝑁−1
∑

𝑛2=0
𝑤𝑛1 ,𝑛2𝜓𝑛1 ,𝑛2 (𝒙), (1)

ith coefficients 𝑤𝑛1 ,𝑛2 ∈ R, frequencies 𝑛1, 𝑛2. The DCT functions
𝑛1 ,𝑛2 ∈ R𝑘×𝑘 are 𝐿1-normalized.

𝑛1 ,𝑛2 =
𝜙𝑛1,𝑛2

‖

‖

𝜙𝑛1,𝑛2‖‖
, (2)

where 𝜙𝑛1 ,𝑛2 are the orthogonal basis functions defined as

𝜙𝑛1 ,𝑛2 (𝑥1, 𝑥2) = cos
[ 𝜋
𝑁

(

𝑛1 +
1
2

)

𝑥1
]

cos
[ 𝜋
𝑁

(

𝑛2 +
1
2

)

𝑥2
]

. (3)

Using DCT compressed kernels offers several advantages. Firstly,
it significantly reduces the number of parameters needed to define a
kernel compared to standard 2D kernels. In particular, it provides an or-
thogonal low-pass approximations of non-parametric CNN kernels. This
reduction of parameters is specifically obtained by truncation of the
expansion [17]. This makes it a valuable tool that has long been used
for image compression. Additionally, the linearity of DCT compressed
kernels in Eq. (1) can be efficiently exploited for the convolutions. Once
the input is convolved with the family of DCT functions 𝜓𝑛1 ,𝑛2 , any
kernel can be reconstructed (i.e. learned) using a linear recombination
of their response maps. This obviates the need to re-convolve with large
kernels, as shown in Eq. (4).

These two properties constitute important advantages for learning
wide kernels and efficiently computing their responses to a given input.

2.3. DCT convolutional layer

After evaluating a standard U-Net with varying kernel sizes (as
described in the previous section), we replace the first convolutional
layer with a DCT convolutional layer. The latter is implemented by
convolving the input feature maps with the family of DCT functions

3 docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.watershed_
ft.html, as of March 2023.

4 https://github.com/vandrearczyk/2d_wide_dct_cnn, Oct. 2023.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.watershed_ift.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.watershed_ift.html
https://github.com/vandrearczyk/2d_wide_dct_cnn
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Fig. 1. The architecture of the light-weight U-Net with varying kernel sizes. The kernel size is varied in the second convolutional layer after the stem layer. The size of the input
patch is varied based on the kernel size to obtain a constant 60 × 60 size after this second layer without artificial padding.
Fig. 2. Example of a wide-kernel (k = 21) U-Net prediction. The 𝐹1-score on this patch
is 0.75. Individual colors are used in the top row for each nucleus instance. The U-Net
softmax predictions are illustrated in the second row. The predictions post-processed
with the watershed algorithm are illustrated on the top row between the input and
the ground truth images. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(Eqs. (2) and (3)). These basis kernels are illustrated in Fig. 3. We
fix the maximum frequency 𝑁 ∈ [0, 𝑘], with 𝑘 the kernel size of
the convolution kernel. The inputs are thus convolved with the 𝑁2

basis functions. The response maps (𝐼 ∗ 𝜓𝑛1 ,𝑛2 ) are then recombined
using trainable coefficients 𝑤𝑛1 ,𝑛2 ,𝑖 (see Section 2.2) for each output
feature map (i.e. channel) ℎ𝑖(𝒙). This process of convolution followed
by recombination is equivalent to convolving the inputs with kernels
𝑓𝐷𝐶𝑇 ,𝑖 as defined in Eq. (1). We have

ℎ𝑖(𝒙) = (𝐼 ∗ 𝑓𝐷𝐶𝑇 ,𝑖)(𝒙)

=
∑

𝑛1 ,𝑛2

𝑤𝑛1 ,𝑛2 ,𝑖 (𝐼 ∗ 𝜓𝑛1 ,𝑛2 )(𝒙) (4)

= 𝐼(𝒙) ∗
∑

𝑛1 ,𝑛2

𝑤𝑛1 ,𝑛2 ,𝑖 𝜓𝑛1 ,𝑛2 (𝒙),
3

where the response maps of the DCT kernels are computed only once. It
is worth noting that the models can be trained with sparsity constraints
(e.g. 𝐿1 regularization) on these coefficients. However, in our experi-
ments, we did not observe significant benefits from using this sparsity
constraint. Nevertheless, it is an alternative approach to simply limiting
the maximal frequency as described next.

Reducing computational complexity can be achieved by selecting
subsets of DCT kernels to approximate the 2D kernels. A first approach
is to simply restrict the number of maximum frequency 𝑁 , yielding
low-pass approximations of the kernels. Alternatively, a subset of basis
kernels 𝜓𝑛1 ,𝑛2 , such that 𝑛1+𝑛2 < 𝑁 , can be used. This reduces the com-
plexity by compressing the kernels, discarding frequency with known
marginal contribution as suggested in [18]. This technique is referred
to as 𝜆-truncation. The number of required basis functions reduces from
𝑁2 to 𝑁(𝑁+1)

2 , as illustrated by the coefficients represented in Figs. 6 (h)
and (k), and in [18] (Fig. 2).

2.4. Dataset

For the experiments, we employ a subset of the MoNuSeg 2018
dataset [28] which consists of 24 Hematoxylin and Eosin (H&E) stained
images. The images are selected from whole slide images acquired at
the 40× magnification provided by The Cancer Genome Atlas [29]. This
subset contains six 1000 × 1000 images for each of the four tissue
types: breast, liver, kidney and prostate. Nuclei instance annotations are
provided for these 24 images. We split the data as in [20,30], with 4 × 3
images for training, 4 × 1 for validation and 4 × 2 for test. We repeat the
experiments with ten random splits to evaluate the variation of model
performance. The H&E images are normalized using the unsupervised
stain separation method based on singular value decomposition to learn
stain vectors in the optical density color space, as described in [31]. We
adapted the code from5 to fit the needs of our data and experiments.
An example of a pre-processed input patch is illustrated in Fig. 2.

5 https://github.com/schaugf/HEnorm_python, as of March 2023.

https://github.com/schaugf/HEnorm_python


Informatics in Medicine Unlocked 43 (2023) 101403V. Andrearczyk et al.
Fig. 3. Examples of 13 × 13 basis kernels 𝜓𝑛1 ,𝑛2 used in the proposed DCT layer with
a maximum frequency 𝑁 = 13.

2.5. Metrics and evaluation

We use the 𝐹1-score to evaluate model performance.

𝐹1 = 2 ⋅
precision ⋅ recall
precision + recall (5)

A predicted nucleus that overlaps (intersection over union) for more
than 50% with a ground-truth nucleus is considered as a match to
calculate the precision and recall. All experiments are performed on
the same ten train/validation/testing splits, described in Section 2.4,
to assess and compare performance variation over repetitions across
models.

2.6. Statistical analyses

For all results, bootstraping is performed on the 10 splits predictions
with 1000 repetitions. The 95% confidence intervals (CI) are reported.

3. Results

We first focus on the impact of kernel size on segmentation perfor-
mance in Section 3.1. Section 3.2 then investigates the relevance of DCT
compression of the kernels. In the two steps, we present visualizations
in both spatial and frequency domains for interpreting the relevance
and coverage of the spatial spectrum of the kernels.

3.1. Large kernels

3.1.1. Effect of kernel size
In the first experiment, we evaluate the effect on segmentation

performance of increasing the kernel size in the U-Net described in
Fig. 1. The nuclei segmentation results for kernel sizes 𝑘 ranging from
5 to 21 are reported in Table 1. Increasing the kernel size improves
the model performance up to 𝑘 = 17, resulting in an optimal 𝐹1-score
of 0.7312 ± 0.0254, outperforming smaller kernels (e.g. 𝑘 = 5 with
𝐹1-score of 0.7089 ± 0.0362).

Unlike suggested in [7], depth-wise convolutions and residual con-
nections did not improve the performance when using large kernels and
are not reported in this paper.

3.1.2. Spatial and frequency analysis of the kernels
The learned kernels and their DCT transform are illustrated in Fig. 4.

For these visualizations, we employ a smaller model to enable the
4

Table 1
Results of test 𝐹1-scores for varying kernel sizes 𝑘. The mean of the 10 train/test split
repetitions is reported alongside 95% CIs. The number of trainable parameters in the
wide kernels layer (first layer after the stem layer) is also reported.
𝑘 𝐹1-score # train. param.

5 0.7089 [0.6844, 0.7276] 424
9 0.7109 [0.6956, 0.7243] 1336
13 0.7285 [0.7122, 0.7427] 2728
17 0.7312 [0.7154, 0.7457] 4648
21 0.7249 [0.7098, 0.7398] 7080

Fig. 4. Trained 2D kernels (a) and their averaged DCT transform (b) in a standard
U-Net described in Section 2.1 with a kernel size of 13. The average of the 2 × 8 = 16
sets of squared coefficients is plotted here for one trained model. Similar coefficients
are obtained for other splits.

visualization of all kernels in the wide kernel layer (with 2 input
channels and 8 output channels). Similar behavior is obtained when
visualizing the model with all channels. Most of the power spectrum is
contained in low frequencies, for 𝑁 ≤ 7, and particularly 𝑛1 + 𝑛2 ≤ 7,
the coefficients in the top-left triangle.

These visualizations justify the use of large kernels needed to encode
this low-frequency signal. It also motivates the use of DCT compression.
Indeed, it appears that too many parameters are used in such wide
kernels, and they can be compressed by discarding high frequencies.
Finally, the very low coefficients for 𝑛1 + 𝑛2 > 7 also motivate the
𝜆-truncation as proposed in [18].

3.1.3. ERF visualization
Examples of ERFs [9] before and after training a standard U-Net

with different kernel sizes are illustrated in Fig. 5. For both small and
large kernels, the ERF of the model grows during training, and it is
much larger when using large kernels of 21 × 21. These visualizations
show that the ERFs grow throughout the training, as observed in [9],
and that larger kernels enable to start the training at an ERF that seems
closer to an optimal size, and to grow larger with training.

3.2. DCT kernels

3.2.1. Kernel size
We present the results of the light-weight U-Net illustrated in Fig. 1,

in which we replace the convolution with varying kernel sizes by a DCT
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Fig. 5. Visualizations of ERFs of randomly initialized and trained networks with various
kernel sizes in the second convolutional layer.

convolution as described in Section 2.3. The results for varying kernel
sizes using the DCT kernels described in Section 2.3 are reported in
5

Table 2
Results of test 𝐹1-scores for varying kernel sizes 𝑘 in a DCT U-Net. A maximum of N =
5 frequencies is used, with 𝜆-truncation. The mean of the 10 train/test split repetitions
is reported alongside 95% CIs. The number of trainable parameters (constant) in the
DCT layer is also reported.
𝑘 𝑁 𝐹1-score # train. param.

5 5 0.7135 [0.6919, 0.7322] 264
9 5 0.7120 [0.6893, 0.7326] 264
13 5 0.7183 [0.7047, 0.7304] 264
17 5 0.7230 [0.7079, 0.7390] 264
21 5 0.7166 [0.7039, 0.7291] 264

Table 2 together with the number of parameters and convolutions in
the DCT layer. The best 𝐹1-score (0.7230 ± 0.0272) is obtained with
𝑘 = 17, similar to the standard convolution as shown in Table 1. The
number of trainable parameters is largely reduced as compared to the
U-Net with standard wide kernels (fixed with 264 trainable parameters
regardless of the kernel size, vs. up to 7080 parameters for the standard
convolution with 𝑘 = 21).

3.2.2. DCT coefficients
The learned coefficients of a DCT layer are illustrated in Fig. 6.

Similarly to the visualizations of non-DCT kernels in Section 3.1.2, we
employ a small U-Net model to enable the representation of all kernels
in the wide kernel layer.

3.2.3. Reconstruction of the learned kernels
The reconstructed kernels in the spatial domain are illustrated in

Fig. 6. The reconstructed kernels are comparable with the kernels of
standard, non-DCT kernels illustrated in Fig. 4. The kernels in Fig. 6(l)
seem to capture large regions of nuclei, including borders and different
textures.

4. Discussions and conclusion

We investigated the importance of kernel size and observed that
large kernels (up to 17 × 17) improve performance over small kernels
(5 × 5) in the task of nuclei segmentation in histopathology images
with U-Net, reaching an average 𝐹1-score of 0.7312 (see Table 1).
However, the difference is not statistically significant where the 95%
CIs are slightly overlapping. This segmentation task requires a rela-
tively constant receptive field, sufficiently extended in the locality of
the nucleus, but without the need for very long-range dependencies.
Various other tasks may benefit from such investigation of the kernel
size and receptive field, for which our work could provide directions.

Following up on the analysis of kernel sizes, we observed that the
DCT coefficients of the trained large kernels are concentrated in the
low frequencies (see Fig. 4), motivating the use of (large) DCT kernels
with built-in compression of frequencies. We showed that similar per-
formance is obtained when DCT kernels with few frequencies are used
instead of standard 2D kernels (see Table 2). The best results are also
obtained with a kernel size of 17 × 17.

The DCT compression can largely reduce the model complexity. The
number of trainable parameters is reported in Tables 1 and 2. This
number can be extremely low when using DCT layers (264 parameters
regardless of the kernel size in this experiment), as compared to the
standard convolutional layer (up to 7080 parameters with 𝑘 = 21 for
a similar layer). This is explained by the fact that the model only
learns scalar weights used for the linear recombinations of feature
maps obtained by convolving the input with the basis functions in
Eq. (4). As mentioned in Section 2, the number of convolutions is
(𝑐𝑖𝑛 ⋅ 𝑐𝑜𝑢𝑡) for standard convolutional layers (i.e. the number of kernels),
(𝑐𝑖𝑛 ⋅ 𝑁2) for the DCT layer (i.e. number of basis DCT functions for a
chosen number of frequencies 𝑁), and (𝑁(𝑁 + 1)∕2 ⋅ 𝑐𝑖𝑛) for a DCT
layer with a truncated number of basis DCT functions with 𝜆 = 𝑁 .
Besides the comparison of trainable parameters, we report and compare
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Fig. 6. DCT coefficients (left) and their corresponding average power spectrum (center) and reconstructed kernels (right) for different models. The Figure is organized by rows:
(a, b, c) random model; (d, e, f) trained model; (g, h, i) random model with 𝜆-truncation; and (j, k, l) trained model with 𝜆-truncation.
the number of convolutions required for different settings of standard
convolutional layers and DCT layers in Appendix. In this context, the
DCT layer is beneficial when the number of output feature maps is large
and a small number of frequencies is used. It can become impractical,
however, for large numbers of frequencies and input feature maps.

Finally, with 3D images and 3D models, DCT kernels could even
more drastically reduce the number of trainable parameters (few scalar
coefficients vs. large number of voxels constituting wide 3D kernels).
However, the number of convolutions with basis kernels and, in par-
ticular, the memory used by the responses to these convolutions would
be the bottleneck unless strongly compressed by cutting the number of
frequencies.

In future work, it will be interesting to combine the wide kernel and
DCT compression with rotation equivariance properties [20].
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Appendix. Comparison of number of convolutions

In Table 3, we report the number of convolutions for different
scenarios for the same number of input and output feature maps 𝑐𝑖𝑛 =
𝑐 . These numbers are regardless of the kernel size 𝑘, besides the fact
6

𝑜𝑢𝑡
Table 3
Comparison of number of convolutions between a standard convolutional layer (𝑐𝑖𝑛𝑐𝑜𝑢𝑡)
and a DCT layer (𝑐𝑖𝑛𝑁2) with a varying number of maximum frequency 𝑁 . The number
of input and output channels is equal and varies from 4 to 64.
𝑐𝑖𝑛 = 𝑐𝑜𝑢𝑡 = 4 8 16 32 64

Standard conv.

16 64 256 1024 4096

N DCT conv.

5 100 200 400 800 1 600
9 324 648 1 296 2 592 5 184
13 676 1352 2 704 5 408 10 816
17 1156 2312 4 624 9 248 18 496
21 1764 3528 7 056 14 112 28 224
25 2500 5000 10 000 20 000 40 000
29 3364 6728 13 456 26 912 53 824
33 4356 8712 17 424 34 848 69 696

𝜆 DCT conv. 𝜆-truncated

5 60 120 240 480 960
9 180 360 720 1 440 2 880
13 364 728 1 456 2 912 5 824
17 612 1224 2 448 4 896 9 792
21 924 1848 3 696 7 392 14 784
25 1300 2600 5 200 10 400 20 800
29 1740 3480 6 960 13 920 27 840
33 2244 4488 8 976 17 952 35 904

that 𝑁 ≤ 𝑘. Reporting the number of trainable parameters in a similar
table is not readable. It can be computed as (𝑐𝑖𝑛 ⋅ 𝑐𝑜𝑢𝑡 ⋅ 𝑘2) for standard
kernels, (𝑐𝑖𝑛 ⋅ 𝑘2 ⋅ 𝑁2) for a DCT layer, and (𝑐𝑖𝑛 ⋅ 𝑘2 ⋅ 𝑁(𝑁 + 1)∕2) for
a 𝜆-truncated DCT layer. The truncation of high frequencies 𝑁 or 𝜆,
therefore, plays a very important role in reducing the complexity of
the networks.

In Table 4, we report similar numbers for a fixed 𝑐 = 2.
𝑖𝑛
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Table 4
Comparison of number of convolutions between a standard convolutional layer and a
DCT layer with a varying number of maximum frequency 𝑁 . The number of input
channels is set to 2 and the output channels vary from 4 to 64.

𝑐𝑜𝑢𝑡
4 8 16 32 64 128 256

Standard conv.

8 16 32 64 128 256 512

N DCT conv.

5 50 50 50 50 50 50 50
9 162 162 162 162 162 162 162
13 338 338 338 338 338 338 338
17 578 578 578 578 578 578 578
21 882 882 882 882 882 882 882
25 1250 1250 1250 1250 1250 1250 1250
29 1682 1682 1682 1682 1682 1682 1682
33 2178 2178 2178 2178 2178 2178 2178

𝜆 DCT conv. 𝜆-truncated

5 30 30 30 30 30 30 30
9 90 90 90 90 90 90 90
13 182 182 182 182 182 182 182
17 306 306 306 306 306 306 306
21 462 462 462 462 462 462 462
25 650 650 650 650 650 650 650
29 870 870 870 870 870 870 870
33 1122 1122 1122 1122 1122 1122 1122
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