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Highlights

• We introduce the idea of local rotation invariance in 3D convolutional
networks.

• We propose three implementations including the use of spherical harmon-
ics and 3D steerable filters.

• We demonstrate the benefit of these approaches on a synthetic 3D texture
dataset and a dataset of 3D CT scans of pulmonary nodules.

• An important aspect of the reduction of trainable parameters is obtained
from the weight sharing and the parametric representation of the 3D filters.
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Abstract

Locally Rotation Invariant (LRI) image analysis was shown to be fundamental

in many applications and in particular in medical imaging where local structures

of tissues occur at arbitrary rotations. LRI constituted the cornerstone of sev-

eral breakthroughs in texture analysis, including Local Binary Patterns (LBP),

Maximum Response 8 (MR8) and steerable filterbanks. Whereas globally rota-

tion invariant Convolutional Neural Networks (CNN) were recently proposed,

LRI was very little investigated in the context of deep learning. LRI designs

allow learning filters accounting for all orientations, which enables a drastic

reduction of trainable parameters and training data when compared to stan-

dard 3D CNNs. In this paper, we propose and compare several methods to

obtain LRI CNNs with directional sensitivity. Two methods use orientation

channels (responses to rotated kernels), either by explicitly rotating the kernels

or using steerable filters. These orientation channels constitute a locally rota-

tion equivariant representation of the data. Local pooling across orientations

yields LRI image analysis. Steerable filters are used to achieve a fine and ef-

ficient sampling of 3D rotations as well as a reduction of trainable parameters

and operations, thanks to a parametric representations involving solid Spherical

Harmonics (SH),which are products of SH with associated learned radial pro-
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files. Finally, we investigate a third strategy to obtain LRI based on rotational

invariants calculated from responses to a learned set of solid SHs. The pro-

posed methods are evaluated and compared to standard CNNs on 3D datasets

including synthetic textured volumes composed of rotated patterns, and pul-

monary nodule classification in CT. The results show the importance of LRI

image analysis while resulting in a drastic reduction of trainable parameters,

outperforming standard 3D CNNs trained with rotational data augmentation.

Keywords: Local rotation invariance, convolutional neural network, steerable

filters, 3D texture

1. Introduction

Convolutional Neural Networks (CNNs) have been successfully used in var-

ious studies to analyze textures. By construction, CNN operations are transla-

tion equivariant, thus particularly adapted to image analysis where objects of

interest have arbitrary locations. In this paper, we propose to incorporate Local5

Rotation Invariance (LRI) into the CNN architecture, which is known to be cru-

cial for texture analysis and biomedical applications in general because objects

and patterns of interest have most often arbitrary orientations (Depeursinge

and Fageot (2018)).

Globally Rotation Invariant (RI) CNNs have recently been studied, making10

use of group theory to maintain rotation equivariance throughout the layers.

The 2D Group equivariant CNNs (G-CNN1), developed in Cohen and Welling

(2016), uses rotated (right-angles only) versions of the filters together with ap-

propriate channels permutations. RI is then obtained by pooling across orien-

tation channels after the last convolutional layer. 3D G-CNNs were shown to15

improve detection of pulmonary nodule detection in Winkels and Cohen (2019)

and classification of 3D textures in Andrearczyk and Depeursinge (2018), yet

1When referring to G-CNNs, we consider discrete designs with right angle rotations, while

it is defined as a more general framework including continuous designs in Bekkers (2019).
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the latter study motivated the use of a finer rotation sampling than right-angle

rotations to capture realistic arbitrary 3D orientations of directional patterns.

G-CNNs achieve equivariance with respect to finite subgroups of the rotation20

group, which constitutes a bottleneck in 3D. In 2D, an arbitrary sampling of

rotations can be used in a group equivariant approach (Bekkers et al. (2018)),

while the number of 3D finite rotation groups is restrained. Both 2D harmonic

networks (Worrall et al. (2017)) and 2D steerable CNNs (Weiler et al. (2017))

present similarities with the method proposed in this paper although in the25

2D domain. Some recent work consider neural networks on non-Euclidian do-

mains (Kondor and Trivedi (2018)), in particular in the 2-dimensional sphere,

where the invariance to rotations plays a crucial role as in Kondor et al. (2018)

and Cohen et al. (2018). Finally, 3D steerable CNNs such as proposed in Weiler

et al. (2018) are very general architectures implementing global equivariance to30

rotations on the network, and the convolutional layer considered in this paper

is covered by their design although not specifically investigated. In particular,

the proposed LRI layers are specialized instances of a discrete (Winkels and

Cohen (2019)) and steerable G-CNN (Weiler et al. (2018)). We differ from

their work by making an angular max-pooling after the first convolution layer,35

which exploits the steerability of the filters, and more importantly, focuses on

the sought-after local invariances. While G-CNNs can encode complex objects,

we focus on textures with local patterns.

In the above-mentioned approaches, global rotation equivariance is main-

tained all along with the layers (see Fig. 1, left), and invariance is obtained by40

using orientation pooling at the end of the network after spatial average pool-

ing. Global RI is fundamental in various applications, e.g. to analyze pictures

taken with arbitrary orientations of the camera. However, most images are com-

posed of well-defined substructures having arbitrary orientations. For instance,

patterns of interest in medical imaging modalities such as Computed Tomogra-45

phy (CT) and Magnetic Resonance Imaging (MRI) consist of tissue alterations

with characteristic 3D textures signatures including necrosis, angiogenesis, fi-

brosis, or cell proliferation (Gatenby et al. (2013)). These alterations induce
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imaging signatures such as blobs, intersecting surfaces and curves. These local

low-level patterns are characterized by discriminative directional properties and50

have arbitrary 3D orientations, which requires combining directional sensitivity

with LRI. When compared to equivariant designs, LRI allows to discard the

information on local pattern orientation, resulting in more lightweight CNNs.

Figure 1: Illustration of global RI and LRI in 2D. Rotating local structures (i.e. three white

segments) in the input I results in the input I′ on the right. The green dots illustrate the

equivariant/invariant responses. Local and global rotations are shown in red and the local

support G of the operator G (see Section 2.2) is represented as a dashed red line. It is worth

noting that our CNN architecture will both present a global equivariance and a local invariance

to rotations. Best viewed in color.

However, RI is often antagonistic with the aim of being sensitive to direc-

tional features. For instance, a spatial image operator that is purely convolu-55

tional is equivariant to rotations if and only if the filter is isotropic (see Sec-

tion 2.2 and Bekkers (2019); Cohen et al. (2019)), therefore insensitive to the

directional features of the input signal. It follows that operators combining LRI

and directional sensitivity (i.e. non-isotropic) require using more complex de-

signs such as MR8 (Varma and Zisserman (2005)), local binary patterns (Ojala60

et al. (2002)), steerable Riesz wavelets (Dicente Cid et al. (2017)), circular or

Spherical Harmonic (SH) invariants (Depeursinge et al. (2018)), sparse coding

with steerable atoms McCann et al. (2020) and scattering transform (Eickenberg

et al. (2017)). These designs were widely used in hand-crafted texture analysis

(Depeursinge and Fageot (2018); Liu et al. (2019)).65
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In this paper, we propose three 3D CNN architectures that are both globally

equivariant and locally invariant to rotations (see Fig. 1 for an illustration in

2D), and can combine this with directionally sensitive image analysis. This can

be achieved by convolving with rotated filters (i.e. G-convolution (Winkels and

Cohen (2019), referred to as G-LRI), steered responses to SHs (Andrearczyk70

et al. (2019a), referred to as S-LRI), or Solid Spherical Energy (SSE) invariants

calculated from SH responses (Andrearczyk et al. (2019b), referred to as SSE-

LRI). Experiments in Section 3 show the benefit of LRI designs over standard

CNNs (Tables 2-5) and globally rotation invariant designs (Tables 4, 5) on syn-

thetic textures and lung nodule datasets where local patterns occur at random75

orientations.

2. Methods

This section is organized as follows. After clarifying mathematical notations

in Section 2.1, we first define a general 3D LRI operator in Section 2.2. Sec-

tion 2.3 introduces the mathematical tools used in this paper: steerable filters80

and spherical harmonics. The different methods that we use to implement the

operator, namely G-LRI (based on the G-CNN), S-LRI (Steerable LRI), SSE-

LRI (Solid Spherical Energy LRI) are detailed in Section 2.4. We then introduce

global RI in Section 2.5, which is further compared against LRI approaches in

Section 3.3. Finally, the discretization, datasets, network architectures and85

weights initialization are presented in Sections 2.6, 2.7, 2.8 and 2.9 respectively.

2.1. Notations

We initially introduce the frameworks in the continuous domain, hence 3D

images, filters, and response maps are functions defined over the continuum

R3. We shall also discuss the practical discretization of the different methods90

(Section 2.6). Spherical coordinates are defined as (ρ, θ, φ) with radius ρ ≥ 0,

elevation angle θ ∈ [0, π], and horizontal plane angle φ ∈ [0, 2π). The set of

3D rotations is denoted by SO(3). A 3D rotation transformation matrix R
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can be decomposed as three elementary rotations around z, y′ and z′′ axes as

R = RαRβRγ , with the orientation (α, β, γ) parameterized by the (intrinsic)95

Euler angles α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 2π) respectively. We will use

interchangeably R as a rotation transformation acting on R3 and on the two-

dimensional sphere S2. Finally, the function x 7→ f(Rx) is denoted by f(R·).

2.2. Equivariant Image Operators and Invariant Image Features

We introduce the general class of image operators of interest that will be100

used in the first layer of our neural network and common between G-LRI, S-

LRI and SSE-LRI. An image operator G associates to an image I another image,

denoted by G{I}. The following invariance properties will be relevant for our

analysis:

• An operator G is globally equivariant to translations and rotations, if, for

any position x0 ∈ R3 and rotation R0 ∈ SO(3),

G{I(· − x0)} = G{I}(· − x0) for any x0 ∈ R3, (1)

G{I(R0·)} = G{I}(R0·) for any R0 ∈ SO(3). (2)

In particular, if Rx0
is a rotation around x0 ∈ R3, we have that G{I(Rx0

·)} =105

G{I}(Rx0
·), as illustrated on the left part of Fig. 1.

• An operator G is local if there exists ρ0 > 0 such that, for every x, the

quantity G{I}(x) only depends on local image values I(y) for ‖y−x‖ ≤ ρ0.

The global equivariance to translations and rotations together with the locality

result in the sought-after invariance to local rotations (i.e. LRI) in the following110

sense: the rotation of an object or localized structure of interest in the image I

around a position x does not affect the value of G{I}(x), as illustrated on the

right part of Fig. 1. We illustrate the different notions for the case of linear

convolution operators in the next result.

Proposition 1. Let G be a linear convolution operator of the form

G{I} = h ∗ I (3)
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with h the impulse response of the filter. Then, G is globally equivariant to115

rotations if and only if h is isotropic, i.e., h(R0·) = h for any rotation R0 ∈
SO(3). Moreover, G is local if and only if h is compactly supported. Therefore,

G is LRI if only if h is compactly supported and isotropic.

The proof of Proposition 1 is given in Appendix A. The result is elementary,

and can be deduced using general frameworks, such as (Bekkers, 2019, Theorem120

1). It reveals that linear operators can only fulfill the required equivariances

using isotropic filters, which are insensitive to the directional information and

thus very limited (Depeursinge et al. (2018)). The operators used in this paper

are therefore non-linear.

2.3. Steerable Filters and Spherical Harmonics125

This subsection introduces the mathematical toolbox required to character-

ize the proposed S-LRI and SSE-LRI approaches, which both rely on parametric

kernel representations based on solid SHs. In particular, we consider filters f

expanded in terms of the family of SHs (Yn,m)n≥0, m∈{−n...n}, where n is called

the degree and m the order, and which forms an orthonormal basis for square-130

integrable functions g(θ, φ) on the sphere S2. We consider finitely many degrees,

N ≥ 0 being the maximal one. The number of elements of a SH family of max-

imum degree N is
∑N
n=0(2n + 1) = (N + 1)2. The expression of SHs can be

found in Appendix B. We say that a function f : R3 → R is a solid SH2 if it is

a product of a SH with a purely radial function; that is, if it can be written as135

f(ρ, θ, φ) = h(ρ)Y mn (θ, φ).

The S-LRI uses steerable filters (see Section 2.4.2), which have the advantage

to allow for fast and efficient computation of the LRI representation required for

max-pooling over orientations channels to further achieve invariance (Chenouard

and Unser (2012); Fageot et al. (2018)). A filter is steerable if any of its ro-140

tated versions can be written as a linear combination of finitely many basis

2Note that the terminology is sometimes used when dealing with radial profiles following

power law (Eickenberg et al. (2017)).
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filters (Freeman and Adelson (1991); Unser and Chenouard (2013)).

In this paper, we consider 3D steerable filters f : R3 → R of the form

f(ρ, θ, φ) =
N∑

n=0

hn(ρ)
n∑

m=−n
Cn[m]Yn,m(θ, φ), (4)

where the hn(ρ) ∈ R are degree-dependent radial profiles and the coefficients

Cn[m] ∈ C determine the angular structure of f .145

Many work deal with steerable filters that are polar-separable. This means

that f can be decomposed as f(ρ, θ, φ) = h(ρ)g(θ, φ). A steerable filter of the

form (4) is polar-separable if and only if it can be written as

f(ρ, θ, φ) = h(ρ)

N∑

n=0

n∑

m=−n
Cn[m]Yn,m(θ, φ), (5)

with h a single radial profile that captures the radial pattern of the filter. The

polar separable case (5) is a particular case of (4), it corresponds to the situation

when hn does not depend on n. In the sequel, we keep track on the index n,

which covers both cases.

The condition of f being real is translated into the conditions that h or hn150

themselves are real and that the SH coefficients satisfy Cn[−m] = (−1)mCn[m]

(see Appendix C).

For any rotation R ∈ SO(3), the rotated version Yn,m(R·) of a SH can be

expressed as a linear combination of all elements in a degree subspace n as

Yn,m(R·) =
n∑

m′=−n
DR,n[m,m′]Yn,m′ , (6)

where the DR,n ∈ C(2n+1)×(2n+1) are the Wigner matrices (Varshalovich et al.

(1988)). Then, the steerable filter f can be rotated efficiently with any R ∈
SO(3) to obtain a set of steered coefficients CR,n = DR,nCn of f(R·), with

Cn = (Cn[m])m∈{−n,...,n}. The rotated filter f(R·) is given by

f(R·)(ρ, θ, φ) =
N∑

n=0

hn(ρ)
n∑

m=−n

n∑

m′=−n
DR,n[m,m′]Cn[m′]Yn,m(θ, φ). (7)
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From (7), we see that any rotated version of f can be computed from the

coefficients (Cn[m])0≤n≤N,−n≤m≤n.

In Andrearczyk et al. (2019a), we only considered polar separable filters, in155

the sense that f can be written as f(ρ, θ, φ) = h(ρ)g(θ, φ) with h : R+ → R and

g : S2 → R, as is the case in (5).

Using a shared radial profile for all SHs results in a reduction of trainable

parameters, at the cost of limited SH parametric approximation capability (re-

stricted to polar separable patterns). The extension to non-polar separable160

filters of the form (4) is an important contribution of this paper.

2.4. Locally Rotation Invariant 3D CNNs

This section details the three proposed strategies to achieve 3D LRI im-

age analysis. An overview of the three methods is depicted in Fig. 2, and a

qualitative comparison is presented in Table 1.165

Figure 2: Overview of the methods used to obtain LRI including Group-equivariant LRI (G-

LRI), Steerable LRI (S-LRI) and Solid Spherical Energy LRI (SSE-LRI). Operations shared

by multiple methods are highlighted in green.
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Model LRI
Rotation

weight sharing

Parametric

representation

No need for

orientation channels

Z3-CNN 7 7 7 3

G-LRI 3 3 7 7

S-LRI 3 3 3 7

SSE-LRI 3 3 3 3

Table 1: Qualitative comparison of the considered 3D CNN frameworks.

2.4.1. G-LRI

The first method to obtain LRI is to use rotated versions of the kernels, i.e.

via weight sharing across orientation channels. LRI is obtained by max-pooling

over the rotations and the corresponding image operator is

GG{I}(x) = max
R∈SO(3)

|(I ∗ f(R·))(x)| , (8)

where f is characterized by trainable parameters as in a classical CNN, i.e. full

3D kernels. The proof of equivariance to translation and rotation as (1) and (2)

is provided in Appendix D. Moreover, the operator GG is local if and only if

the filter f has a finite support, what we assume from now.170

The idea of max pooling over oriented filter responses has been long used

in computer vision, e.g. for template matching with cross-correlation (Brown

(1992)). More recently, the idea of rotating the CNN kernels has been widely

used in the literature in the context of equivariance to groups of rotations (Cohen

and Welling (2016); Winkels and Cohen (2019); Worrall and Brostow (2018)).175

In particular, the 3D G-CNN developed in Winkels and Cohen (2019) offers

equivariance to groups of 3D rotations. In reference to this work, we refer to

this first approach as G-LRI even though we do not propagate the equivariance

to deeper layers and neither require to perform operations on finite groups.

2.4.2. Steerable LRI180

S-LRI is a special case of G-LRI for which the computation exploits steerabil-

ity. Such S-LRI layers were proposed in Andrearczyk et al. (2019a) with polar
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separable filters only. Here we define S-LRI for both polar separable (S-LRI-h)

and non-polar separable (S-LRI-hn) pattern approximation methods, based on

steerable filters of the forms (5) and (4), respectively. As mentioned before, we185

keep track on the index n which covers both cases.

The S-LRI operator GS{I}(x) is obtained by max-pooling over the rotations

as in (8):

GS{I}(x) = max
R∈SO(3)

|(I ∗ f(R·))(x)| , (9)

where the filter f is in this case of the form (4) and is assumed to have a finite

support. The operator GS is defined identically to GG in (8) but we use different

notations to keep in mind that the parametrization of the filters f differ. As

we have seen, the image operators (8) and (9) are equivariant to rotations and190

translations. It is moreover local as soon as the hn have a finite support and,

therefore, LRI.

Exploiting (7), the convolution I ∗ (f(R·)) is then computed as

I ∗ f(R·) =

N∑

n=0

n∑

m=−n

(
n∑

m′=−n
DR,n[m,m′]Cn[m′]

)
(I ∗ hnYn,m) . (10)

Therefore, one accesses the convolution with any (virtually) rotated version of

f by computing
∑N
n=0(2n + 1) = (N + 1)2 convolutions (I ∗ hnYn,m), which

we shall exploit for computing the response map of the image operator. It is195

worth noting that the case N = 0 corresponds to filters f that are isotropic, i.e.

f(R·) = f for any R ∈ SO(3) (Depeursinge et al. (2018)). As low degrees (e.g.

N = 1, 2) are sufficient to construct small filters (see Section 2.6.3), the gain

becomes substantial over a G-CNN approach for a fine sampling of orientations

with a drastic reduction of the number of convolutions.200

In practice, one has a set of steerable filters fi of the form (4) with radial

profiles hi,n and coefficients Ci,n[m]. When compared to the G-LRI, the number

of trainable parameters is reduced to Ci,n[m], hi,n, and the biases added after

orientation pooling (one scalar parameter per output channel i).
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2.4.3. Solid Spherical Energy LRI205

The use of solid SH representations, i.e. SH representations with radial

profiles, provides the opportunity to compute rotational invariants from simple

non-linear operations. Initially proposed in Andrearczyk et al. (2019b) for po-

lar separable (SSE-LRI-h) kernels, we extend the invariants to the non-polar

separable (SSE-LRI-hn) case. Here we re-use most of the concepts used for the210

S-LRI. However, instead of steering, we calculate invariants directly from the

responses of the solid SHs, which obviates the need to construct an intermediate

(discretized) locally rotation equivariant representation.

After convolution with the image I, the responses I ∗ hnYn,m with m =

−n, . . . , n contain the spectral information of degree n, which is used to define

the image operator GSSEn as

GSSEn {I}(x) =
n∑

m=−n
|(I ∗ hnYn,m)(x)|2. (11)

Let us study the desirable properties of GSSEn in the following. At a fixed spatial

position x ∈ R3, the projection (I ∗ hnYn,m)(x) = 〈hnYn,m, I(x− ·)〉 measures215

the correlation of hnYn,m with I at x. We call GSSEn {I} the SSE response map of

degree n of I. The latter are equivariant to translations and (global) rotations as

defined in (1) and (2). The proof is given in Appendix E. Note that (11) defines

an operator with rotational equivariance, while being sensitive to directional

information via spherical frequencies of degree n > 0. Moreover, the image220

operator GSSE is local if and only if the radial profiles hn have a finite support,

what we always assume thereafter. Finally, more complete invariant quantities

can be computed from the solid spherical harmonic representation (Kakarala

(2012); Kazhdan et al. (2003); Oreiller et al. (2020)).

2.5. Global RI225

In this section, we define a global RI layer which will later be used to compare

against local invariance. As defined in Section 2.2 and illustrated in Fig. 1

(right), an LRI operator is invariant to local rotations that are not constrained

to be identical at every position x0. This is required to characterize important

12

                  



local structures (e.g. textons) having arbitrary and most likely different local

orientations. In this section, we want to compare this LRI with the case where

the local rotations use one shared orientation across all positions of the entire

image. Note that this setting is similar to using standard kernels convolved

on the entire image in a regular CNN. We choose this orientation so that a

global RI is achieved (i.e. as illustrated in Fig. 1 left) but without invariance to

local rotations of patterns (Fig. 1 right). This global RI can be obtained from

equivariant representations with orientation channels by first using a spatial

Global Average Pooling (GAP), followed by max-pooling on the orientation

channels. In this way, the average response is invariant to global rotations R,

resulting in a scalar feature µRI given by

µRI{I} = max
R∈SO(3)

∫

R3

|(I ∗ f(R·))(x)|dx. (12)

Note that the order of the GAP and the orientation max-pooling operations is

simply swapped as compared to the aggregation of the G-LRI and S-LRI. We

can think of equation (12) as finding the rotation of the image I that maximizes

the average response to the filter f . Note that this RI layer shares similar ideas

with a test-time augmentation. However, the filters are rotated rather than the230

images, the maximum is taken individually for each filter, and it is also applied

at training time.

2.6. Discretization

The discretization of the methods, defined so far in the continuous domain, is

necessary for their implementation and naturally introduces an approximation235

of the invariance properties defined in Section 2.2.

2.6.1. Rotations Sampling

Sampling the rotations, defined so far continuously in the S-LRI and G-

LRI approaches, is necessary to compute the invariant responses as in (8) and

(9). We sample rotations R ∈ B ⊂ SO(3), where B is a finite subset of sampled240

rotations. To this end, we uniformly sample orientations as points on the sphere
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using a triangulation method that iteratively splits octahedron faces to obtain

the Euler angles (α, β) around z and y′ respectively. We then sample the last

angle γ around z′′ uniformly between 0 and 2π. The octahedral group O, for

instance, is obtained by sampling 6 points on the sphere (i.e. six (α, β) pairs) and245

four values of γ to obtain the 24 right-angle rotations. We denote by M = |B|
the number of tested rotations.

In this paper, we evaluate the following sets of rotations: no rotation (M =

1), Klein’s four rotations (M = 4), octahedral group of rotations (M = 24) and

72 rotations (M = 72 with 18 points on the sphere and 4 values of γ). For250

the G-LRI, we restrict the evaluation to the octahedral group as implemented

in Winkels and Cohen (2019) as evaluating more rotations becomes computa-

tionally too expensive and requires interpolation for non right-angle rotations.

It is worth noting that for both G-LRI and S-LRI designs, LRI being obtained

by max-pooling over the M orientation channels after the first convolution, this255

rotation sampling results in an approximated invariance. Finally, for a discrete

G-CNN, it is required that B = G is a finite subgroup of SO(3), which is not

needed in our case, since we do not propagate the equivariance to the next layer.

2.6.2. Naive Filter Discretization

In the G-LRI (2.4.1), the filters f are simply voxelized to 3D kernels of c3260

voxels as in a standard 3D CNN or G-CNN architecture. All the voxels are

trainable parameters that are shared across rotations.

2.6.3. Radial Profiles

In both the S-LRI and SSE-LRI methods, the radial profiles hi,n (and hence

the filters fi) have a compact spherical support G = {x ∈ R3, ‖x‖ ≤ ρ0}, where265

ρ0 > 0 is fixed. For any i and n, we consider the voxelized version of the radial

profile hi,n(ρ). The size of the support of the voxelized version is related to

the maximum radius ρ0 of the filter in the continuous domain and the level of

voxelization. Due to the isotropic constraint, for a support of c3 voxels, the

number of trainable parameters for each hi,n is
⌈
(c−1)

2 ×
√

3
⌉

+ 1. The values270
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of the filter fi(ρ, θ, φ) over the continuum is deduced from the discretization of

the voxelized radial profile on the 3D discrete grid using linear interpolation3.

The maximal degree N cannot be taken arbitrarily large once the radial

profiles are voxelized. Indeed, the discretized filters fi are defined over c3 voxels,

which imposes the restriction that N ≤ πc/4, which can be interpreted as the275

spherical Nyquist frequency.

Figure 3: Illustration of a 2D slice of the isotropic radial profiles hi,n with c = 7. The blue

voxels represent the trainable parameters. The rest of the cube is linearly interpolated.

2.7. Datasets

We evaluate the proposed method with two experiments described in the

following.

The first experiment is a sanity check to ensure the relevance of the LRI280

property. We built a dataset for texture classification containing two classes

with 500 synthetic volumes each. The volumes of size 32×32×32 are generated

by placing two 7 × 7 × 7 patterns, namely a binary segment and a 2D cross

with the same norm, at random 3D orientations and random locations with

overlap. The number of patterns per volume is randomly set to bd( svsp )3c, where285

3Note that this discretization is not truly isotropic due to the corner effect as the last

weights of the radial profile hi,n only affect the corners of the interpolated cubes. While this

could be avoided by reducing the length of the radial profile, we favor this implementation

for the following reasons. With right-angle rotations, cubic filters are optimal and do not

deteriorate the already approximated rotation invariance. Besides, the isotropy can easily be

learned by forcing the corner weights to zero for finer rotation samplings.
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sv and sp are the sizes of the volume and of the pattern respectively and the

density d is drawn from a uniform distribution in the range [0.1, 0.5]. The two

texture classes vary by the proportion of the patterns, i.e. 30% segments with

70% crosses for the first class and vice versa for the second class. 800 volumes

are used for training and the remaining 200 for testing. Despite the simplicity290

of this dataset, some variability is introduced by the overlapping patterns and

the linear interpolation of the 3D rotations, making it challenging and more

realistic. A 2D schematic illustration of the 3D synthetic textures is shown in

Fig. 4.

(a) class 1 (b) class 2

Figure 4: 2D schematic illustrations of the 3D synthetic textures.

The second dataset is a subset of the American National Lung Screening295

Trial (NLST) that was annotated by radiologists at the University Hospitals of

Geneva (HUG) Martin et al. (submitted). The dataset includes 485 pulmonary

nodules from distinct patients in CT, among which 244 were labeled benign and

241 malignant. We zero-pad or crop the input volumes (originally ranging from

16×16×16 to 128×128×128) to the size 64×64×64. We use balanced training300

and test splits with 392 and 93 volumes respectively. Examples of 2D slices of

the lung nodules are illustrated in Fig. 5. The Hounsfield units of the training

and test volumes are clipped in the range [−1000, 400], then normalized with

zero mean and unit variance (using the mean and variance of cropped training

volumes).305
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(a) Benign nodule (b) Malignant nodule

Figure 5: 2D slices from 3D volumes of benign and malignant pulmonary nodules.

2.8. Network Architecture

The architecture details of the CNNs are provided in this section4. The

first layer of the LRI networks consists of one of the LRI layers (G-LRI, S-

LRI or SSE-LRI). The responses are aggregated using spatial GAP after the

first layer, similarly to Andrearczyk and Whelan (2016) as described in Section310

2.2. This pooling aggregates the LRI operator responses into a single scalar per

feature map and is followed by Fully Connected (FC) layers. For the nodule

classification experiment, we average the responses inside the nodule masks

instead of across the entire feature maps. This operation is performed to focus

on the texture inside the nodule. The receptive fields are small and the sizes of315

the nodules vary largely across cases, making a standard GAP less appropriate

for the proposed study. For the synthetic experiment, we connect directly the

final softmax FC layer with a cross-entropy loss. For the nodule classification, we

use an intermediate fully connected layer with 128 neurons before the same final

layer. Standard Rectified Linear Units (ReLU) activations are employed. The320

networks are trained using Adam optimizer with β1 = 0.99 and β2 = 0.9999

and a batch size of 8. Other task-specific parameters are: for the synthetic

experiment (kernel size 7 × 7 × 7, stride 1, 2 filters and 50,000 iterations), for

the nodule classification experiment (kernel size 9× 9× 9, stride 2, 4 filters and

10,000 iterations). The number of iterations was fixed to these values as the325

networks reach a plateau beyond these values.

4Code available on GitHub github.com/v-andrearczyk/lri-cnn.
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We compare the proposed architectures to a network with the same archi-

tecture but with a standard 3D convolutional layer, referred to as Z3-CNN.

2.9. Weights Initialization

The SHs are normalized to ‖Yn,m‖2 = 1. The coefficients are then ran-330

domly initialized by a normal distribution with Ci,n[m] ∼ N (0, σ2), with σ2 =

2
nin(N+1)2 and nin is the number of input channels (generally 1), the radial

profiles are initialized to hi,n(ρ) ∼ N (0, 1) and the biases to zero. This initial-

ization is inspired by He et al. (2015); Weiler et al. (2017) in order to avoid

vanishing and exploding activations and gradients.335

3. Experimental Results

In this section, we experimentally evaluate and compare standard CNNs

(Z3-CNN with or without rotational data augmentation), the three proposed

approaches to achieve LRI image analysis (i.e. G-LRI, S-LRI and SSE-LRI) as

well as global RI with G-RI and S-RI. The two datasets and tasks described in340

Section 2.7 are used. The approximation capability of the SH-based parametric

representation is first evaluated in Section 3.1. Z3 and LRI approaches are then

compared in Section 3.2. The importance of LRI when compared to global RI is

investigated in Section 3.3. Finally, the complexity of networks is compared in

terms of computational time and number of trainable parameters in Section 3.4.345

The results will be discussed in Section 4.

3.1. SH Parametric Approximation Capability

Fig. 6 compares standard 3D kernels (Z3-CNN) with the SH parametric rep-

resentation (S-LRI with M = 1 tested orientation) using either polar separable

(i.e. h) or non-polar separable (i.e. hn) implementations. Based on a trade-off350

between complexity and performance, we select the maximum degree N = 3 in

the following experiments. We set N = 2 for the lung nodule dataset with a

similar analysis.
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Figure 6: Comparison of standard 3D kernels (Z3) and the SH parametric representation (S-

LRI) with varying maximum degree N using a single orientation M = 1 (i.e. not using the

steering capacity) on the synthetic 3D texture dataset. The polar separable and non-polar

separable versions are respectively denoted S-LRI-h and S-LRI-hn. The average accuracy

(random 50%) and standard error (10 repetitions) are reported as well as the numbers of

parameters.

0 1 2 3 4 5 6
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SSE-LRI-hn

22/22 28/42 34/62 40/82 46/102 52/122 58/142

N
# param.

Figure 7: Average accuracy (random 50%) and standard error (10 repetitions) on the synthetic

dataset for the SSE-LRI with varying values of N and comparison with the standard 3D-CNN

(Z3).

In Fig. 7, we report the performance of the SSE-LRI with varying maximal

degree N on the synthetic dataset. These results do not aim at evaluating the355

parametric representation but rather to evaluate the influence of N for the SSE-

LRI and in order to choose a value (also N = 3 and N = 2 for the two datasets

respectively) for further comparisons in the following experiments.

3.2. Comparing Standard and LRI Architectures

The influence of the number of tested orientations M is investigated in Fig. 8360

using the S-LRI for both the synthetic and lung nodule datasets. These results

illustrate the benefit of a fine rotation sampling, as well as the better perfor-
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Figure 8: Average accuracy (%) and standard error (10 repetitions) of the S-LRI with maxi-

mum degree N = 3 and N = 2 for the synthetic and NLST datasets respectively and varying

numbers of orientations M . Left: synthetic dataset; right: lung nodule dataset. Black dashed

lines represent the accuracy of the Z3-CNN.

mance of the non-polar separable kernels.

We now use the best reported values of M and compare all proposed LRI

approaches to the standard Z3-CNN. The results are summarized in Tables 2365

and 3 for the synthetic experiment and the lung classification experiment, re-

spectively.

3.3. Comparing Local and Global RI

The importance of LRI is investigated in this section by comparing LRI,

global Rotation Invariance (RI) and rotational data augmentation. The latter370

consists in randomly rotating the volumes by right-angle rotations during train-

ing. Corresponding results are reported in Tables 4 and 5 for the synthetic and

lung nodule datasets, respectively.

3.4. Networks Complexity: Computational Time and Trainable Parameters

The number of trainable parameters and the computational time are re-375

ported in Table 6, where the Z3, S-LRI and SSE-LRI are compared. Their
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model N M # filters # param. accuracy±σ

Z3 - - 2 694 78.8±7.1

Z3 - - 144 49,826 94.0±0.7

G-LRI - 24 2 694 89.0±5.1

SSE-LRI-h 3 - 2 40 90.1±1.5

SSE-LRI-hn 3 - 2 82 91.0±0.8

S-LRI-h 3 24 2 54 91.3±4.4

S-LRI-h 3 72 2 54 92.0±1.9

S-LRI-hn 3 24 2 96 93.5±0.8

S-LRI-hn 3 72 2 96 94.2±1.1

Table 2: Average accuracy (%) and standard deviation on the synthetic 3D local rotation

dataset of all LRI approaches and comparison with a standard CNN (Z3).

polar versus non-polar separable versions are also detailed. The calculation of

the number of trainable parameters is provided in Appendix F.

4. Discussions

We discuss and interpret the results detailed in Section 3 in terms of the380

general importance of LRI image analysis (Section 4.1), optimal LRI design

(Section 4.2), as well as kernel compression (reduction of trainable parameters)

and interpretability (Section 4.3).

4.1. Importance of LRI

The results reported in the previous section demonstrated the importance of385

LRI image analysis in the proposed experiments. Particularly, best results are

obtained with LRI architectures (S-LRI-hn on the synthetic dataset and G-LRI

for pulmonary nodule classification) as reported in Tables 2 and 3. Besides, LRI

performs significantly better than RI in these experiments where local patterns

occur at random orientations, as shown in Tables 4 and 5. In addition, despite390

improving the performance of the standard Z3-CNN, rotation data augmenta-
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model N M # filters # param. accuracy±σ

Z3 - - 4 3,818 80.0±1.7

Z3 - - 96 82,754 81.3±2.2

G-LRI - 24 4 3,818 87.7±2.2

SSE-LRI-h 2 - 4 1,966 81.1±2.2

SSE-LRI-hn 2 - 4 2,030 81.3±2.6

S-LRI-h 2 24 4 970 81.9±3.3

S-LRI-hn 2 72 4 1,034 84.2±3.4

Table 3: Average accuracy (%) and standard deviation on the pulmonary nodule classification

of all LRI approaches and comparison with a standard CNN (Z3).

model N M # filters # param. accuracy±σ

Z3 - - 2 694 78.8±7.1

Z3 augm. - - 2 694 84.0±5.2

G-RI - 24 2 694 79.0±5.6

G-LRI - 24 2 694 89.0±5.1

S-RI-hn 3 72 2 94 85.9±5.5

S-LRI-hn 3 72 2 96 94.2±1.1

Table 4: Average accuracy (%) and standard deviation on the synthetic 3D local rotation

dataset comparing LRI, RI and data augmentation (random right-angle rotations).

tion is not sufficient to obtain LRI (Table 4 and 5). Adding more filters5 to

the Z3-CNN (second rows of Tables 2 and 3) allows learning filters at different

orientations at the heavy cost of a large number of parameters and convolution

operations without reaching the performance of LRI networks.395

In the SSE-LRI, the number of output feature maps and trainable param-

eters of the LRI convolution increases with N (see (11)). To show that the

performance gain is not solely due to more feature maps and parameters but

5The number of filters is multiplied by the number of orientations used in the LRI methods

for a fair comparison.
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model N M # filters # param. accuracy±σ

Z3 - - 4 3,818 80.0±1.7

Z3 augm. - - 4 3,818 82.2±3.3

G-RI - 24 4 3,818 81.8±2.1

G-LRI - 24 4 3,818 87.7±2.2

S-RI-hn 2 72 4 1,030 81.8±3.1

S-LRI-hn 2 72 4 1,034 84.2±3.4

Table 5: Average accuracy (%) and standard deviation on the lung nodule dataset comparing

LRI, RI and data augmentation (random right-angle rotations).

model Z3 S-LRI-h S-LRI-hn SSE-LRI-h SSE-LRI-hn

N - 0 3 6 0 3 6 0 3 6 0 3 6

# param. 694 24 54 120 24 96 204 22 40 58 22 82 142

time 28 56 95 196 56 97 211 30 64 146 30 64 146

Table 6: Computational and parameters comparison on the synthetic dataset with the setups

of Table 2 (some extra setups are included for comparison). The computational time is

measured in seconds for 1,000 iterations trained on a Tesla K80 GPU.

rather to a better approximation capability, we evaluate the SSE-CNN with

N = 0 and more output channels (C = 8 instead of C = 2). This setup relies400

on a number of output feature maps that is equal to the SSE-CNN with N = 3

in Table 2. Yet, the accuracy of the former is 81.5%±3.2 versus 90.1%±1.5 for

the latter. This result highlights the relevance of SSE quantities extracted at

various degrees n and, in turn, the importance of directional sensitivity. Note

that the synthetic patterns do not have exactly the same zero frequency, ex-405

plaining the fact that both S-LRI and SSE-LRI designs based on N = 0, i.e.

using directionally insensitive filters, can discriminate the two classes to some

extent.

4.2. Comparison of LRI Methods

LRI can be obtained by G-convolution, steering, or invariants computed410

from the SH responses, as summarized in Fig. 2. The results of the parametric
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representation (Fig. 6), confirmed by the following results using steerability or

spherical energy (Figures 7, 8 and Tables 2, 3), show that non-polar separable

(radial profile hn) filters perform better than polar separable ones (radial profile

h). In particular, it provides more flexibility to learn the optimal combination415

of different degrees in (4) with individual radial profiles, resulting in a better

parametric approximation capability with a limited increase of parameters. To

ensure that the performance gain is not only due to the increase of parameters,

we incrementally increased from two to five the number of filters of the po-

lar separable design for the synthetic dataset (number of trainable parameters420

ranging from 54 to 132). The highest accuracy with M = 72 orientations is

92.4%, outperformed by the non-polar separable design with 94.2%.

A fine sampling of orientations (M=72) is beneficial to the S-LRI (see Fig. 8),

particularly outperforming the other architectures on the synthetic dataset (Ta-

ble 2). The polar-separable S-LRI-h, however, may be too simplistic to benefit425

from a finer orientation sampling on the nodule dataset (Fig. 8, right). The

SSE-LRI offers a trade-off between performance and computation. It does not

require steering the SH responses (the locally rotation equivariant representa-

tion not being required), resulting in a reduction of memory and operations

requirements but at the cost of a lower kernel specificity: the solid spherical en-430

ergy mixes responses of different SH patterns (for n > 0) as well as inter-degree

phases, thus discarding some potentially valuable discriminatory information

for later layers.

On the NLST dataset, the G-LRI performs better than the S-LRI. The

local patterns in the lung nodule dataset may be easier to represent in a non-435

parametric form as compared to the synthetic patterns.

4.3. Compression and Interpretability

The number of trainable parameters is largely reduced when using S-LRI and

SSE-LRI as compared to a standard Z3-CNN. We identify two distinct factors

enabling parameter reduction, namely the weight sharing across rotations and440

the parametric representation. The weight sharing is present, among others,

24

                  



in the G-LRI where the same kernels account for multiple orientations. Simi-

larly, the S-LRI and SSE-LRI architectures share trainable radial profiles and

harmonic coefficients to obtain responses to rotated kernels. The parametric

representation, on the other hand, is used in Andrearczyk et al. (2019a); Weiler445

et al. (2017); Worrall et al. (2017) by learning a combination of basis filters

instead of every voxel of the kernels. A steerable basis was also used in McCann

et al. (2020) for a fast rotational sparse coding. Fig. 6 shows the performance

of the parametric representation (with a single orientation of the S-LRI), even

outperforming the standard Z3-CNN that contains many more parameters. The450

proposed SSE-LRI approach goes one step further as there is no need to learn

an explicit full parametric representation of the kernels. For computing the

SSE-LRI invariants, we only calculate the norm of the SHs responses, resulting

in a large reduction of the number of trainable parameters.

One bottleneck with both G-CNN (Winkels and Cohen (2019)) and S-LRI (An-455

drearczyk et al. (2019a)) is the GPU memory usage to store M 3D response

maps (i.e. all orientations of the equivariant representation) before orientation

pooling. This memory consumption is drastically reduced in the SSE-LRI by

computing invariants on the SHs responses rather than calculating responses

at all orientations. Note that the S-LRI and SSE-LRI implementations only460

use existing TensorFlow functions and the computation time could be further

improved by efficient parallelization and CUDA programming.

Finally, in terms of network interpretability, the hard-coded equivariance

and invariance enforces a geometric structure of the hidden features improving

the transparency and decomposability of the network where transformations465

(translations and rotations) in the inputs result in predictable transformations

in the activations (see Cheng et al. (2018); Lipton (2018); Worrall and Brostow

(2018); Worrall et al. (2017) for discussions on the matter).
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5. Conclusion

This paper explored the use of LRI in the context of 3D texture analysis.470

Three architectures were proposed and compared with standard 3D-CNN, global

RI and data augmentation. The results showed the importance of LRI in med-

ical imaging and, more generally, in texture analysis where repeated patterns

occur at various locations and orientations. In particular, we showed that data

augmentation, commonly used in CNN training, is not sufficient to learn such475

an invariance and specific architectures with built-in invariance are beneficial.

In future work, we plan to explore deeper networks, building deep architec-

tures on top of LRI layers.
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Appendix A. Proof of Proposition 1

First of all, any convolution operator G is equivariant to translations by

construction. We therefore focus on the equivariance to rotations.

Let f and g be two functions and R0 ∈ SO(3). A simple change of variable

implies that
(
f ∗ g(R−10 ·)

)
= (f(R0·) ∗ g) (R−10 ·). Exploiting this relation, we

deduce that, for any image I ∈ L2(R3) and any rotation R0 ∈ SO(3),

(
h(R−10 ·) ∗ I

)
= (h ∗ I(R0·)) (R−10 ) = G{I(R0·)}(R−10 ). (A.1)

Assume that G is equivariant to rotations, then G{I(R0·)}(R−10 ) = G{I} = h∗I.

Therefore,
(
h(R−10 ·) ∗ I

)
= h∗I for any I, which implies the equality h(R−10 ·) =605

h for any rotation and h is isotropic. Reciprocally, if h is isotropic, (A.1) shows

that G{I(R0·)}(R−10 ) = G{I} for any I and any rotation R0, which is equivalent

to the rotation equivariance of G.

Moreover, the values of G{I}(x) depend on local image values I(y) for y−x

in the support of h. Hence, G is local if and only if the support of h is compact.610

Finally, G is LRI if and only if h is isotropic (for the global equivariance to

rotations) and compactly supported (for the locality).

Appendix B. Spherical Harmonics

The family of SHs is denoted by (Yn,m)n≥0,m∈{−n,...,n}, where n is called

the degree and m the order of Yn,m. SHs form an orthonormal basis for square-

integrable functions in the 2D-sphere S2. They are defined as (Driscoll and

Healy (1994))

Yn,m(θ, φ) = An,mPn,|m|(cos(θ))ejmφ, (B.1)

with An,m = (−1)(m+|m|)/2
(

2n+1
4π

(n−|m|)!
(n+|m|)!

)1/2
a normalization constant and

Pn,|m| the associated Legendre polynomial given for 0 ≤ m ≤ n by

Pn,m(x) :=
(−1)m

2nn!
(1− x2)m/2

dn+m

dxn+m
(x2 − 1)n. (B.2)

We refer to Abramowitz and Stegun (1964) for more details.
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Appendix C. Real Steerable Filters615

Proposition 2. A function f of the form (4) is real if and only if we have, for

every 0 ≤ n ≤ N , −n ≤ m ≤ n,

∀ρ ≥ 0, Cn[−m]hn(ρ) = (−1)mCn[m]hn(ρ). (C.1)

If we impose moreover that the radial profiles hn are real, then this is equivalent

to

Cn[−m] = (−1)mCn[m] (C.2)

for every 0 ≤ n ≤ N , −n ≤ m ≤ n.

Proof. A filter f is real if and only if f(ρ, θ, φ) = f(ρ, θ, φ) for every (ρ, θ, φ).

For filters given by (4), this means that

∑

n,m

Cn[m]hn(ρ)Yn,m(θ, φ) =
∑

n,m

Cn[m]hn(ρ)Yn,m(θ, φ). (C.3)

We use the symmetry of the spherical harmonics, Yn,m = (−1)mYn,−m, on the

left-hand side and change the sign of m on the right-hand side to get

∑

n,m

Cn[m]hn(ρ)(−1)mYn,−m(θ, φ) =
∑

n,m

Cn[−m]hn(ρ)Yn,−m(θ, φ). (C.4)

The Yn,m being linearly independent, we deduce that the filter is real if and

only if (C.1) holds. By imposing that the hn are real, i.e., hn = hn, we obtain

the expected criterion on the Cn[m] coefficients, which is (C.2).

Appendix D. Equivariant Image Operators via Orientation Chan-620

nels

This result is reported for completeness, yet already proven in our previous

publication (Andrearczyk et al. (2019a)).

Proposition 3. An image operator of the form (8) and (9) is equivariant to

translations and rotations in the sense of (1) and (2) and therefore LRI when625

f is compactly supported.
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Proof. The equivariance to translations uses (I(·−x0)∗g)(x) = (I ∗g)(x−x0).

Applying this to g = f(R·), we deduce

G{I(· − x0)}(x) = max
R∈SO(3)

|(I ∗ f(R·))(x− x0)| = G{I}(x− x0), (D.1)

as expected. For rotations, we use (I(R0·) ∗ g)(x) = (I ∗ g(R−10 ·))(R0x) applied

to g = f(R·) to deduce

G{I(R0·)}(x) = max
R∈SO(3)

|(I ∗ f(RR−10 ·))(R0x)| (D.2)

= max
R∈SO(3)

|(I ∗ f(R·))(R0x)| (D.3)

= G{I}(R0x), (D.4)

where the second equality simply exploits that RR−10 describes the complete

space SO(3) of 3D rotations when R varies. The property of being LRI is a

direct consequence of the equivariance by translations and rotations, together

with the fact that f is compactly supported.630

We remark that the equivariance to translations is simply due to the use of

the convolution, while the equivariance to rotations requires pooling over 3D

rotations in (8) and (9).

Appendix E. Equivariant Image Operators via SH invariants

Proposition 4. An image operator of the form (11) is equivariant to transla-635

tions and rotations in the sense of (1) and (2), and therefore LRI when the hn

are compactly supported.

Proof. Given a filter g (e.g. g = hnYn,m), from the relation (I(· −x0) ∗ g)(x) =

(I ∗g)(x−x0), we deduce that GSSEn {I(·−x0)}(x) =
∑n
m=−n |(I ∗hnYn,m)(x−

x0)|2 = GSSEn {I}(x − x0), which is (1). Now, using that (I(R0·) ∗ g)(x) =
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(I ∗ g(R−10 ·))(R0x) and (6), we have

GSSEn {I(R0·)}(x) =
n∑

m=−n
|(I ∗ (hnYn,m(R−10 ·)))(R0x)|2

=
n∑

m=−n

∣∣∣∣∣
n∑

m′=−n
Dn,R−1

0
[m,m′](I ∗ hnYn,m′)(R0x)

∣∣∣∣∣

2

. (E.1)

The Wigner D-matrix being norm-preserving, we have that

∑

m

|cm|2 =
∑

m

∣∣∣∣∣
∑

m′

Dn,R−1
0

[m,m′]cm′

∣∣∣∣∣

2

for any c = (c−n, . . . , cn). Applying this relation to cm = (I ∗ hnYn,m)(R0x),

we deduce (2) from (E.1). Finally, the LRI is a consequence of the equivariance

to global rotations and translations.640

Appendix F. Number of Trainable Parameters

The trainable parameters include convolutional and fully connected param-

eters, biases and Cn[m] harmonic coefficients. In this appendix, we develop the

calculation of their number for the S-LRI and SSE-LRI architectures.

S-LRI. The number of parameters ntotal(S−h) of the polar separable S-LRI-h

architectures is computed as

ntotal(S−h) = nfnr + nf + (N + 1)2nf + nfnc + nc, (F.1)

where nf , nr and nc are the number of filters, of radial profile parameters (Sec-645

tion 2.6.3) and of classes respectively. For example, in the synthetic experiment

for N = 3, it sums up to 2× 7 + 2 + (3 + 1)2 × 2 + 2× 2 + 2 = 54.

For the non-polar separable S-LRI-hn, we have a different trainable radial

profile for each degree n, resulting in the following:

ntotal(S−hn) = (N + 1)nfnr + nf + (N + 1)2nf + nfnc + nc = 96. (F.2)
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SSE-LRI. The number of parameters of the polar separable SSE-LRI-h archi-

tectures is

ntotal(SSE−h) = nfnr + nf (N + 1) + (N + 1)nfnc + nc. (F.3)

In the synthetic experiment forN = 3, it sums up to 2×7+2×4+4×2×2+2 = 40.

For the non-polar separable SSE-LRI-hn, it is

ntotal(SSE−hn) = (N + 1)nfnr + nf (N + 1) + (N + 1)nfnc + nc = 82. (F.4)
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