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Abstract. This paper presents an overview of the first HEad and neCK
TumOR (HECKTOR) challenge, organized as a satellite event of the 23rd
International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2020. The task of the challenge is the
automatic segmentation of head and neck primary Gross Tumor Volume
in FDG-PET/CT images, focusing on the oropharynx region. The data
were collected from five centers for a total of 254 images, split into 201
training and 53 testing cases. The interest in the task was shown by the
important participation with 64 teams registered and 18 team submis-
sions. The best method obtained a Dice Similarity Coefficient (DSC) of
0.7591, showing a large improvement over our proposed baseline method
with a DSC of 0.6610 as well as inter-observer DSC agreement reported
in the literature (0.69).

Keywords: Automatic segmentation· Challenge· Medical Imaging · Head
and Neck Cancer · Oropharynx.

1 Introduction: Research Context

The prediction of disease characteristics using quantitative image biomarkers
from medical images (i.e. radiomics) has shown tremendous potential to op-
timize patient care, particularly in the context of Head and Neck (H&N) tu-
mors [20]. FluoroDeoxyGlucose (FDG)-Positron Emission Tomography (PET)

? equal contribution
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and Computed Tomography (CT) imaging are the modalities of choice for the
initial staging and follow-up of H&N cancer. Yet, radiomics analyses rely on
an expensive and error-prone manual annotation process of Volumes of Interest
(VOI) in three dimensions. The automatic segmentation of H&N tumors from
FDG-PET/CT images could therefore enable the validation of radiomics mod-
els on very large cohorts and with optimal reproducibility. Besides, automatic
segmentation algorithms could enable a faster clinical workflow. By focusing
on metabolic and morphological tissue properties respectively, PET and CT
modalities include complementary and synergistic information for cancerous le-
sion segmentation. The HEad and neCK TumOR (HECKTOR)1 challenge aims
at identifying the best methods to leverage the rich bi-modal information in the
context of H&N primary tumor segmentation. This precious knowledge will be
transferable to many other cancer types where PET/CT imaging is relevant,
enabling large-scale and reproducible radiomics studies.

The potential of PET information for automatically segmenting tumors has
been long exploited in the literature. For an in-depth review of automatic seg-
mentation of PET images in the pre-deep learning era, see [5] covering methods
such as thresholding, active contours and mixture models. The first challenge
on tumor segmentation in PET images was proposed at MICCAI 20162 by Hatt
et al. [8]. The need for a standardized evaluation of PET automatic segmenta-
tion methods and a comparison study between all the current algorithms was
highlighted in [9]. Multi-modal analyses of PET and CT images have also re-
cently been proposed for different tasks, including lung cancer segmentation in
[11,12,25,26] and bone lesion detection in [22]. In [2], we developed a baseline
Convolutional Neural Network (CNN) approach based on a leave-one-center-out
cross-validation on the training data of the HECKTOR challenge. Promising
results were obtained with limitations that motivated additional data curation,
data cleaning and the creation of this challenge. This challenge builds upon
these works by comparing, on a publicly available dataset, recent segmentation
architectures as well as the complementarity of the two modalities on a task
of primary Gross Tumor Volume (GTVt) segmentation of H&N tumor in the
oropharynx region. The proposed dataset comprises data from five centers. Four
centers are used for the training data and one for testing. The task is challeng-
ing due to, among others, the variation in image acquisition and quality across
centers (test set from an unseen center) and the presence of lymph nodes with
high metabolic responses in the PET images.

The critical consequences of the lack of quality control in challenge designs
were shown in [14], including reproducibility and interpretation of the results
often hampered by the lack of provided relevant information, and non-robust
ranking of algorithms. Solutions were proposed in the form of the Biomedical
Image Analysis challengeS (BIAS) [15] guidelines for reporting the results. This
paper presents an overview of the challenge following these guidelines.

1 www.aicrowd.com/challenges/hecktor, as of October 2020.
2 https://portal.fli-iam.irisa.fr/petseg-challenge/overview#_ftn1, as of

October 2020.

www.aicrowd.com/challenges/hecktor
https://portal.fli-iam.irisa.fr/petseg-challenge/overview#_ftn1
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Individual participants’ papers were submitted to the challenge organizers,
reporting methods and results. Reviews were organized by the organizers and
the papers of the participants are published in the LNCS challenges proceed-
ings [10,4,13,18,21,27,6,23,24,17].

The paper is organized as follows. The challenge design and data description
are described in Section 2. The main results of the challenge are reported in
Section 3 and discussed in Section 4. Finally, Section 5 concludes this paper.

2 Methods: Reporting of Challenge Design

A summary of the information on the challenge organization is provided in Ap-
pendix 1, following the BIAS recommendations.

2.1 Mission of the Challenge

Biomedical application
The participating algorithms target the following fields of application: diagno-
sis, prognosis and research. The participating teams’ algorithms were designed
for image segmentation, more precisely, classifying voxels as either tumor or
background.

Cohorts
As suggested in [15], we refer to the patients from whom the image data were
acquired as the cohort. The target cohort3 comprises patients received for initial
staging of H&N cancer. The clinical goals are two-fold; the automatically seg-
mented regions can be used as a basis for (i) treatment planning in radiotherapy,
(ii) further radiomics studies to predict clinical outcomes such as overall patient
survival, disease-free survival, tumor aggressivity. In the former case (i), the re-
gions will need to be further refined or extended for optimal dose delivery and
control. The challenge cohort4 includes patients with histologically proven H&N
cancer who underwent radiotherapy treatment planning. The data were acquired
from five centers (four for the training and one for the testing) with variation
in the scanner manufacturers and acquisition protocols. The data include PET
and CT imaging modalities as well as patient information including age, sex
and acquisition center. A detailed description of the annotations is provided in
Section 2.2.

Target entity
The data origin, i.e. the region from which the image data were acquired, var-
ied from the head region only to the whole body. While we provided the data

3 The target cohort refers to the subjects from whom the data would be acquired in the
final biomedical application. It is mentioned for additional information as suggested
in BIAS, although all data provided for the challenge are part of the challenge cohort.

4 The challenge cohort refers to the subjects from whom the challenge data were
acquired.
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as acquired, we limited the analysis to the oropharynx region and provided an
automatically detected bounding box locating the oropharynx region [1], as il-
lustrated in Figure 1.

Assessment aim
The assessment aim is the following; evaluate the feasibility of fully automatic
GTVt segmentation for H&N cancers in the oropharyngeal region via the iden-
tification of the most accurate segmentation algorithm. The performance of the
latter is identified by computing the Dice Similarity Coefficient (DSC) between
prediction and manual expert annotations. The individual DSC scores are aver-
aged for all test patients and the ranking is based on this average score. DSC
measures volumetric overlap between segmentation results and annotations. It
is a good measure of segmentation for imbalanced segmentation problems, i.e.
the region to segment is small as compared to the image size. DSC is commonly
used in the evaluation and ranking of segmentation algorithms and particularly
tumor segmentation tasks [7,16].

Missing values (i.e. missing predictions on one or multiple patients), did not
occur in the submitted results, but will be treated as DSC of zero if it occurs in
future submissions on the open leaderboard. In case of tied rank, very unlikely
due to the computation of the results (average of 53 DSCs), we will consider the
precision as the second ranking metric.

A statistical analysis is performed to statistically compare the performance
of the algorithms using a Wilcoxon-signed rank test.

2.2 Challenge Dataset

Data source
The data were acquired from five centers as listed in Table 1. It consists of
PET/CT images of patients with H&N cancer located in the oropharynx re-
gion. The scanners (devices) and imaging protocols used to acquire the data
are described in Table 2. Additional information about the image acquisition is
provided in Appendix 2.

Table 1: List of the hospital centers in Canada (CA) and Switzerland (CH) and
number of cases, with a total of 201 training and 53 test cases.
Center Split # cases

HGJ: Hôpital Général Juif, Montréal, CA Train 55
CHUS: Centre Hospitalier Universitaire de Sherbooke, Sherbrooke, CA Train 72
HMR: Hôpital Maisonneuve-Rosemont, Montréal, CA Train 18
CHUM: Centre Hospitalier de l’Université de Montréal, Montréal, CA Train 56

Total Train 201

CHUV: Centre Hospitalier Universitaire Vaudois, CH Test 53

Data preprocessing
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Table 2: List of scanners used in the different centers.
Center Device

HGJ hybrid PET/CT scanner (Discovery ST, GE Healthcare)
CHUS hybrid PET/CT scanner (GeminiGXL 16, Philips)
HMR hybrid PET/CT scanner (Discovery STE, GE Healthcare)

CHUM hybrid PET/CT scanner (Discovery STE, GE Healthcare)
CHUV hybrid PET/CT scanner (Discovery D690 TOF, GE Healthcare)

Training and test case characteristics
The training data comprise 201 cases from four centers (HGJ, HMR5, CHUM
and CHUS). Originally, the dataset in [20] contained 298 cases, among which
we selected the cases with oropharynx cancer. The test data comprise 53 cases
from another fifth center (CHUV). Examples of PET/CT images of each center
are shown in Figure 1. Each case comprises a CT image, a PET image and a
GTVt mask (for the training cases) in the Neuroimaging Informatics Technology
Initiative (NIfTI) format, as well as patient information (age, sex) and center. A
bounding box locating the oropharynx region was also provided (details of the
automatic region detection can be found in [1]).

Finally, to provide a fair comparison, participants who wanted to use addi-
tional external data for training were asked to also report results using only the
HECKTOR data and discuss differences in the results.

Annotation characteristics
Initial annotations, i.e. 3D contours of the GTVt, were made by expert radiation
oncologists and were later modified by a VOI quality control and correction as
described later. Details of the initial annotations of the training set can be found
in [20]. In particular, 40% (80 cases) of the training radiotherapy contours
were directly drawn on the CT of the PET/CT scan and thereafter used for
treatment planning. The remaining 60% of the training radiotherapy contours
were drawn on a different CT scan dedicated to treatment planning and were
then registered to the FDG-PET/CT scan reference frame using intensity-based
free-form deformable registration with the software MIM (MIM software Inc.,
Cleveland, OH). The initial contours of the test set were all directly drawn on
the CT of the PET/CT scan.

VOI quality control and correction were supervised by an expert who is both
radiologist and nuclear medicine physician. Two non-experts (organizers of the
challenge) made an initial cleaning in order to facilitate the expert’s work. The
expert either validated or edited the VOIs. The Siemens Syngo.Via RT Image
Suite was used to edit the contours in 3D with fused PET/CT images. The main
points corrected during the data curation are listed in the following.

– All annotations were originally performed in a radiotherapy context. They
were potentially inadequate for radiomics studies as too large, often including

5 For simplicity, these centers were renamed CHGJ and CHMR during the challenge.



6 V. Andrearczyk et al.

(a) CHUM (b) CHUS

(c) HGJ (d) HMR

(e) CHUV

Fig. 1: Case examples of 2D sagittal slices of fused PET/CT images from each
of the five centers.
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air in the trachea and various tissues surrounding the tumor. The primary
tumors were delineated as close as possible to the real tumoral volume.

– Some annotations were originally drawn on a distinct CT scan dedicated to
treatment planning. In this case, the contours were registered to the PET/CT
scans (more details in [20]). Some registrations failed and had to be corrected.

– Some VOIs included both the primary tumor (GTVt) and lymph nodes
(GTVn) without distinction. Separating the primary tumor from the lymph
nodes was essential as they carry different information and should not be
grouped.

– One contour (HGJ069) was flipped symmetrically on the A/P plane.
– Some annotations were missing and had to be drawn from scratch by the

expert.

Data preprocessing methods
No preprocessing was performed on the images to reflect the diversity of clinical
data and to leave full flexibility to the participants. However, we provided various
pieces of code to load, crop, resample the data, train a baseline CNN (NiftyNet)
and evaluate the results on our GitHub repository6. This code was provided as
a suggestion to help the participants and to maximize transparency, but the
participants were free to use other methods.

Sources of errors
According to Gudi et al. [7], in the context of radiotherapy planning, one can
expect an inter-observer DSC in tumor segmentation of 0.57 and 0.69 on CT and
PET/CT respectively, highlighting the difficulty of the task. A source of error
therefore originates from the degree of subjectivity in the annotation and correc-
tion of the expert. For most patients, the tumors were contoured on another CT
scan, then the two CTs were registered and the annotations were transformed
according to the registrations. Thus, a major source of error came from this
registration step.

Another source of error comes from the lack of CT images with a contrast
agent for a more accurate delineation of the primary tumor.

Institutional review boards
Institutional Review Boards (IRB) of all participating institutions permitted the
use of images and clinical data, either fully anonymized or coded, from all cases
for research purposes, only. Retrospective analyses were performed following the
relevant guidelines and regulations as approved by the respective institutional
ethical committees with protocol numbers: MM-JGH-CR15-50 (HGJ, CHUS,
HMR, CHUM) and CER-VD 2018-01513 (CHUV).

2.3 Assessment Method

Participants were given access to the test cases without the ground truth an-
notations and were asked to submit the results of their algorithms on the test
cases on the AIcrowd platform.

6 github.com/voreille/hecktor, as of October 2020.

github.com/voreille/hecktor
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Results were ranked using the (3D) Dice Similarity Coefficient (DSC) com-
puted on images cropped using the provided bounding boxes (see Section 2.2)
in the original CT resolution as:

DSC =
2TP

2TP + FP + FN
, (1)

where TP, FP and FN are the number of true positive, false positive and false
negative pixels, respectively. If the submitted results were in a resolution dif-
ferent from the CT resolution, we applied nearest-neighbor interpolation before
evaluation. We also computed other metrics for comparison, namely precision
( TP
TP+FP ) and recall ( TP

TP+FN ) to investigate whether the method was rather
providing a large FP or FN rate. The evaluation implementation can be found
on our GitHub repository7 and was provided to maximize transparency.

Each participating team had the opportunity to submit up to five (valid)
runs. The best result of each team was used in the final ranking, which is detailed
in Section 3 and discussed in Section 4.

3 Results: Reporting of Challenge Outcome

3.1 Participation

We received and approved, as of Sept. 10 2020 (submission deadline), 85 signed
end-user-agreements. At the same date, the number of registered teams was 64.
A team is made of at least one participant and not all participants that signed the
end-user-agreement registered a team. Each team could submit up to five valid
submissions. By the submission deadline, we had received 83 results submissions,
including valid and invalid ones (i.e. non graded due to format errors). For the
first iteration of the challenge, these numbers are high and show an important
interest in the task.

3.2 Algorithms Summary

Organizers’ baselines
We trained several baseline models using standard 3D and 2D U-Nets [19] as
in our preliminary results in [2] (the data were different). We trained on multi-
modal PET/CT as well as individual modalities with a non-weighted Dice (i.e.
based on DSC) and cross-entropy loss and without data augmentation.

Participants’ methods
In [10], Iantsen et al. proposed a model based on a U-Net architecture with
residual layers and supplemented with ’Squeeze and Excitation’ (SE) normaliza-
tion, previously developed by the same authors for brain tumor segmentation.
An unweighted sum of soft Dice loss and Focal Loss was used for training. The

7 github.com/voreille/hecktor/tree/master/src/evaluation, as of October 2020.

github.com/voreille/hecktor/tree/master/src/evaluation
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test results were obtained as an ensemble of eight models trained and validated
on different splits of the training set. No data augmentation was performed.

In [13], Ma and Yang used a combination of U-Nets and hybrid active con-
tours. First, 3D U-Nets are trained to segment the tumor (with a cross-validation
on the training set). Then, the segmentation uncertainty is estimated by model
ensembles on the test set to select the cases with high uncertainties. Finally, the
authors used a hybrid active contour model to refine the high uncertainty cases.
The U-Nets were trained with an unweighted combination of Dice loss and top-K
loss. No data augmentation was used.

In [27], Zhu et al. used a two steps approach. First, a classification network
(based on ResNet) selects the axial slices which may contain the tumor. These
slices are then segmented using a 2D U-Net to generate the binary output masks.
Data augmentation was applied by shifting the crop around the provided bound-
ing boxes and the U-Net was trained with a soft Dice loss. The preprocessing
includes clipping the CT and the PET, standardizing the HU within the cropped
volume and scaling the range of the PET to correspond to the CT range by di-
viding it by a factor of 10.

In [24], Yuan proposed to integrate information across different scales by
using a dynamic Scale Attention Network (SA-Net), based on a U-Net archi-
tecture. Their network incorporates low-level details with high-level semantics
from feature maps at different scales. The network was trained with standard
data augmentation and with a Jaccard distance loss, previously developed by
the authors. The results on the test set were obtained as an ensemble of ten
models.

In [4], Chen et al. proposed a three-step framework with iterative refinement
of the results. In this approach, multiple 3D U-Nets are trained one-by-one using
a Dice loss without data augmentation. The predictions and features of previous
models are captured as additional information for the next one to further refine
the segmentation.

In [6], Ghimire et al. developed a patch-based approach to tackle the mem-
ory issue associated with 3D images and networks. They used an ensemble of
conventional convolutions (with small receptive fields capturing fine details) and
dilated convolutions (with a larger receptive field of capturing global informa-
tion). They trained their model with a weighted cross-entropy and dice loss and
random left-right flips of the patches were applied for data augmentation. Fi-
nally, an ensemble of the best two models selected during cross-validation was
used for predicting the segmentation of the test data.

In [23], Yousefirizi and Rahmim proposed a deep 3D model based on SegAN,
a generative adversarial network (GAN) for medical image segmentation. An
improved polyphase V-net (to help preserve boundary details) is used for the
generator and the discriminator network has a similar structure to the encoder
part of the former. The networks were trained using a combination of Mumford-
Shah (MS) and multi-scale Mean Absolute Error (MAE) losses, without data
augmentation.



10 V. Andrearczyk et al.

In [21], Xie and Peng proposed a 3D scSE nnU-Net model, improving upon
the 3D nnU-Net by integrating the spatial and channel ’Squeeze and Excitation’
(scSE) blocks. They trained the model with a weighted combination of Dice and
cross-entropy losses, together with standard data augmentation techniques (rota-
tion, scaling etc.). To preprocess the CT images an automated level-window-like
clipping of intensity values is performed based on the 0.5 and 99.5th percentile
of these values. The intensity values of the PET are standardized by subtracting
the mean and then, by dividing by the standard deviation of the image.

In [17], Naser et al. used a variant of 2D and 3D U-Net (we report the best
result, with the 3D model). The models were trained with a combination of Dice
and cross-entropy losses with standard data augmentation.

In [18], Rao et al. proposed an ensemble of two methods, namely a 3D U-Net
and another 2D U-Net variant with 3D context. A top-k loss was used to train
the models without data augmentation.

In Table 3, we summarize some of the main components of the participants’
algorithms, including model architecture, preprocessing, training scheme and
postprocessing.

3.3 Results

The results, including average DSC, precision, recall and challenge rank are
summarized in Table 4. Our baseline method, developed in [2] and provided
to participants as an example on our GitHub repository, obtains an average
DSC of 0.6588 and 0.6610 with the 2D and 3D implementations respectively.
Results on individual modalities are also reported for comparison. The results
from the participants range from an average DSC of 0.5606 to 0.7591. Iantsen
et al. [10] (participant andrei.iantsen) obtained the best overall results with an
average DSC of 0.7591, an average precision of 0.8332 and an average recall of
0.7400. These results (DSCs) are not significantly higher than the second best
participant [13] (p-value 0.3501 with a one-tail Wilcoxon signed-rank test) and
are significantly higher than the third best participant (p-value 0.0041 with the
same test). Across all participants, the average precision ranges from 0.5850 to
0.8479. The recall ranges from 0.5022 to 0.8534, with the latter surprisingly
obtained by the 3D PET/CT baseline (although with low precision, reflecting
an over-segmentation as compared to other algorithms’ outputs). Note that two
participants decided to withdraw their submissions due to very low scores. We
allowed them to do so since their low scores were due to incorrect postprocessing
(e.g setting incorrect pixel spacing, or image origin) and were not representative
of the performance of their algorithms.

Examples of segmentation results (true positives on top row, and false posi-
tives on bottom row) are shown in Figure 2.
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(a) CHUV017, DSC=0.83 (b) CHUV023, DSC=0.68

(c) CHUV001, DSC=0.11 (d) CHUV019, DSC=0.00

Fig. 2: Examples of results of the winning team (andrei.iantsen [10]). The au-
tomatic segmentation results (green) and ground truth annotations (red) are
displayed on an overlay of 2D slices of PET (right) and CT (left) images. The
reported DSC is computed on the whole image (see Eq 1). (a), (b) Excellent
segmentation results, detecting the GTVt of the primary oropharyngeal tumor
localized at the base of the tongue and discarding the laterocervical lymph nodes
despite high FDG uptake on PET. (c) Incorrect segmentation of the top volume
at the level of the soft palate; (d) Incorrect segmentation of the tongue due to
an abnormal FDG uptake (possible reasons include prior surgical intervention
of the tongue, chewing gum and involuntary movements of the tongue).
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Table 4: Summary of the challenge results. The average DSC, precision and recall
are reported for the baseline algorithms and for the different teams (best result
of each team). The participant names are reported when no team name was
provided. The ranking is only provided for teams that presented their method
in a paper submission.

Team DSC precision recall rank

andrei.iantsen [10] 0.7591 0.8332 0.7400 1
junma [13] 0.7525 0.8384 0.7471 2
badger [21] 0.7355 0.8326 0.7023 3
deepX [24] 0.7318 0.7851 0.7319 4

AIView sjtu [4] 0.7241 0.8479 0.6701 5
DCPT 0.7049 0.7651 0.7047 -

xuefeng [6] 0.6911 0.7525 0.6928 6
ucl charp 0.6765 0.7231 0.7256 -

QuritLab [23] 0.6677 0.7290 0.7164 7
Unipa 0.6674 0.7143 0.7039 -

Our baseline 3D PET/CT 0.6610 0.5909 0.8534 -
Our baseline 2D PET/CT 0.6588 0.6241 0.7629 -

HFHSegTeam [27] 0.6441 0.6938 0.7014 8
UESTC 501 0.6381 0.6455 0.6874 -

Fuller MDA Lab [17] 0.6373 0.7546 0.6283 9
Our baseline 3D PET 0.6306 0.5768 0.8214 -
Our baseline 2D PET 0.6284 0.6470 0.6666 -

Maastro-Deep-Learning [18] 0.5874 0.6560 0.6141 10
Yone 0.5737 0.6606 0.5590 -
SC 109 0.5633 0.7652 0.5022 -
Roque 0.5606 0.5850 0.6843 -

Our baseline 2D CT 0.3071 0.3477 0.3574 -
Our baseline 3D CT 0.2729 0.2154 0.5874 -

4 Discussion: Putting the Results into Context

4.1 Outcome and Findings

A major benefit of this challenge is to compare various algorithms developed by
teams from all around the world on the same dataset and task, with held-out
test data.

We distinguish here between the technical and biomedical impact. The main
technical impact of the challenge is the comparison of state-of-the-art algorithms
on the provided data. We identified key elements for addressing the task: 3D U-
Net, preprocessing, normalization, data augmentation and ensembling, as sum-
marized in Table 3. The main biomedical impact of the results is the opportunity
to generate large cohorts with automatic tumor segmentation for comprehensive
radiomics studies.
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The best methods obtain excellent results with DSCs above 0.75, better than8

reported inter-observer variability (DSCs of 0.57 and 0.69 on CT and PET-CT
respectively) [7]. Note that without injected contrast CT, delineating the exact
contour of the tumor is very difficult. Thus, the inter-observer DSC could be
low only due to disagreements at the border of the tumor, without taking into
account the error rate due to the segmentation of non-malignant structures (if
any). For that reason, defining the task as solved solely based on the DSC is not
sufficient. In the context of this challenge, we can therefore define the task as
solved if the algorithms follow these three criteria:

1. Higher or similar DSC than inter-observers agreement.

2. Detect all the primary tumors in the oropharynx region (i.e. segmentation
not evaluated at the pixel level, rather at the occurrence level).

3. Similarly, detect only the primary tumors in the oropharynx region (discard-
ing lymph nodes and other potentially false positives).

According to these criteria, the task is partially solved. The first criterion, eval-
uating the segmentation at the pixel level, is fulfilled. At the occurrence level
(criteria 2 and 3), however, even the algorithms with the highest DSC output
FP and FN regions. These errors are generally made in very difficult cases and
we should further evaluate their source, e.g. Figure 2c and 2d. Besides, there is
still a lot of work to do on highly related tasks, including the segmentation of
lymph nodes, the development of super-annotator ground truth as well as the
agreement of multiple annotators, and, finally, the prediction of patient outcome
following the tumor segmentation.

Following the analysis of poorly segmented cases, we identified several key
elements that cause the algorithms to fail. These elements are as follows; low
FDG uptake on PET, primary tumor that looks like a lymph node, abnormal
uptake in the tongue and tumor present at the border of the oropharynx region.
Some examples are illustrated in Figure 1. Understanding these errors will lead
to better methods and to a more targeted task for the next iteration of this
challenge.

4.2 Limitations of the Challenge

The dataset provided in this challenge suffers from several limitations. First, the
contours were mainly drawn based on the PET/CT fusion which is not sufficient
to clearly delineate the tumor. Other methods such as MRI with gadolinium
or contrast CT are the gold standard to obtain the true contours for radiation
oncology. Since the target clinical application is radiomics, however, the precision
of the contours is not as important as for radiotherapy planning.

8 These values are reported only to give an idea of inter-observer variability on a
similar task reported in the literature. The datasets are different and the comparison
is limited. In future work, we will compute the inter-observer agreement on the
challenge data.
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Another limitation comes from the definition of the task, only one segmen-
tation was drawn on the fusion of PET and CT. For radiomic analysis, it could
be beneficial to consider one segmentation per modality since the PET signal
is often not contained in the fusion-based segmentation due to the poor spatial
resolution of this modality.

4.3 Lessons Learned and Next Steps

The guidelines, requirements and review process of the MICCAI submission
helped us to design the challenge and to consider as much as possible the poten-
tial difficulties that could arise during the challenge.

Feedback from participants
Relevant feedback was provided by the participants in the form of discussion and
survey. They overall rated the quality of the data as good and the timing (see
”Challenge schedule” in Appendix 1) appropriate. Participants were particularly
interested in extending the challenge task to the segmentation of lymph nodes
and, more moderately, in a radiomics task.

Future of the challenge
The leaderboard remains open on the AIcrowd platform9. Participants can con-
tinue to develop new segmentation algorithms and compare their results with
the existing ones.

Potentially, in the next edition (HECKTOR 2021), the participants will be
asked to segment also the lymph nodes and/or to perform a radiomics study.
We will also try to increase the size of the dataset with new training and test
cases from other centers.

Finally, radiomics studies were proposed in [20,3] to predict the prognosis of
patients with H&N cancer in a non-invasive fashion. A limitation of these studies
is that they were validated on 100 to 400 patients. Larger cohorts are required
for estimating the generalization in real clinical settings. Manual annotations in
3D are tedious and error-prone, and the automatic tumor segmentation is an im-
portant step for large scale radiomics studies. To evaluate the feasibility of using
automatic segmentation for radiomics studies, we will compare the automatic
annotations to the manually delineated ones in a future work.

5 Conclusions

This paper presented a general overview of the HECKTOR challenge including
the data, the participation, main results and discussions. The proposed task was
the segmentation of the primary tumor in oropharyngeal cancer. The participa-
tion was relatively good with 18 results submissions and 10 participant’s papers.
This participation in the first edition of the HECKTOR challenge showed a high
interest in automatic lesion segmentation for H&N cancer.

9 www.aicrowd.com/challenges/miccai-2020-hecktor/leaderboards

www.aicrowd.com/challenges/miccai-2020-hecktor/leaderboards
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The task proposed this year was to segment the primary tumor in PET/CT
images. This task is not as simple as thresholding the PET image since we
target only the primary tumor and the region covered by high PET activation
is often too large, going beyond the limits of the tumor tissues. Deep learning
methods based on U-Net models were mostly used in the challenge. Interesting
ideas were implemented to combine PET and CT complementary information.
Model ensembling, as well as data preprocessing and augmentation, seem to have
played an important role in achieving top-ranking results.
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Appendix 1: Challenge Information

In this appendix, we list important information about the challenge as suggested
in the BIAS guidelines [15].

Challenge name
HEad and neCK TumOR segmentation challenge (HECKTOR) 2020

Organizing team
(Authors of this paper) Vincent Andrearczyk, Valentin Oreiller, Martin Vallières,
Joel Castelli, Mario Jreige, John O. Prior and Adrien Depeursinge

Life cycle type
A fixed submission deadline was set for the challenge results. Open online leader-
board following the conference.

Challenge venue and platform
The challenge is associated with MICCAI 2020. Information on the challenge
is available on the website, together with the link to download the data, the
submission platform and the leaderboard10.

Participation policies
(a) Algorithms producing fully-automatic segmentation of the test cases were
allowed.
(b) The data used to train algorithms was not restricted. If using external data
(private or public), participants were asked to also report results using only the
HECKTOR data.
(c) Members of the organizers’ institutes could participate in the challenge but
were not eligible for awards.
(d) The award was 500 euros, sponsored by Siemens Healthineers Switzerland.
(e) Policy for results announcement: The results were made available on the
AIcrowd leaderboard and the best three results were announced publicly. Once
participants submitted their results on the test set to the challenge organizers via
the challenge website, they were considered fully vested in the challenge, so that
their performance results (without identifying the participant unless permission
is granted) became part of any presentations, publications, or subsequent anal-
yses derived from the challenge at the discretion of the organizers.
(f) Publication policy: This overview paper was written by the organizing team’s
members. The participating teams were encouraged to submit a paper describ-
ing their method. The participants can publish their results separately elsewhere
when citing the overview paper, and (if so) no embargo will be applied.

10 www.aicrowd.com/challenges/hecktor

www.aicrowd.com/challenges/hecktor
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Submission method
Submission instructions are available on the website11 and are reported in the
following. Results should be provided as a single binary mask (1 in the predicted
GTVt) .nii.gz file per patient in the CT original resolution and cropped using the
provided bounding boxes. The participants should pay attention to saving NIfTI
volumes with the correct pixel spacing and origin with respect to the original
reference frame. The .nii files should be named [PatientID].nii.gz, matching the
patients’ file names, e.g. CHUV001.nii.gz and placed in a folder. This folder
should be zipped before submission. If results were submitted without cropping
and/or resampling, we employed nearest-neighbor interpolation given that the
coordinate system is provided. Participants were allowed five valid submissions.
The best result was reported for each team.

Challenge schedule
The schedule of the challenge, including modifications, is reported in the follow-
ing.

– the release date of the training cases: June 01 2020 June 10 2020
– the release date of the test cases: Aug. 01 2020
– the results submission date(s): opens Sept. 01 2020 closes Sept. 10 2020
– paper submission deadline: Sept. 18 2020 Sept. 15 2020
– the release date of the results: Sept. 15 2020
– associated workshop days: Oct. 04 2020, 9:00-13:00 UTC

Ethics approval
Training dataset: The ethics approval was granted by the Research Ethics Com-
mittee of McGill University Health Center (Protocol Number: MM-JGH-CR15-
50). Test dataset: The ethics approval was obtained from the Commission can-
tonale (VD) d’éthique de la recherche sur l’être humain (CER-VD) with protocol
number: 2018-01513.

Data usage agreement
The participants had to fill out and sign an end-user-agreement in order to be
granted access to the data. The form can be found under the Resources tab of
the HECKTOR website.

Code availability
The evaluation software was made available on our github page12. The partic-
ipating teams decided whether they wanted to disclose their code (they were
encouraged to do so).

Conflict of interest
No conflict of interest applies. Fundings are specified in the acknowledgments.
Only the organizers had access to the test cases ground truth contours.

11 www.aicrowd.com/challenges/hecktor#results-submission%20format
12 github.com/voreille/hecktor/tree/master/src/evaluation

www.aicrowd.com/challenges/hecktor#results-submission%20format
github.com/voreille/hecktor/tree/master/src/evaluation
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Appendix 2: Image Acquisition Details

HGJ: All patients had FDG-PET and CT scans done on a hybrid PET/CT scan-
ner (Discovery ST, GE Healthcare) within 37 days before treatment (median: 14
days). For the PET portion of the FDG-PET/CT scan, a median of 584 MBq
(range: 368-715) was injected intravenously. Imaging acquisition of the head and
neck was performed using multiple bed positions with a median of 300 s (range:
180-420) per bed position. Attenuation corrected images were reconstructed us-
ing an ordered subset expectation maximization (OSEM) iterative algorithm and
a span (axial mash) of 5. The FDG-PET slice thickness resolution was 3.27 mm
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for all patients and the median in-plane resolution was 3.52 x 3.52 mm2 (range:
3.52-4.69). For the CT portion of the FDG-PET/CT scan, an energy of 140 kVp
with an exposure of 12 mAs was used. The CT slice thickness resolution was
3.75 mm and the median in-plane resolution was 0.98x0.98 mm2 for all patients.

CHUS: All 102 eligible patients had FDG-PET and CT scans done on a hy-
brid PET/CT scanner (GeminiGXL 16, Philips) within 54 days before treatment
(median: 19 days). For the PET portion of the FDG-PET/CT scan, a median
of 325 MBq (range: 165-517) was injected intravenously. Imaging acquisition of
the head and neck was performed using multiple bed positions with a median
of 150 s (range: 120-151) per bed position. Attenuation corrected images were
reconstructed using a LOR-RAMLA iterative algorithm. The FDG-PET slice
thickness resolution was 4 mm and the median in-plane resolution was 4x4 mm2

for all patients. For the CT portion of the FDG-PET/CT scan, a median energy
of 140 kVp (range: 12-140) with a median exposure of 210 mAs (range: 43-250)
was used. The median CT slice thickness resolution was 3 mm (range: 2-5) and
the median in-plane resolution was 1.17x1.17 mm2 (range: 0.68-1.17).

HMR: All patients had FDG-PET and CT scans done on a hybrid PET/CT
scanner (Discovery STE, GE Healthcare) within 60 days before treatment (me-
dian: 34 days). For the PET portion of the FDG-PET/CT scan, a median of
475 MBq (range: 227-859) was injected intravenously. Imaging acquisition of the
head and neck was performed using multiple bed positions with a median of 360
s (range: 120-360) per bed position. Attenuation corrected images were recon-
structed using an ordered subset expectation maximization (OSEM) iterative
algorithm and a median span (axial mash) of 5 (range: 3-5). The FDG-PET
slice thickness resolution was 3.27 mm for all patients and the median in-plane
resolution was 3.52 x 3.52 mm2 (range: 3.52-5.47). For the CT portion of the
FDG-PET/CT scan, a median energy of 140 kVp (range: 120-140) with a median
exposure of 11 mAs (range: 5-16) was used. The CT slice thickness resolution
was 3.75 mm for all patients and the median in-plane resolution was 0.98 x 0.98
mm2 (range: 0.98-1.37).

CHUM: All patients had FDG-PET and CT scans done on a hybrid PET/CT
scanner (Discovery STE, GE Healthcare) within 66 days before treatment (me-
dian: 12 days). For the PET portion of the FDG-PET/CT scan, a median of
315 MBq (range: 199-3182) was injected intravenously. Imaging acquisition of
the head and neck was performed using multiple bed positions with a median
of 300 s (range: 120-420) per bed position. Attenuation corrected images were
reconstructed using an ordered subset expectation maximization (OSEM) iter-
ative algorithm and a medianspan (axial mash) of 3 (range: 3-5). The median
FDG-PET slice thickness resolution was 4 mm (range: 3.27-4) and the median
in-plane resolution was 4 x 4 mm2 (range: 3.52-5.47). For the CT portion of the
FDG-PET/CT scan, a median energy of 120 kVp (range: 120-140) with a median
exposure of 350 mAs (range: 5-350) was used. The median CT slice thickness
resolution was 1.5 mm (range: 1.5-3.75) and the median in-plane resolution was
0.98 x 0.98 mm2 (range: 0.98-1.37). All patients received their FDG-PET/CT
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scan dedicated to the head and neck area right before their planning CT scan,
in the same position with the immobilization device.

CHUV (test): All patients underwent FDG PET/CT for staging before treat-
ment. Blood glucose levels were checked before the injection of (18F)-FDG. After
a 60-min uptake period of rest, patients were imaged with the Discovery D690
TOF PET/CT (General Electric Healthcare, Milwaukee, WI, USA). First, a CT
(120 kV, 80 mA, 0.8-s rotation time, slice thickness 3.75 mm) was performed
from the base of the skull to the mid-thigh. PET scanning was performed im-
mediately after acquisition of the CT. Images were acquired from the base of
the skull to the mid-thigh (2 min/bed position). PET images were reconstructed
after time-of-flight and point-spread-function recovery corrections by using an
ordered-subset expectation maximization iterative reconstruction (OSEM) (two
iterations, 28 subsets) and an iterative fully 3D (Discovery ST). CT data were
used for attenuation calculation.
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