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Abstract

Radiomics has shown promising results in several medical studies, yet it suf-

fers from a limited discrimination and informative capability as well as a high

variation and correlation with the tomographic scanner types, pixel spacing, ac-

quisition protocol and reconstruction parameters. This paper proposes and com-

pares two methods to transform quantitative image features in order to improve

their stability across varying image acquisition parameters while preserving the

texture discrimination abilities. In this way, variations in extracted features

are representative of true physio-pathological tissue changes in the scanned pa-

tients. A first approach is based on a two-layer neural network that can learn a

non-linear standardization transformation of various types of features including

hand-crafted and deep features. Second, domain adversarial training is explored

to increase the invariance of the transformed features to the scanner of origin.

The generalization of the proposed approach to unseen textures and unseen

scanners is demonstrated by a set of experiments using a publicly available CT

texture phantom dataset scanned with various imaging devices and parameters.
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1. Introduction

Radiomics aims at extracting and analyzing large amounts of quantitative

image features (e.g. volume, shape, intensity and texture) from medical images

including Computed Tomography (CT), Positron Emission Tomography (PET)

and Magnetic Resonance Imaging (MRI) to improve decision-support, mostly5

in cancer treatment. The number of related papers has followed an exponential

growth since the first publications in 2010 [1–3]. In the context of oncology,

radiomics allows establishing complex links between tumoral Regions Of In-

terest (ROI) and clinical endpoints, such as diagnostic (presence and type of

cancer [4]), prognostic (information on overall survival and recurrence [3, 4]) or10

predictive (treatment responses and benefits [2]) analyses. Various organs and

cancer types have been analyzed with radiomics including lungs [3–10], liver [11],

breast [11, 12], head-and-neck [3] and brain gliomas [13]. Radiomics generally

refers to an interlinked sequence of processes including image acquisition and

reconstruction, ROI segmentation, quantitative feature extraction and analysis.15

This study focuses on the impact of the first two processes, namely acquisition

and reconstruction, on the values of quantitative features. The standardization

of features can also impact the segmentation of tumor regions when the latter

involves the spatial clustering of features.

Uncovering disease characteristics or predicting a response to treatment re-20

lies on the fact that the extracted features describe the patients’ biomarkers

(physio-pathological effects) independently from the image acquisition device

or protocol. Quantitative features extracted from a ROI in scans of the same

person acquired in different hospitals should ideally be identical (without con-

sidering temporal variations due to disease evolution). Scanning protocols and25

machines are frequently changed over time and vary across hospitals while even

the same scanners can be configured in different ways and software on the scan-

ners is regularly updated without knowing details of the impact of updates (such

as noise reduction algorithms) on the produced images. While the difficulty for

clinicians to take these variations into account can be limited thanks to their30
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experience and knowledge, radiomics biomarkers such as texture features lack

this abstraction level and can be strongly impacted by these changes [7]. Several

studies have shown a high variability and dependence of texture radiomic fea-

tures across scans, limiting their interpretability and comparison [5, 7, 8, 14, 15].

Yet, little attention has been devoted to reducing this variation and many ra-35

diomic studies are based on very clean data from a single scanner type and

often with the exact same protocol, which is not realistic in standard clinical

situations.

The influence of image processing and of feature extraction algorithms and

implementation on the feature variation is tackled by the Image Biomarker40

Standardization Initiative (IBSI) [16]. Various studies have evaluated the repro-

ducibility and stability of texture features and the influence of scanner variation

and reconstruction settings [5, 6, 8, 14, 17–20]. These studies generally aim at

selecting stable and repeatable texture features for a given task with test-retest

and inter-rater reliability analysis, without proposing a method to standardize45

unstable features. The main limitations of such studies are their lack of gen-

eralization as the reproducibility is valid for only one scanner and one task as

well as the questionable assumption that the analyzed body part appearance

has not changed between acquisitions. A study of bias and variability of tex-

ture features across synthetically simulated scans with various image acquisition50

settings and reconstruction algorithms was proposed in [15]. The simulations in-

cluded modifying the slice thickness, in-plane pixel size, dose, the Task-Transfer

Function (TTF) and Noise Power Spectrum (NPS). The extracted features were

compared with those from an original phantom scan from which the synthesized

scans are computed. The results show that image acquisition and reconstruction55

conditions lead to substantial bias and variability of the texture features.

Texture phantom images allow evaluating the variation of features extracted

from different scanners and with varying protocols of an unchanged body. It

avoids repeatedly exposing a patient to radiation and tiring protocols [7] and

only presents slight differences in positioning between scans. Recent stability60

analyses studied the use of phantom volumes, similar to those used in this pa-
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per, to ensure the similarity of the scanned body between consecutive scans

and across multiple scanners [7, 21]. CT images were pre-processed in [10] by

resampling and filtering to standardize image pixel sizes, resulting in a reduced

variability of radiomic features. Another phantom study was proposed in [22]65

to evaluate intensity and texture features across varying CT acquisitions of the

same phantom. Again, the same conclusion was drawn, claiming that quanti-

tative changes may be primarily due to acquisition variability rather than from

real physio-pathological effects.

Finally, an excellent systematic review of the repeatability and reproducibil-70

ity of radiomic features with and without phantom studies was recently pre-

sented in [23]. We refer to this work for more details on the mentioned analyses

and a more exhaustive literature review.

Recently, a study was performed on the dependency of deep features from

image pixel sizes across CT scanners [24]. The features were extracted from75

pre-trained Convolutional Neural Networks (CNN), mainly VGG networks of

different depths. A normalization method was proposed based on a holistic as-

sumption of quadratic and cubic proportionality between the features and the

pixel size, with limited success in removing the dependency of some of the deep

features. Another study of deep learning for CT texture classification was per-80

formed in [25], in the context of image quality after reconstruction of CT images

with reduced radiation doses. This study used a phantom dataset but consid-

ered a classification accuracy rather than a standardization of features presented

in this paper. By focusing on the accuracy, classification may achieve an excel-

lent class recognition, although the extracted features may be non-informative85

for a radiomics task (e.g. average of Hounsfield Units in the phantom dataset

in [7]) and highly correlated with scanner parameters. With motivations similar

to ours, yet without the use of phantom volumes that ensure the stability of the

measured body to isolate the variability due to scanners, a simple harmoniza-

tion method named ComBat was recently used in [11] to standardize radiomic90

texture features.

The adequacy of deep learning for texture analysis and medical imaging was
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extensively demonstrated in various studies [13, 26–29]. Besides this, the com-

plementarity of deep and radiomic features was demonstrated in [4, 30] for the

prediction of patient survival in the context of lung cancer and in [12] for breast95

cancer detection. This paper is therefore not dedicated to yet another illus-

tration of the informativeness and generalization of these features in a classic

radiomics task. Our goal is to demonstrate that the performance and reliability

of hand-crafted and deep descriptors can be further improved by using phantom

images to learn a feature stability transformation allowing robust generalization100

to unknown textures and unknown scanners. The obtained features are robust

to changes in the acquisition and reconstruction methods. This allows oncolo-

gists to better evaluate and compare patient biomarkers over time and across

scanners and hospitals, while predictive models based on the standardized fea-

tures will achieve better generalization. An overview of the proposed approach105

is illustrated in Figure 1.

Figure 1: Overview of the proposed standardization of visual features extracted from CT
scans of various scanners.

This work expands our previous study [31] in which a first standardization

method was proposed using neural network training on phantom CT scans. The

main extensions proposed in this paper are summarized as follows: (a) Exper-

iments are extended to the analysis of a generalization to unknown scanners.110

The networks are trained to standardize features from a set of scans using the
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phantom images. The resulting features extracted from new scans acquired and

reconstructed differently become also more stable. (b) Domain adversarial train-

ing is proposed to avoid that the extracted features contain information about

the domain of origin, i.e. the scanner and protocol. (c) Principal Component115

Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) di-

mensionality reduction methods are used for visualization of the learned features

to support the analyses. (d) The transfer learning of the CNNs is evaluated by

comparing pre-trained networks with those trained from scratch.

2. Material and Methods120

2.1. General Overview

For a given ROI in an image, a stack of slices or a volume I, we extract a

feature vector g = g(I). The function g(I) is generally a set of classic radiomic

features, e.g. first, second and higher order statistics of pixel values (see Section

2.4). These radiomic features were shown to strongly vary for a same phantom125

texture scanned across different scanners with varying protocols [5, 8, 14]. More

discriminative features can also be extracted with CNNs.

Using a phantom of texture volumes, we train neural networks on top of

the image features to classify slices from a subset of textures from 17 scans

acquired with different scanners and protocols and reconstructed with different130

algorithms. In this way, hidden layers converge to similar values for each texture

type, where the extracted features become standardized for the considered set of

scanners. We can then test whether this standardization generalizes to another

set of textures, implying a reduced variability of the features across scanners es-

sential to robust clinical analyses. With a perfect standardization, the obtained135

features should be nearly identical across scans and informatively characterize

the textures (thus the features should be unable to identify the scanner type).

The training process is therefore used to maximize inter-class feature variation

while minimizing intra-class feature variation.
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We extract observed features gmk,l, where k = 1, ...,K represents the class,140

l = 1, ..., L is the scan of origin (including variation of scanner type, acquisition

protocol and reconstruction algorithm) and m is the feature extraction method.

In our setup, we have L = 10, K = 17 and m ∈ {rad., vgg, res.} standing

for radiomics, VGG and ResNet. For each feature extraction method m, we

want to find a feature transformation τm(gmk,l) that both (a) minimizes the145

variation due to scanner, i.e. τm(gmk,l) is independent from l and (b) maintains

the discriminability of the features, i.e. high-throughput quantitative features

with optimal class separability and informativity of texture variations. We will

drop the m index for readability when it is not essential, or use it only for

the features, implying it for the transform function, e.g. τ(gm). This problem150

statement is summarized in Figure 2. The extraction and transformation are

τ(gk,l)

gk,1

gk,l

gk,L

Figure 2: Overview of the problem statement in which the function τ is sought to obtain
informative features ideally independent of the scanner types.

in practice performed at a slice level, whereas gk,l and τ(gk,l) are averages of

the features and of their transformed counterparts within texture volumes. We

add an index s (e.g. gk,l,s) to refer to features extracted from a single slice.

Note that averaging the features within volumes (2.5D) is a common practice155

in radiomic studies and the phantom volumes can be considered homogeneous

(stationary) [32] as each of them is composed of a unique material.

2.2. Dataset

We use the Credence Cartridge Radiomics (CCR) phantom dataset devel-

oped in [7]. The physical phantom contains ten volumes of textures (cartridges)160

as shown in Figure 3. The cartridge materials were selected to span the range of
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radiomic features found in scanned lung tissue and tumors (non small cell lung

cancer), for example in terms of density and texture. The developed methods

are therefore strongly expected to generalize to clinical images. The dataset

consists of 17 CT scans of this volume produced by different scanners (from the165

manufacturers GE, Philips, Siemens and Toshiba), in different centers and with

different acquisition protocols and reconstruction algorithms. Although it is a

3D volume, it is designed for the analysis of 2D slices (the method is termed 2.5D

in [7] and commonly used in medical imaging). Contour positions of individual

slices inside the cartridges (6 to 11 slices per cartridge) are provided to extract170

the features. More information about the scanners and the scanning protocols

can be found in [7]. The dataset is publicly available and the experiments are

thus fully reproducible.

Figure 3: Texture phantom volume used to acquire the CCR dataset (Figure reproduced
from [7]).

2.3. Pre-processing

The features are extracted from 16cm2 slices as provided in [7]. The slices175

are resized using bilinear interpolation to either (a) in-plane pixel spacing of

1mm2 for the radiomic features as suggested in [7], or (b) to the CNN input

size for computing the deep features (224 × 224). The Hounsfield Units (HU)

range [−1, 409; 747] is linearly converted into the interval [0; 255] for the input

of CNNs as in [30]. This reduces the dynamic range in the images but we expect180
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these effects to be limited. The effect of interpolation is limited as the textures

are relatively homogeneous in the phantom and in addition we learn a stable

representation of the texture after interpolation. For the CNNs, a three channel

input is obtained by duplication in order to use networks pre-trained on color

images from ImageNet (more information on transfer learning in Section 4.3).185

As a standard procedure to keep the same pixel value range as the pre-trained

domain, the image intensity histograms used with the pre-trained CNNs are

centered and scaled similarly to the images used for pre-training (i.e. ImageNet

mean subtraction and division by the ImageNet standard deviation).

2.4. Feature Extraction190

As a baseline, we use radiomic features extracted with the pyRadiomics

toolbox [9] with a fixed bin width of 25. A 97-dimensional feature vector is

extracted from each slice. The extracted features include intensity features, i.e.

first order statistics and texture features including grey-level co-occurrence, run

length, size zone, and dependence matrices as well as a neighboring grey tone195

difference matrix.

As a second set of features, we use VGG19 [33] and ResNet-50 [34] to extract

deep features from the slices. We remove the prediction layer and extract the

penultimate layer output. The VGG and ResNet-50 features are of dimension

d = 4, 096 and d = 2, 048 respectively.200

By averaging the features gk,l,s over all slices within each cartridge, we obtain

the feature vectors gk,l.

2.5. Feature Transformation

We design a two-layer Multi-Layer Perceptron (MLP) with 100 hidden neu-

rons (with standard dropout 0.5 and ReLU activation). The design of this205

network is motivated by a simple non-parametric yet non-linear transformation

where the 100 neurons are used to correspond to the radiomic feature dimen-

sionality (97) for comparison. For a given feature extraction method m, the

MLP takes the observed features gmk,l,s as input, and is trained to output a
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class probability with five training texture classes (i.e. five output neurons).210

After training (see Section 2.6), the output of the hidden layer is used as a 100-

dimensional feature vector that performs the transformation τ(gk,l,s). Once

again, by averaging the features τ(gk,l,s) within each cartridge, we obtain the

feature vectors τ(gk,l).

The MLP performs a transformation of the feature space into a discrimina-215

tive and clustered space, in which the features τ(gk,l) are more stable to scanner

variability. This is achieved by learning from the set of training slices and the

ground truth of the texture types, and assuming that the scanner invariance of

the learned representation will generalize to unknown tissue types if the changes

are relatively systematic. We then evaluate the stability of the original features220

gmk,l and their transformed counterparts τ(gmk,l) for all the methods m.

When finetuning the CNNs, the MLP is connected to the penultimate layer

that outputs gk,l,s and we freeze all but the last two trainable layers (MLP

layers) as in a standard finetuning. This is equivalent to training the MLP

on the extracted features gk,l,s. An overview of the deep feature training and225

extraction is illustrated in Fig. 4.

Figure 4: Overview of the feature extraction and training. The CNN is either VGG-19 or
ResNet-50 from which the prediction layer is removed.

2.6. Training

We randomly split the dataset (100 repetitions) to train the networks to

classify half of the texture types. For each run, five texture volumes from all

the 17 scans are used for training, the remaining five are kept for testing. A230

number of slices ranging from 6 to 11 depending on the scans and cartridges are
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available from each cartridge, as proposed in [7]. From 1,360 available slices in

total, we obtain training and test sets composed of a number of slices between

675 and 685 depending on the random splits.

The networks are trained by optimizing the class prediction, i.e. the last235

layer (softmax activated) of the MLP, but the feature representation is extracted

from a hidden layer with output τ(gk,l,s). More details on the training setup

are provided in Section 3.2.

The methods presented until here including feature extraction and trans-

formation are first evaluated using all scanners for training and testing (but240

different texture classes) in Sections 4.1 to 4.3. The standardization with un-

known test scanners is then evaluated in Section 4.4.

2.7. Domain Adversarial Training

Domain adversarial training of neural networks [35] is a method inspired by

the domain adaptation theory to optimize a main learning task while minimizing245

the discrimination between domains. In this feature standardization task, the

domain is the scan. This was used in medical imaging to increase generalization

to new data with different imaging protocols in brain lesion segmentation in [36]

and for dealing with appearance variability of histopathology images due to

acquisition variation between pathology labs in [37]. The idea is that removing250

the domain information, i.e. the scanner type and protocol, from the trained

features enhances their stability. For this, we assume that all the slices from a

given scan come from the same data distribution constituting a domain. Domain

adversarial training is employed to learn the texture cartridge classification as

explained in Section 2.6, while limiting the possibility to recover the domain of255

origin from the learned features (i.e. lower overall correct classification of the

domain classifier). Figure 5 illustrates our domain adversarial training. The

domain classifier with trainable parameters θD contains two fully connected

layers of 100 and 17 neurons respectively. The prediction layer contains 17

neurons for classifying the 17 scans. The label classifier in blue predicts the260

texture labels with parameters θy. Finally, the parameters θh of the hidden layer
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with features h = τ(gmk,l,s) are trained with both the label loss gradients
∂Ly

∂θh

and the reversed domain loss gradients −λ∂LD

∂θh
, where λ weighs the importance

of the domain adversarial training of the features h. Results using domain

adversarial training are presented in Section 4.5.265

Figure 5: Our domain adversarial network architecture. The domain D is the scanner type
and the classification label y is the texture volume. The standardized features h = τ(gm

k,l,s)

are extracted from layer lh. Best viewed in color.

3. Experimental Setup and Evaluation

The feature vectors are extracted for all the test slices and averaged within

the cartridges (grad.k,l ∈ IR97, gvggk,l ∈ IR4096, gres.k,l ∈ IR2048 and τ(gmk,l) ∈ IR100).

The sparsity of the neuron activations results in a few features of τ(gk,l) being

zero for all the slices of a test set. These features are removed from the sets in270

each of the 100 runs. The dimensionality of τ(gk,l) may, therefore, be reduced

to d ≤ 100.

3.1. Evaluation Metrics

Several metrics are employed to evaluate the stability of the features and

their dependence on the scanners, acquisition protocols and reconstruction al-275

gorithms as listed in the following.
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Intraclass Correlation Coefficient (ICC). Intra-class Correlation Coefficient (ICC)

evaluates the clustering of features from several classes using the correlation of

features within classes as

ICC =
BMS − EMS

BMS + (k − 1)EMS + k
n (JMS − EMS)

, (1)

where n is the number of targets (5 test classes) and k is the number of judges

(17 scans, or 8 in Section 4.4). BMS is the Between targets Mean Square, EMS

the residual mean square and JMS the between Judges Mean Square. The ICC

ranges from 0 to 1 with values close to 1 indicating high similarity between280

values of the same class. The coefficients are averaged across all d features.

In Section 4.5, we also evaluate the scan domain ICC, i.e. the correlation

within scans that we want to minimize. ICC is a standard evaluation method

of feature stability, yet we provided other measures for a more exhaustive eval-

uation.285

Clustering. For further analysis of class separability, clustering based measures

are also standard, where cluster dispersion measured under Gaussianity assump-

tion is reasonable. We apply a Gaussian Mixture Model (GMM) with five com-

ponents corresponding to the five test classes to cluster the features gradiomicsk,l

or τ(gmk,l) from the test volumes. We evaluate the clustering results using the290

ground truth test labels. We measure and report the homogeneity, complete-

ness, V-measure (harmonic mean of the latter) and the average covariance of

the mixture components. The homogeneity and completeness are in the range

[0, 1]. The former is highest if the clusters contain only cartridges of a single

class, the latter if all cartridges of a given class are elements of the same cluster.295

Correlation with pixel spacing. As pointed out in other studies [2, 7, 15], we

noted that the value of the features is highly correlated with the pixel spac-

ing, limiting their comparison and interpretability. We measure, average and

compare the absolute Pearson correlation coefficients of the various extracted

features with the resolution of the slices. It is worth noting that this metric300
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only reflects linear relations between the features and the pixel spacing. Non-

linear dependencies are evaluated by recovering the scan classification from the

features with a non-linear MLP classifier in the domain adversarial experiments

in Section 4.5.

Dimensionality Reduction. An excellent clustering and ICC of unknown tex-305

tures can be obtained with a simple HU averaging as this measure separates

the cartridges well in the CCR dataset. However, the informative and dis-

criminative power of such a simple feature is limited in a real medical image

analysis scenario, where texture rather than only density are important to sep-

arate tissue types. On the other hand, a higher dimensional feature vector with310

highly correlated features can also result in an excellent clustering and ICC.

Yet, such non-informative redundancy offers little interest in the description

of biomarkers for more complex medical imaging tasks. Principal Component

Analysis (PCA) allows evaluating the intra- and inter-class variability along the

directions of the largest variance in the feature space. PCA and t-distributed315

Stochastic Neighbor Embedding (t-SNE) are also used to illustrate the stability

of the features across scanners in a 2-dimensional plot (see Figures 7 and 8).

t-SNE is a non-linear dimensionality reduction technique used for visualization

of high-dimensional data points. Feature vectors are modeled by 2D points so

that similar vectors result in nearby points and dissimilar vectors in distant320

points.

3.2. Training Setup

The CNNs are pre-trained on ImageNet [38] to obtain informative deep fea-

tures despite the limited amount of training data. They are then finetuned

end-to-end by adding fully-connected layers in place of the MLP. The CNNs325

and MLPs are trained with the Adam optimizer [39] with standard hyper-

parameters, namely an initial learning rate of 10−4, average decays β1 and β2 of

0.9 and 0.999 respectively, and a batch size of 32. The deep CNNs are trained

for 100 epochs and the shallow network (MLP on top of radiomic features) for
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Figure 6: ICC before and after feature standardization when averaged over 100 runs with 95%
confidence interval. Asterisks represent statistically significant differences (p−value < 0.0001).

500 epochs. The radiomics MLP is trained for more epochs than the CNNs330

as the former overfits less due to a reduced number of trainable weights (the

CNNs’ second last dense layer is substantially wider than the radiomic feature

dimensionality). The pre-trained CNNs also enable a faster convergence. The

random train/test split is reproduced 100 times, with the same splits kept un-

changed for all experiments. The average and standard deviation are reported335

for each method.

4. Results

4.1. Results with Known Scanners

As a first set of experiments, the training and test slices originate from

the same 17 scans. As mentioned in Section 2.6, half of the texture types are340

used for training (five texture labels), the rest for testing with repeated random

splits. Figure 6 illustrates the statistically significant improvement of ICC (with

p − value < 0.0001 for the three methods) with the proposed standardization

method. Considering only the ICC, the radiomic features surprisingly obtain

better results than the ResNet ones (with p− value < 0.0001), although this is345

contrasted by the supplementary results.

More results are provided in Table 1, supporting our hypothesis that robust

features are obtained using the proposed training scheme.
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ICC(↑) H(↑) C(↑) V(↑) Cov.(↓) Cor.(↓)
Radiomics grad. 0.633±0.06 0.564±0.10 0.672±0.09 0.611±0.09 0.343±0.18 0.577±0.02

MLP radiom. τ(grad.) 0.784±0.06 0.723±0.10 0.770±0.08 0.745±0.09 0.239±0.07 0.510±0.03

VGG gvgg 0.684±0.04 0.794±0.10 0.844±0.08 0.817±0.09 0.352±0.05 0.504±0.02

MLP VGG τ(gvgg) 0.801±0.07 0.790±0.11 0.849±0.10 0.817±0.10 0.199±0.08 0.503±0.04

ResNet-50 gres. 0.411±0.04 0.681±0.12 0.778±0.08 0.724±0.10 0.580±0.12 0.424±0.01

MLP ResNet-50 τ(gres.) 0.644±0.08 0.740±0.13 0.799±0.12 0.767±0.12 0.376±0.09 0.443±0.03

Radiomics PCA 0.680±0.07 0.569±0.09 0.661±0.09 0.611±0.09 3.592±1.80 0.563±0.03

MLP radiom. PCA 0.729±0.10 0.731±0.11 0.777±0.10 0.753±0.11 3.211±1.06 0.560±0.06

VGG PCA 0.814±0.11 0.842±0.10 0.876±0.08 0.859±0.09 42.53±16.44 0.598±0.07

MLP VGG PCA 0.775±0.10 0.831±0.12 0.877±0.10 0.853±0.10 1.38±0.81 0.540±0.07

ResNet-50 PCA 0.730±0.10 0.748±0.10 0.829±0.08 0.785±0.09 46.02±22.57 0.563±0.07

MLP ResNet-50 PCA 0.764±0.11 0.785±0.12 0.833±0.10 0.808±0.11 2.148±0.86 0.528±0.06

Table 1: Evaluation of feature stability linked to scan variation (average and standard devi-
ation for 100 runs). From left to right: ICC, GMM cluster homogeneity (H), GMM cluster
completeness (C), GMM cluster V-measure (V), average GMM cluster covariance (Cov.) and
correlation with resolution (Cor.). The (↑/↓) signs indicate whether higher or lower results
are better. Best results are marked in bold (p− value < 0.001).

Figures 7 and 8 illustrate PCA and t-SNE representations, respectively, to

investigate the influence of standardization on class clusters for several training350

runs. It includes the following features: radiomics, MLP radiomics, VGG and

MLP VGG.

4.2. Computational Time

The networks are implemented in Keras [40] with a TensorFlow backend.

The computation time is reported in Table 2 using a Titan Xp GPU.

Table 2: Training and inference time (675 test slices) of the networks.

Method Training time Test time
MLP radiomics 42.5 s 25 ms
MLP VGG 337.3 s 3.7 s
MLP ResNet-50 252.6 s 3.2 s

355

4.3. Transfer Learning

The pre-training domain (natural color images from ImageNet) is distant

from the task domain (CT textures with grey levels in HU). Yet, a good trans-

ferability of the pre-trained features is observed despite the limited amount of

training data, as well as a quick convergence in finetuning and a good gener-360

alization to unknown textures. These results confirm previous studies showing
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Figure 7: Two component PCA representation of the features on the test set for three dis-
tinct runs. The runs with different training/testing splits are shown from left to right. The
correspondence between colors and texture types is shown at the bottom. The trained MLP
reduces the intra-class variation and increases the inter-class variation of the radiomic and
VGG features. Best viewed in color.
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Figure 9: Example of the first two PCA components of the features extracted on the test set
from MLP ResNet-50 (a) trained from scratch and (b) finetuned from ImageNet pre-training.
The features from scratch are highly correlated and non discriminative. Best viewed in color.

the need for transfer learning in computer vision [33–35] and medical imag-

ing tasks [4, 24, 26, 27, 29–31] with limited training data. When training the

CNNs from scratch, the dataset was too limited to obtain informative features

that could characterize a ROI. Despite a texture classification accuracy reach-365

ing more than 90% (overall correct classification on the balanced test set), the

networks were strongly relying on basic HU characteristics of the slices, without

learning meaningful (texture) features. Figure 9 illustrates the first two PCA

components of the features extracted from ResNet-50 trained from scratch. The

features are mostly aligned on a single axis in the hidden space, which shows that370

they are neither informative nor complementary and that the network probably

learned only the average intensity. Similar results were obtained with VGG

trained from scratch.

4.4. Results with Unknown Scanners

In a second set of experiments, we evaluate the generalization of the proposed375

method to new scanners and protocols not used for training. In this setup, we
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still repeatedly split the training and test texture classes (5 training and 5 test

texture classes), and also split the scans (8 training, 9 test scans). These results

with the test scanners unknown to the models are summarized in Table 3. The

hypothesis is that standardization over a few scanners also extends to unknown380

scanners, as at least some of the changes in the produced images are systematic,

even if they are not the same.

ICC(↑) H(↑) C(↑) V(↑) Cov.(↓) Cor.(↓)
Radiomics grad. 0.615±0.04 0.581±0.06 0.672±0.08 0.623±0.07 0.277±0.16 0.584±0.02

MLP radiomics τ(grad.) 0.766±0.06 0.678±0.09 0.732±0.08 0.704±0.09 0.270±0.08 0.519±0.02

VGG gvgg 0.697±0.05 0.829±0.09 0.880±0.08 0.854±0.08 0.306±0.05 0.284±0.07

MLP VGG τ(gvgg) 0.809±0.07 0.821±0.11 0.880±0.08 0.848±0.10 0.169±0.06 0.291±0.07

ResNet-50 gres. 0.427±0.05 0.737±0.13 0.838±0.09 0.782±0.11 0.498±0.07 0.288±0.05

MLP ResNet-50 τ(gres.) 0.609±0.11 0.760±0.14 0.824±0.11 0.790±0.13 0.350±0.09 0.290±0.05

Radiomics PCA 0.660±0.06 0.566±0.08 0.644±0.07 0.602±0.07 3.496±2.04 0.572±0.03

MLP radiomics PCA 0.730±0.10 0.697±0.11 0.757±0.08 0.725±0.09 3.704±1.02 0.636±0.09

VGG PCA 0.812±0.11 0.854±0.10 0.892±0.08 0.872±0.09 41.54±18.92 0.295±0.10

MLP VGG PCA 0.772±0.10 0.831±0.10 0.884±0.09 0.856±0.09 1.126±0.51 0.291±0.09

ResNet-50 PCA 0.729±0.11 0.759±0.13 0.849±0.09 0.800±0.11 33.92±11.87 0.291±0.11

MLP ResNet-50 PCA 0.746±0.12 0.774±0.14 0.827±0.11 0.799±0.13 1.98±0.86 0.285±0.09

Table 3: Evaluation of feature stability with test scanners different from the training scanners.
See Table 1 for metric descriptions. Best results are marked in bold (p− value < 0.001).

4.5. Standardization with Domain Adversarial Training

For the third set of experiments, we evaluate the domain adversarial training

with known test scanners. As a first result of training with the domain adver-385

sarial network, we investigate the capacity of discarding the domain (scanner)

information. For this, we train with different values of λ ∈ {−1, 0, 1}. When

λ = 1, the adversarial part of the network behaves in a normal domain ad-

versarial scheme. Layers ld1 and ld2 (see Figure 5) try to recover the domain

information from the features h = τ(gmk,l,s) in a categorical domain classifica-390

tion, while layer lh is finetuned to limit this recovery, together with learning the

texture classification. When λ = 0, ld1 and ld2 still learn to recover the domain

information but lh is now only trained to classify the texture. In this case, the

quantitative features are trained in a similar manner as in the previous experi-

ments. Finally, when λ = −1, ld1, ld2 and lh are trained together to recover the395

domain information and no adversarial training takes place. Table 4 summarizes

the domain classification accuracy reached after training using these setups. It
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is worth noting that the test sets are balanced and that a random domain clas-

sification accuracy is 1
17 = 5.9% whereas a random texture label classification

accuracy is 1
5 = 20%. The CNNs and the radiomics MLP are trained for 100 and400

500 epochs respectively, similarly to the previous experiments. As the domain

classification is more challenging than the texture classification, we balance the

neural network update by giving more weight to the domain adversarial update

than the texture one (1 and 0.5 respectively). We observe that for all the setups,

the texture classification still reaches nearly 100% accuracy as discriminating405

the texture volumes is a simpler task than discriminating the scanner of origin.

We also report the domain ICC, which corresponds to an intra-scan correlation

coefficient.

λ MLP radiomics MLP VGG MLP ResNet-50
Accuracy ICC Accuracy ICC Accuracy ICC

−1 34.6±4.4 0.14±0.05, 0.20±0.07 23.7±2.4 0.09±0.02, 0.19±0.08 38.6±9.9 0.11±0.03, 0.29±0.11

0 16.6±2.0 0.13±0.07, 0.17±0.08 6.5±1.0 0.06±0.05, 0.09±0.08 8.0±1.2 0.05±0.03, 0.10±0.09

1 8.9±1.2 0.12±0.08, 0.15±0.10 5.9±1.0 0.08±0.05, 0.10±0.07 5.6±0.9 0.08±0.04, 0.14±0.10

Table 4: Domain classification accuracy (% overall correct classification with standard devia-
tion) and domain ICC of the extracted features with different domain adversarial setups. The
domain ICC represents the averaged correlation of the features with the scanners of origin.
Lower accuracy and lower ICC is better as it shows that the adverarial part is not able to
recover the domain information (i.e. scanner typex) and that the features withing domains
are less correlated. We report the ICC with all the features followed by the ICC with the first
four PCA components. Best results in bold for each network (p− value < 0.001).

5. Discussions

The results with known scanners (reported in table 1) show that training410

the MLP on top of the radiomic features (τ(grad.), we drop the k and l indexes

for simplicity) improves the generalization and standardization with respect

to the scanner type, acquisition protocols and reconstruction algorithms. The

radiomic features benefit more from the MLP stabilization method than the

deep features. Recall, that the dimensionality of the non-standardized deep415

features gvgg and gres. is substantially larger than the other features (4,096 and

2,048 vs. approximately 100). The standardized deep features, in particular

τ(gvgg), are more robust to scanner variation than the ones trained on radiomic
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features with a better ICC and clustering evaluation.

The results (ICC, homogeneity, completeness and V-measure in Table 1)420

obtained after applying PCA to the features confirm the superiority of the

transformed deep features over the radiomic ones. The low ICC and clus-

tering measures of radiomic feature PCA components and their transformed

counterparts reflect the feature correlation, their limited informativeness and

discriminative power in medical applications. The results are provided with425

four PCA components, yet similar results are observable for other numbers of

principal components as well. It is worth noting that the large covariance of

the PCA clusters is a consequence of retaining the components with the largest

variance.

Consistently, we notice from the PCA and t-SNE visualizations (Figures 7430

and 8) that the trained MLP features clearly improve the stability of the ra-

diomic features, while the VGG and transformed VGG features are even more

stable with a better intra-class clustering and inter-class separability. The stan-

dardization improvement from the learned transform is less evident for the VGG

features, as also shown in Table 1. Some improved clusters in the t-SNE repre-435

sentations are shown by red circles in Figure 8.

The correlation of the features with the pixel spacing of the scanners (see

last column of Table 1) is lower with the trained features. In particular, the

radiomic features grad. present the largest correlation, in line with other stud-

ies [2, 7, 15]. The deep features and the standardization method reduce this440

correlation, illustrating the improved robustness and generalization of the fea-

tures. The VGG network performs globally better on this task than ResNet.

This is potentially due to the latter’s depth, leading to a difficulty to generalize

with the limited amount of training data and a larger amount of information

extracted on the scanner of origin.445

From another visualization of the features with t-SNE and PCA (see Figure

10 where the colors represent the scanners), we notice that two scans (S2 and

T2, see [7] for details on the scanners and protocols) lead to correlated features

that are well separated from the other scans. Other such correlations include
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slices from scanners GE4, GE5 and GE6 as well as P1, P3, P4 and P5. These450

scans were mostly acquired with scanners from the same manufacturer, with

similar acquisition protocols and reconstruction algorithms. This observation

could be further investigated by a correlation analysis of features from pairs

of scans, yet this is out of the scope of this paper. As shown in the results,

our standardization approach limits these correlation effects. The results with455

unknown scanners (table 3) show that a network trained with images from a

set of training scanners generalizes the learned standardization transform τ(g)

to images from new scanners. It extends the potential of this standardization

method as it is not necessary to scan the phantom with all the scanners to obtain

stable features from them. For instance, our method can be used with images460

acquired by scanners no longer in operation for retrospective studies, which

is extremely important for the secondary use of image data that is regularly

needed for research studies.

Comparing Tables 1 and 3, one can see that the results using a subset of scans

for training are almost as good as those using all the scans. This observation465

underlines the excellent generalization to unknown scanners. It is worth noting,

however, that the number of test samples is different in these two experiments.

For a valid comparison, we evaluated the stability of features with a training set

including all scans similarly to Section 4.1 but the same number of test scans

as in Section 4.4, i.e. nine scans. Similar results were obtained with a minor470

deterioration of the results when using this subset of training scans.

Noticeably, as reported in the domain adversarial Section 4.5 (Table 4),

the MLP with radiomic features benefits more from the domain adversarial

training (λ = 1) than the deep features. The domain accuracy and domain

ICC are significantly reduced from the training without adversarial and with475

non-adversarial (λ = 0 and λ = −1 respectively). The deep CNN features

seem to already discard the domain information when training to classify only

textures (λ = 0) by extracting meaningful information about the texture that

is not correlated with the scanner type. This observation is even more striking

with the VGG features from which the domain can almost not be recovered at480
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Figure 10: t-SNE visualization of the features on the test set with colours corresponding to
the 17 scans of origin

. The features are the same and may be viewed with those in Figure 8 (in
which colours correspond to the texture class). Various clusters are formed by

features extracted from the same scans, although this is reduced by the
proposed standardization method. Best viewed in color.
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all (6.5%). The scanner ICC of the CNN features is, therefore, not reduced

by using domain adversarial training despite the scanner (domain) accuracy

reduction, which is the optimization goal of the adversarial training. If more

normalization by domain adversarial training is required, more weight can be

given to the domain adversarial contribution in the network update. Finally,485

the texture ICC and clustering, as reported in Table 1, are not improved by

domain adversarial training since discarding the domain information does not

entail a better texture intra-class clustering.

A drawback of the proposed feature transformation with and without do-

main adversarial is the limited direct interpretability of the generated features490

as compared to some classical radiomic features. However, although interesting

studies have investigated the interpretation of radiomic features and their link

with biological characteristics, standard radiomic features are rarely interpreted

directly and individually. Prediction performance of a set of descriptors is usu-

ally analyzed and validated, which is also possible with the proposed learned495

features.

6. Conclusions

This paper proposes an approach to standardize image features to make them

robust to scanner variability by training a neural network on top of radiomic or

deep features extracted from CT images. The network learns a function τ(gk,l)500

that outputs features independent of the scanner type l. The standardization

is based on the idea that the same features should be extracted from different

scans of the same phantom volume and that standardizing for a set of character-

istic textures should generalize to other types of textures and tissue types. The

standardized discriminative and quantitative features can be extracted from pa-505

tient scans to characterize ROIs (e.g. texture in a tumor region) independently

from the acquisition and reconstruction protocols. This robustness is expected

to improve performance and generalization for retrieval, computer-assisted di-

agnosis, predictive treatment planning and prognosis, in particular when using
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data from several hospitals or varying acquisition methods. The presented re-510

sults particularly motivate the use of deep CNN features in radiomics studies

with data from more than a single scanner type, as more stable features can be

obtained than with classic hand-crafted texture features.

We showed that the learned standardization can be generalized to new im-

ages from unknown scanners, which is important as it is common to use old515

data for which such a standardization can no longer be done. We also evaluated

domain adversarial training to remove information about the scanner and pro-

tocol from the extracted features. In this setting, the network representation is

trained to enable an accurate texture classification while avoiding the recovery

of a scan of origin classification. This method should be used to avoid intra-scan520

clustering of texture features that does not underline true physio-pathological

tissue changes. We are confident that this approach will play an important role

in the standardization of features with larger datasets and/or other architectures

and training schemes in future applications. Besides, as shown in [37], adversar-

ial training can be used in combination with augmentation and normalization525

techniques with complementary benefits.

Finally, although this study did not evaluate real patient data, the texture

phantom was designed to mimic actual biomedical tissue types (particularly

non small cell lung cancer commonly analyzed in radiomics) and it allowed a

controlled analysis to isolate the variation due to scanner variation. Future530

work is foreseen on the evaluation of the approach on prognosis, prediction and

diagnosis of real patient data, which requires the extraction of visual features

as image biomarkers.
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