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ABSTRACT

Radiomics has shown promising results in several medical studies, yet it suffers from a limited discrimination
and informative capability as well as a high variation and correlation with the tomographic scanner types, pixel
spacing, acquisition protocol and reconstruction parameters. This paper introduces a new method to transform
image features in order to improve their stability across scanners. This method is based on a two-layer neural
network that can learn a non-linear standardization transformation of various types of features including hand-
crafted and deep features. In this setting, variations in extracted features will be representative of true physio-
pathological tissue changes in the scanned patients. This approach uses a publicly available texture phantom
dataset and can be applied to both hand-crafted radiomic and deep features.
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1. INTRODUCTION

Radiomics aims at extracting and analyzing large amounts of quantitative features (e.g. volume, shape, intensity
and texture) from medical images. The number of related papers has followed an exponential growth since the first
publications in 2010.1–3 Various organs and cancer types have been analyzed with radiomics including lungs,3–8

liver,9 breast,9 head-and-neck3 and brain gliomas.10 Radiomics generally refers to an interlinked sequence of
processes including image acquisition and reconstruction, ROI segmentation, quantitative feature extraction and
analysis. This study focuses on the impact of the first two processes, namely acquisition and reconstruction, on
the values of quantitative features.

Uncovering disease characteristics or predicting a response to treatment relies on the fact that these features
describe the patients’ biomarkers independently from the image acquisition device or protocol. The same person
scanned in different hospitals or with different machines should ideally obtain the same features. Scanning
protocols and machines are frequently changed over time and vary across hospitals. Radiomics biomarkers such
as texture features can be strongly impacted by these changes.6 Texture phantom images allow evaluating the
variation of features extracted from different scanners and with varying protocols.6 Several studies have shown
a high variability of radiomic features across scanners, limiting their interpretability and comparison.4,6, 7, 11,12

Yet, little attention has been devoted to reducing this variation and many radiomic studies are based on very
clean data from a single scanner type and often with the exact same protocol, which is not realistic in standard
clinical situations.

The influence of image processing and of feature extraction algorithms definition and implementation on
the feature variation is tackled by the Image Biomarker Standardization Initiative (IBSI).13 Various studies
have evaluated the reproducibility and stability of texture features and the influence of scanner variation and
reconstruction settings.4,5, 7, 11,14 These studies generally aim at selecting stable and repeatable texture features
for a given task with test-retest and inter-rater reliability analysis, without proposing a method to standardize
unstable features. The main limitations of such studies are their lack of generalization as the reproducibility
is valid for only one scanner and one task as well as the questionable assumption that the analyzed body part
appearance has not changed between acquisitions. Texture phantom images allow evaluating the variation of
features extracted from different scanners and with varying protocols of an unchanged body. It avoids repeatedly
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exposing a patient to radiations and tiring protocols6 and only presents slight differences in positioning between
scans. Recent stability analyses studied the use of phantom volumes, similar to those used in this paper, to ensure
the similarity of the scanned body between consecutive scans and across multiple scanners.6 CT images were
pre-processed in15 by resampling and filtering to standardize image pixel sizes, resulting in a reduced variability
of radiomic features. Finally, an excellent systematic review of the repeatability and reproducibility of radiomic
features with and without phantom studies was recently presented in.16 We refer to this work for more details
on the mentioned analyses and a more exhaustive literature review.

The adequacy of deep learning for texture analysis and medical imaging was extensively demonstrated in
various studies.17–19 This paper is, therefore, not dedicated to yet another illustration of the informativeness
and generalization of deep features in a classic recognition or prediction medical task but rather to demonstrate
that the performance of quantitative image descriptors can be further improved by using phantom images to
obtain stable features across scanners with a robust generalization to unknown texture classes. The obtained
features that are independent of the acquisition and reconstruction methods allow clinicians to better evaluate
and compare patient biomarkers over time and across scanners and hospitals.

2. METHODS

For a given Region Of Interest (ROI) in an image, a stack of slices or a volume I, we extract a feature vector g.
The elements of g are generally radiomic features that were shown to vary strongly for a same phantom texture
scanned across different scanners.4,7, 11 Using a phantom of texture volumes, we train a neural network on top
of the radiomic or deep features to classify slices acquired using 17 scanners. In this way, hidden layers yield
consistent intra-class values while conserving inter-class variations. In addition, the transformed features τ(g)
become standardized (i.e. reduced variations from one scanner to another) for the considered set of scanners. We
can then test whether this standardization generalizes to another set of textures, implying a reduced variability
of the features across scanners essential to robust clinical analyses.

2.1 Pre-processing

The features are extracted from 16cm2 slices as provided with the dataset.6 The slices are resized using bilinear
interpolation to either (a) in-plane pixel spacing of 1mm2 for the radiomic features as suggested in Mackin et.
al,6 or (b) to the CNN input size for the deep features (224×224). The Hounsfield Units (HU) range [−1409, 747]
is linearly converted into the interval [0, 255] for the input to the CNNs. The effect of interpolation is limited
as the textures are relatively homogeneous in the phantom and in addition we learn a stable representation of
the textures after interpolation. For the CNNs, a three channel input is obtained by duplication in order to
use pre-trained networks. As a standard procedure, the images used with the pre-trained CNNs are centered
(ImageNet mean subtraction) and scaled (division by the ImageNet standard deviation).

2.2 Feature Extraction

In the first set of experiments, we use radiomic features as a baseline, extracted with the pyRadiomics toolbox.20

A 97-dimensional feature vector is extracted from each slice, including intensity (i.e. first order statistics) and
texture (e.g. co-occurrence and size-zone matrices) features. In the second set of experiments, we use VGG1921

and ResNet-5022 to extract deep features of dimension 4096 and 2048 respectively from the texture slices. We
remove the prediction layer and extract the penultimate layer output. By averaging the features within each
cartridge (i.e. volume of texture, see Section 2.4), we obtain the feature vectors gm, where m ∈ {rad., vgg, res.}.
Note that this dataset is developed for the analysis of 2D slices, although 3D features could be used with the
same standardization method on other datasets.

2.3 Feature Transformation

We design a two-layer Multi-Layer Perceptron (MLP) with 100 hidden neurons (with dropout 0.5 and ReLU
activation) that takes the radiomic or deep features as input and is trained to output a class probability with five
training classes. This design is motivated by the use of a simple non-parametric yet non-linear transformation
where the 100 neurons correspond to the radiomic feature dimensionality (97) for comparison. After training
(see Section 2.4), the output of the hidden layer is used as a 100-dimensional feature vector and averaged within



cartridges (resulting in τ(gm))∗. The networks are trained by optimizing the prediction, i.e. the last layer
(softmax activated) of the MLP but the feature representation is extracted from the hidden layer.

τ(gm) transforms the feature space into a more discriminative and clustered space, in which the features
are more stable to scanner variability. This is achieved by learning from the set of training classes a scanner
invariance of the learned representation that will generalize to unknown tissue types, as confirmed by the results
in Section 3. An overview of the feature extraction and training is illustrated in Fig. 1.

Figure 1: Overview of the feature extraction and training. The CNN is either VGG-19 or ResNet-50 from which
the prediction layer is removed.

2.4 Dataset and Training

We use the Credence Cartridge Radiomics (CCR) phantom dataset.6 The physical phantom contains ten volumes
of textures (cartridges) as shown in Figure 2. The cartridges materials were selected to span the range of radiomic
features found in scanned lung tissue and tumors (non small cell lung cancer), for example in terms of density and
texture. The developed methods are, therefore, strongly expected to generalize to clinical images. The dataset
consists of 17 CT scans of this volume produced by several scanners (from the manufacturers GE, Philips, Siemens
and Toshiba), in different centers and with different acquisition protocols and reconstruction algorithms. More
information about the scans can be found in.6 The dataset is publicly available and the experiments are thus
fully reproducible. We randomly split the dataset (100 repetitions) to train the networks on half of the texture

Figure 2: CCR texture phantom volume. Figure reproduced from (6).

types and evaluate on the other half (five texture labels) from all the 17 scanners. A number of slices ranging
from 6 to 11 depending on the scanners and cartridges are available from each cartridge, as proposed in.6 From
1360 available slices, we obtain training and testing sets composed of 675 to 685 slices depending on the random
splits. The feature vectors are extracted for all the test slices and averaged within the cartridges (grad. ∈ IR97,
gvgg ∈ IR4096, gres. ∈ IR2048 and τ(gm) ∈ IR100). The sparsity of the neuron activations results in a few features
of τ(gm) being zero for all the slices of a test set. These features are removed from the sets in each of the 100
runs. The dimensionality of τ(gm) may, therefore, be reduced to d ≤ 100.

∗A transform is learned for each feature extraction method but we keep the same symbol τ for simplicity.



The CNNs are pre-trained on ImageNet23 to obtain informative deep features despite the limited amount of
training data. They are finetuned end-to-end by adding fully-connected layers in place of the MLP described in
Section 2.3. The networks are trained with the Adam optimizer with an initial learning rate of 10−4, average
decays β1 = 0.9 and β2 = 0.999 and a batch size of 32. The radiomics MLP is trained for more epochs than the
CNNs (500 vs. 100) as the former overfits less due to a reduced number of trainable weights and the pre-trained
CNNs also enable a faster convergence. The random train/test split is reproduced 100 times with the same splits
for all experiments, and the average and standard deviation are reported for each method.

2.5 Dimensionality Reduction

Excellent clustering of unknown textures can be obtained with a simple HU average as this measure separates the
cartridges well. However, the informative and discriminative power of a single feature is limited in a real medical
image analysis scenario. A higher dimensional feature vector with highly correlated features can also result in
an excellent clustering and ICC, yet such non-informative redundancy offers little interest in the description of
biomarkers for more complex medical imaging tasks. Applying Principal Component Analysis (PCA) allows
evaluating the intra-class variability along the directions of the largest variance in the feature space.

3. EXPERIMENTAL RESULTS

3.1 Evaluation Metrics

Intra-class Correlation Coefficient (ICC): ICC evaluates the clustering of features using their correlation
within classes.

ICC =
BMS − EMS

BMS + (k − 1)EMS + k
n (JMS − EMS)

, (1)

where n is the number of targets (5 test classes) and k is the number of judges (17 scanners). BMS is the between
target mean square, EMS the residual mean square and JMS the between judge mean square. This coefficient
ranges from 0 to 1 with values close to 1 indicating high similarities between values of the same class. The ICCs
are averaged across all the features. ICC is a standard evaluation method of feature stability, yet we provide
other measures for a more exhaustive evaluation.

Clustering: For further analysis of class separability, clustering based measures are also standard, where
cluster dispersion measured under Gaussianity assumption is reasonable. We apply a Gaussian Mixture Model
(GMM) with five components corresponding to the five test classes to cluster the features g and τ(g) from the
test cartridges. We evaluate the clustering results using the ground truth test labels. We measure and report the
homogeneity, completeness, V-measure (harmonic mean of the latter) and the average covariance of the mixture
components. The homogeneity and completeness are in the range [0, 1]. The former is highest if the clusters
contain only cartridges of a single class, the latter if all cartridges of a given class are elements of the same
cluster.

Correlation with pixel spacing: As pointed out in other studies,2,6, 12 the value of the features is highly
correlated with the pixel spacing, limiting their comparison and interpretability. We measure, average and
compare the Pearson correlation of the various extracted features with the slice sizes.

3.2 Results

Figure 3 illustrates the improvement of ICC with the proposed standardization method. Considering only the
ICC, the radiomic features surprisingly obtain better results than the ResNet ones, although this is contrasted by
the supplementary results. As mentioned previously, half of the texture types are used for training (five texture
labels), the rest for testing with repeated random splits.

More results are provided in Table 1, supporting our hypothesis that robust features are obtained using the
proposed training scheme.

The networks are implemented in Keras with a TensorFlow backend. The computational time is reported in
Table 2 using a Titan Xp GPU.
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Figure 3: ICC before and after feature standardization (averaged over 100 runs).

ICC(↑) H(↑) C(↑) V(↑) Cov.(↓) Cor.(↓)
Radiomics grad. 0.633±0.06 0.564±0.10 0.672±0.09 0.611±0.09 0.343±0.18 0.577±0.02

MLP radiom. τ(grad.) 0.784±0.06 0.723±0.10 0.770±0.08 0.745±0.09 0.239±0.07 0.510±0.03

VGG gvgg 0.684±0.04 0.794±0.10 0.844±0.08 0.817±0.09 0.352±0.05 0.504±0.02

MLP VGG τ(gvgg) 0.801±0.07 0.790±0.11 0.849±0.10 0.817±0.10 0.199±0.08 0.503±0.04

ResNet-50 gres. 0.411±0.04 0.681±0.12 0.778±0.08 0.724±0.10 0.580±0.12 0.424±0.01

MLP ResNet-50 τ(gres.) 0.644±0.08 0.740±0.13 0.799±0.12 0.767±0.12 0.376±0.09 0.443±0.03

Radiomics PCA 0.680±0.07 0.569±0.09 0.661±0.09 0.611±0.09 3.592±1.80 0.563±0.03

MLP radiom. PCA 0.729±0.10 0.731±0.11 0.777±0.10 0.753±0.11 3.211±1.06 0.560±0.06

VGG PCA 0.814±0.11 0.842±0.10 0.876±0.08 0.859±0.09 42.53±16.44 0.598±0.07

MLP VGG PCA 0.775±0.10 0.831±0.12 0.877±0.10 0.853±0.10 1.38±0.81 0.540±0.07

ResNet-50 PCA 0.730±0.10 0.748±0.10 0.829±0.08 0.785±0.09 46.02±22.57 0.563±0.07

MLP ResNet-50 PCA 0.764±0.11 0.785±0.12 0.833±0.10 0.808±0.11 2.148±0.86 0.528±0.06

Table 1: Evaluation of feature stability due to scan variation (average and standard deviation for 100 runs).
From left to right: ICC, GMM cluster homogeneity (H), GMM cluster completeness (C), GMM cluster V-
measure (V), average GMM cluster covariance (Cov.) and correlation with pixel spacing (Cor.). The (↑/↓) signs
indicate whether higher or lower results are better. Best result without and with PCA are in bold.

Method Training time Test time
MLP radiomics 42.5 s 25 ms
MLP VGG 337.3 s 3.7 s
MLP ResNet-50 252.6 s 3.2 s

Table 2: Training and inference time (675 test slices) of the networks.

4. DISCUSSION

The transformed features τ(gm) largely improve the ICC and other performance measures from the original
features gm, illustrating the improved standardization with respect to the scanner type and pixel spacing as well
as a generalization to textures that were never seen by the networks. The radiomic features benefit more from
the learned transformation than the deep features. Yet, the transformed deep features are globally more robust
to scanner variation than the shallow radiomic ones with a significantly better clustering evaluation. The VGG
network performs better on this task than ResNet in terms of ICC and clustering, maybe due to ResNet’s depth
and its difficulty to generalize with the limited amount of training data.



The results (ICC, homogeneity, completeness and V-measure in Table 1) obtained after applying PCA to
the features confirm the superiority of the transformed deep features over the radiomic ones.The low ICC and
clustering measures of radiomic feature PCA components and their transformed counterparts reflect the feature
correlation, their limited informativeness and discriminatory power in medical applications. The results are
provided with four PCA components, yet similar results are observable for other numbers of principal components.
It is worth noting that the large covariance of the PCA clusters is a consequence of retaining the components
with the largest variance.

The correlation of the features with the pixel spacing of the scanners (see last column of Table 1) is lower with
the trained features. In particular, the radiomic features grad. present the largest correlation, in line with other
studies.2,6, 12 The deep features and the standardization method significantly reduce this correlation, illustrating
the improved robustness and generalization of the features. The VGG network performs globally better on this
task than ResNet. This is potentially due to the latter’s depth, leading to a difficulty to generalize with the
limited amount of training data, and a larger amount of information extracted on the scanner of origin.

The pre-training domain (natural color images) is distant from the task domain (CT textures in grey levels).
Yet, a good transferability of the pre-trained weights is observed, as well as a quick convergence in finetuning
and a good generalization to unknown textures.

A drawback of the proposed feature transformation, is the limited direct interpretability of the generated
features as compared to some classical radiomic features. However, although interesting studies have investigated
the interpretation of radiomic features and their link with biological characteristics, standard radiomic features
are rarely interpreted directly and individually. Prediction performance of a set of descriptors is usually analyzed
and validated, which is also possible with the proposed learned features.

5. CONCLUSIONS

This paper demonstrates an approach to obtain image features τ(gm) that are robust to scanner variability by
training a neural network on top of radiomic or deep features. The standardized discriminative and quantitative
features can be extracted from patient scans to characterize ROIs (e.g. texture in a tumor region) independently
from the acquisition and reconstruction protocols. This robustness results in better performance and general-
ization for computer-assisted diagnosis, treatment planning and prognosis, in particular when using data from
several hospitals or varying acquisition methods.

Finally, although this study did not evaluate real patient data, the texture phantom was designed to mimic
actual biomedical tissue types (particularly non small cell lung cancer commonly analyzed in radiomics) and
it allowed a controlled analysis to isolate the variation due to scanner variation. Future work is foreseen on
the evaluation of the approach on prognosis, prediction and diagnosis of real patient data, which requires the
extraction of visual features as image biomarkers.
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