[BibTeX] [RIS]
Regression Concept Vectors for Bidirectional Explanations in Histopathology
Type of publication: Article
Citation:
Journal: Lecture Notes in Computer Science
Volume: Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2018
Year: 2018
Pages: 8
Note: Source code: https://github.com/medgift/iMIMIC-RCVs
Abstract: Explanations for deep neural network predictions in terms of domain-related concepts can be valuable in medical applications, where justifications are important for confidence in the decision-making. In this work, we propose a methodology to exploit continuous concept measures as Regression Concept Vectors (RCVs) in the activation space of a layer. The directional derivative of the decision function along the RCVs rep- resents the network sensitivity to increasing values of a given concept measure. When applied to breast cancer grading, nuclei texture emerges as a relevant concept in the detection of tumor tissue in breast lymph node samples. We evaluate score robustness and consistency by statisti- cal analysis.
Keywords: concept vectors, Deep convolutional neural network, Deep Learning, Histopathology, interpretability
Authors Graziani, Mara
Andrearczyk, Vincent
Müller, Henning
Added by: []
Total mark: 0
Attachments
  • rcv_cameraready.pdf
       (paper)
Notes
  • []: Best paper award
Topics