Regression Concept Vectors for Bidirectional Explanations in Histopathology
Type of publication: | Article |
Citation: | |
Journal: | Lecture Notes in Computer Science |
Volume: | Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2018 |
Year: | 2018 |
Pages: | 8 |
Note: | Source code: https://github.com/medgift/iMIMIC-RCVs |
Abstract: | Explanations for deep neural network predictions in terms of domain-related concepts can be valuable in medical applications, where justifications are important for confidence in the decision-making. In this work, we propose a methodology to exploit continuous concept measures as Regression Concept Vectors (RCVs) in the activation space of a layer. The directional derivative of the decision function along the RCVs rep- resents the network sensitivity to increasing values of a given concept measure. When applied to breast cancer grading, nuclei texture emerges as a relevant concept in the detection of tumor tissue in breast lymph node samples. We evaluate score robustness and consistency by statisti- cal analysis. |
Keywords: | concept vectors, Deep convolutional neural network, Deep Learning, Histopathology, interpretability |
Authors | |
Added by: | [] |
Total mark: | 0 |
Attachments
|
|
Notes
|
|
|
|
Topics
|
|
|