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Abstract. Explanations for deep neural network predictions in terms of
domain-related concepts can be valuable in medical applications, where
justifications are important for confidence in the decision-making. In this
work, we propose a methodology to exploit continuous concept measures
as Regression Concept Vectors (RCVs) in the activation space of a layer.
The directional derivative of the decision function along the RCVs rep-
resents the network sensitivity to increasing values of a given concept
measure. When applied to breast cancer grading, nuclei texture emerges
as a relevant concept in the detection of tumor tissue in breast lymph
node samples. We evaluate score robustness and consistency by statisti-
cal analysis.
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1 Introduction

Understanding representations learned by deep neural networks is a core chal-
lenge in medical imaging. Recent work on Testing with Concept Activation
Vectors (TCAV) proposed directional derivatives to quantify the influence of
user-defined concepts on the network output. As a real application example, the
presence of diagnostic concepts such as microaneurysms and aneurysms was used
to explain network predictions for diabetic retinopaty levels [5]. However, diag-
nostic concepts are often continuous measures that might be counter intuitive
to describe by their presence or absence.

Intense research on network interpretability defined the distinction between
global and local interpretability and proposed a taxonomy of desiderata, methods
and evaluation criteria [1, 9, 11]. The relevance, or saliency, of input factors to the
network decision was proposed in several gradient-based methods [11, 13, 14, 16].
Outputs of these methods are typically local explanations that are gathered in
attribution maps and overlayed to the original input image. The interpretability
of these approaches, however, was shown to be limited and often inconsistent [6,
12]. Research in the linearity of the latent space showed that linear classifiers
can learn meaningful directions. These directions were mapped to semantic word
embeddings in [10] or human-friendly visual concepts in [5]. TCAV computes
the direction representative of a concept as the normal to the hyperplane which
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separates a set of concept images from a set of random images. The TCAV score
estimates the influence of the user-defined concept on network decisions [5].

In this paper, we extend TCAV from a classification problem to a regression
problem by computing Regression Concept Vectors (RCVs). Instead of seeking
a discriminator between two concepts (or one concept and random inputs), we
seek the direction of greatest increase of the measures for a single continuous
concept. In particular, we compute RCVs by least squares linear regression of
the concept measures for a set of inputs. We measure the relevance of a concept
with bidirectional relevance scores, Br. The Br scores assume positive values
when increasing values of the concept measures positively affect classification
and negative in the opposite case.

We address breast cancer histopathology as an application for functionally
grounded evaluation. The classification of high-resolution patches as tumorous
and non-tumorous tissue is often used as a first step by state-of-the-art breast
cancer classifiers [15]. Identifying the factors relevant to classification is essen-
tial to improve the physicians’ trust in automated grading. For this reason, we
referred to the Nottingham Histologic Grading system (NHG) [2] to select nu-
clear pleomorphism, and especially variations in nuclei size, shape and texture
as concept measures.

The main contributions of this paper are (i) the expression of concept mea-
sures as RCVs; (ii) the development and evaluation of Br scores; (iii) the com-
putation of nuclei pleomorphism relevance for breast cancer.

In the following, we clarify the notations adopted in the paper. We consider
the set {xi, yi}Ni=1 of inputs and ground truth pairs and a deep convolutional neu-
ral network (CNN) for binary classification with prediction output f(xi) ∈ [0, 1].
The input xi is a 224 × 224 × 3 image patch and yi ∈ {0, 1} is the correspond-
ing class label (with y = 1 for the tumor class). The disjoint set {xj , cj}Kj=1 is
representative of a concept C, with measures cj ∈ IR for each image sample xj .
In the activation space, the output of layer l for input xi is Φl(xi) and the RCV
for C is −→v l

C (we will drop superscript l to simplify the notation). An overview
of the method is presented in Figure 1.

2 Methods

2.1 Correlation to Network Prediction

As a prior analysis, we compute the Pearson product-moment correlation coeffi-
cient ρ between cj and f(xj) for j = 1, ..,K. If cj is not relevant for f(xj), their
correlation should be low. In this case, Φl(xj) should not encode information
about cj and it should be unlikely to find a good linear regression. A high cor-
relation could instead suggest a positive (if ρ > 0) or negative (ρ < 0) influence
of the concept on the prediction.

2.2 Regression Concept Vectors

We extract and flatten the Φl(xj) for each xj . The RCV −→v C is the vector in
the space of the activation that best fits the direction of the strongest increase
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Fig. 1: Method overview. I. Network training. The last node of the CNN outputs a
logistic regression function. The class Tumor is assigned to the input patch when
f(xi) > 0.5. II. Linear Regression. We compute average measurements of mor-
phological and texture features from each xj . Linear regression cj = −→v C ·Φl(xj)
is solved on each (Φl(xj), cj) in the activation space of layer l. III. Sensitivity.
Sensitivity is computed for the xi as the derivative of f(xi) along −→v C.

of the concept measures. This direction can be computed as the least squares
linear regression fit of {Φl(xj), cj}Kj=1 (see Figure 1). In the NHG, for example,
larger nuclei are assigned higher grades by pathologists. If we take nuclei area
as a concept, we seek the vector in the activation space that points towards
representations of larger nuclei.

2.3 Sensitivity to RCV

For each testing pair (xi, yi) we compute the sensitivity score Sl
C,i along the

direction of the RCV:
Sl
C,i = ∇f(Φl(xi)) · −→v C (1)

Sl
C,i represents the network sensitivity to changes in the input along the direction

of increasing values of the concept measures. When moving along this direction,
f(xi) may either increase, decrease or remain unchanged (Sl

C,i=0). The sign of

Sl
C,i represents the direction of change, while the magnitude of Sl

C,i represents
the rate of change. TCAV can be used to obtain global explanations from the
N sensitivities although it does not consider their magnitude. Therefore, we
propose Br as an alternative measure. Br scores were formulated by taking into
account the principles of explanation continuity and selectivity proposed in [11].
For the former, we consider whether the sensitivity scores are similar for similar
data samples. For the latter, we redistribute the final relevance to concepts with
the strongest impact on the decision function. We define Br scores as the ratio
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between the coefficient of determination of the least squares regression, R2, and
the coefficient of variation σ̂/µ̂ of the N sensitivity scores:

Br = R2 ×
(
µ̂

σ̂

)
(2)

R2 ≤ 1 indicates how closely the RCV fits the {Φl(xi), ci}Ni=1. The coefficient of
variation is the standard deviation of the scores over their average, and describes
their relative variation around the mean. For the same value of R2, the Br for
spread scores is lower than for scores that lay closely concentrated near their
sample mean. After computing Br for multiple concepts, we scale the scores to
the range [-1, 1] by dividing by the maximum absolute value.

2.4 Evaluation of the Explanations

The explanations are evaluated on the basis of their statistical significance as
proposed in [5]. We compute TCAV and Br scores for 30 repetitions and perform
a two-tailed t-test with Bonferroni correction (with significance level α = 0.01),
as suggested in [5]. If we can reject the null hypothesis of TCAV of 0.5 for random
scores and Br of 0, we accept the result as statistically significant.

3 Experiments and Results

3.1 Datasets

We trained the network on the challenging Camelyon16 and Camelyon17 datasets1.
More than 40,000 patches at the highest resolution level were extracted from
Whole Slide Images (WSIs) with ground truth annotation. To extract concepts,
we used the nuclei segmentation data set in [8], for which no labels of tumorous
and non-tumorous regions were available. The dataset contains WSIs of several
organs with more than 21,000 annotated nuclei boundaries. From this data set,
we extracted 300 training patches only from the WSIs of breast tissue.

3.2 Network Architecture and Training

A ResNet101[4] pretrained on ImageNet was finetuned with binary cross-entropy
loss for classification of tumor and non-tumor patches. For each input, the net-
work outputs its probability to be tumor with a logistic regression function. We
trained for 30 epochs with Nesterov momentum stochastic gradient descent and
standard hyperparameters (initial learning rate 10−4, momentum 0.9). Staining
normalization and online data augmentation (random flipping, brightness, satu-
ration and hue perturbation) were used to reduce the domain shift between the
different centers. Statistics on network performance were computed from five
random splits with unseen test patients.2

1 https://camelyon17.grand-challenge.org/ as of June 2018
2 The pretrained models and the source code used for the experiments can be found

at https://github.com/maragraziani/iMIMIC-RCVs.git
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3.3 Results

Classification Performance The validation accuracy of our classifier is just below
the performance of the patch classifier used to get state-of-the-art results on the
Camelyon17 challenge [15], as reported in Table 1. We report the per-patch
validation accuracy for both models, although details about the training setup
in [15] are unknown. Bootstrapping of the false positives was not performed and
the training set size was kept limited (with 40K patches instead of 600K). The
obtained accuracy is sufficient for a meaningful model interpretation analysis,
which may be used to boost the network accuracy and generalization. Besides
this, the analysis could itself be used as an alternative to bootstrapping for
detecting mislabeled examples [7].

Table 1: Network accuracy % for binary classification of Camelyon17 patches.
model validation accuracy

Zanjani et al. 98.7
ResNet101 92.43 ± 0.657

Correlation Analysis We expressed the NHG criteria for nuclei pleomorphism
as average statistics of the nuclei morphology and texture features. From the
patches (xj) with ground truth segmentation, we computed average nuclei area,
Euler coefficient and eccentricity of the ellipses that have the same second-
moments as the nuclei segmented contours. We extracted three Haralick texture
features inside the segmented nuclei, namely Angular Second Moment (ASM),
contrast and correlation [3]. The Pearson correlation between the concept mea-
surements and the relative network prediction is shown in Table 2. The concept
measures for contrast had the largest correlation coefficient, ρ = 0.41.

Table 2: Pearson correlation between the concept measurements and the network
prediction.

correlation ASM eccentricity Euler area contrast

ρ −0.2985 −0.1869 −0.1460 0.1534 0.2820 0.4119
p-value ≤ 0.001 ≤ 0.001 ≤ 0.01 ≤ 0.001 ≤ 0.001 ≤ 0.001

Are We Learning the Concepts? The performance of the linear regression was
used to check if the network is learning the concepts and in which layers. The
determination coefficient of the regression R2 expresses the percentage of varia-
tion that is captured by the regression. We computed R2 for all xj patches over
multiple reruns to analyze the learning dynamics. Almost all the concepts were
learned in the early layers of the network (see Figure 2a), with eccentricity and
Euler being the only two exceptions. Figure 2b shows that the concept Euler is
highly unstable and has almost zero mean, suggesting that the learned RCVs
might be random directions.
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(a) (b)

Fig. 2: (a) Linear regression determination coefficient at different layers in the
network for five of the six diagnostic measurements. Results were averaged over
three reruns. 95% confidence intervals are reported. (b) The RCVs for the con-
cept Euler show high instability of the determination coefficient.

Sensitivity and Relevance Sensitivity scores were computed on N = 300 patches
(xi) from Camelyon17. The global relevance was tested with TCAV and Br, as
reported in Figure 3. Contrast is relevant for the classification, with TCAV =
0.75 and Br = 0.25. Even stronger is the impact of correlation, which shifts
the classification output towards the non-tumor class. In this case sensitivies
are mostly negative, with Br = −1 and TCAV = 0.1. These scores mirror the
preliminary analysis of Pearson correlation in Table 2. Unstable concepts, such
as Euler and eccentricity, lead to almost zero Br scores, in accordance with
the initial hypothesis that the RCVs for these concepts might just be random
vectors.

Statistical Evaluation We performed a two-tailed t-test to compare the distri-
butions of the scores against the null hypothesis of learning a random direction
for the TCAV (mean 0.5) and Br (mean 0) scores. The results are presented in
Table 3. There was a significant difference (with p-value ≤ 0.01) in the scores
for all the relevant concepts, namely correlation, ASM, area and contrast. The
statistical significance of correlation improves for Br scores. From the sensitivity
and relevance analysis, we do not expect the Euler and eccentricity concepts to
be statistically different from random directions. The analysis of both TCAV
and Br scores confirms this hypothesis (p-value ≤ 0.01) for the eccentricity,
although the confidence to not reject the null hypothesis is higher with Br. The
Euler concept is not rejected by the TCAV analysis. Br scores, instead, reject
the hypothesis of this score being relevant.

4 Discussion and Future Work

We proposed RCVs as an extension to TCAV. Br scores capture positive and
negative relevance of a concept. Nuclei contrast and correlation were relevant
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Fig. 3: Comparison of TCAV (∈ [0, 1]) and Br (∈ [−1, 1]) scores. Contrast is
relevant according to both measurements. Br scores show that higher correlation
drives the decision towards the non-tumor class. Scores for the unstable Euler
are approximately flattened to zero by Br.

Table 3: Statistical significance of the scores. The p-values are reported for two-
tailed t-tests evaluating the difference between the distributions of the obtained
scores against a normal distribution of the scores for random concepts, i.e. mean
0.5 for TCAV and 0 for Br.

correlation ASM eccentricity Euler area contrast

TCAV 0.002 0.001 0.02 0.01 0.001 0.001

Br 0.001 0.001 0.30 1.0 0.001 0.001

to classification. This is in accordance with the NHG grading system, which
identifies hyperchromatism as a signal of nuclear atypia. Extending the set of
analyzed concepts can lead to the identification of other relevant concepts.

RCVs can be used during model development to get insights about network
training. The learning of the concepts across layers is linked to the size of the
receptive field of the neurons and the increasing complexity of the sought pat-
terns (see Fig. 2 and [5]). Hence, more abstract concepts, potentially useful in
other applications, can be learned and analyzed in deep layers of the network.
Moreover, outliers in the values of the sensitivity scores can identify challenging
training inputs or highlight domain mismatches (e.g. differences across hospitals,
staining techniques, etc.).

Overall, this paper proposed a definition of RCVs and a proof of concept on
breast cancer data. RCVs could be extended to many other tasks and application
domains. In the computer vision domain, RCVs could express not only shape
and texture, but also higher-level concepts such as materials, objects and scenes.
In signal processing tasks, RCVs could be used, for instance, to determine the
relevance of the occurrence of a keyword in topic modeling, or of a phoneme in
automatic speech recognition.
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