Regression Concept Vectors for Bidirectional Explanations in Histopathology
Publicatietype: | Artikel |
Citatie: | |
Tijdschrift: | Lecture Notes in Computer Science |
Deel: | Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2018 |
Jaar: | 2018 |
Pagina's: | 8 |
Aantekeningen: | Source code: https://github.com/medgift/iMIMIC-RCVs |
Samenvatting: | Explanations for deep neural network predictions in terms of domain-related concepts can be valuable in medical applications, where justifications are important for confidence in the decision-making. In this work, we propose a methodology to exploit continuous concept measures as Regression Concept Vectors (RCVs) in the activation space of a layer. The directional derivative of the decision function along the RCVs rep- resents the network sensitivity to increasing values of a given concept measure. When applied to breast cancer grading, nuclei texture emerges as a relevant concept in the detection of tumor tissue in breast lymph node samples. We evaluate score robustness and consistency by statisti- cal analysis. |
Trefwoorden: | concept vectors, Deep convolutional neural network, Deep Learning, Histopathology, interpretability |
Auteurs | |
Toegevoegd door: | [] |
Totaalscore: | 0 |
Bestanden
|
|
Aantekeningen
|
|
|
|
Onderwerpen
|
|
|