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Abstract

Manual segmentation of lesions, required for
radiotherapy planning and follow-up, is time-
consuming and error-prone. Automatic detec-
tion and segmentation can assist radiologists in
these tasks. This work explores the automated
detection and segmentation of brain metastases
(BMs) in longitudinal MRIs. It focuses on sev-
eral important aspects: identifying and segment-
ing new lesions for screening and treatment plan-
ning, re-segmenting lesions in successive images
using prior lesion locations as an additional input
channel, and performing multi-component seg-
mentation to distinguish between enhancing tis-
sue, edema, and necrosis. The key component of
the proposed approach is to propagate the lesion
mask from the previous time point to improve
the detection performance, which we refer to as
“re-segmentation”. The retrospective data in-
cludes 518 metastases in 184 contrast-enhanced
T1-weighted MRIs originating from 49 patients
(63% male, 37% female). 131 time-points (36
patients, 418 BMs) are used for cross-validation,
the remaining 53 time-points (13 patients, 100
BMs) are used for testing. The lesions were man-
ually delineated with label 1: enhancing lesion,
label 2: edema, and label 3: necrosis. One-tailed
t-tests are used to compare model performance
including multiple segmentation and detection
metrics. Significance is considered as p<0.05.
A Dice Similarity Coefficient (DSC) of 0.79 and
F1-score of 0.80 are obtained for the segmen-
tation of new lesions. On follow-up scans, the
re-segmentation model significantly outperforms
the segmentation model (DSC and F1 0.78 and
0.88 vs 0.56 and 0.60). The re-segmentation
model also significantly outperforms the sim-
ple segmentation model on the enhancing lesion
(DSC 0.76 vs 0.53) and edema (0.52 vs 0.47)

components, while similar scores are obtained
on the necrosis component (0.62 vs 0.63). Ad-
ditionally, we analyze the correlation between
lesion size and segmentation performance, as
demonstrated in various studies that highlight
the challenges in segmenting small lesions. Our
findings indicate that this correlation disappears
when utilizing the re-segmentation approach and
evaluating with the unbiased normalized DSC.
In conclusion, the automated segmentation of
new lesions and subsequent re-segmentation in
follow-up images was achievable, with high level
of performance obtained for single- and multiple-
component segmentation tasks.

Keywords— Segmentation, Brain metastases,
Magnetic resonance imaging, Deep learning

1 Introduction

Brain metastases Brain metastases (BMs) orig-
inate from cancer cells that spread to the brain
from other sites, frequently breast, lung, kidney, and
melanoma [1]. Despite recent advances in screening
and care, BMs remain a major cause of morbidity
and mortality. Treatments include one or a combina-
tion of medication, surgery, stereotactic radiosurgery
(SRS) and whole-brain radiation. Contrast-enhanced
T1-weighted magnetic resonance imaging (MRI), re-
cently using 3D magnetisation-prepared rapid gradi-
ent echo (MPRAGE), is commonly used for diagnosis,
treatment planning and follow-up. Manual detection
and segmentation of lesions, required for radiother-
apy planning and follow-up, is time-consuming and
error-prone. Automatic detection and segmentation
can assist radiologists in these tasks.

Automated brain metastases segmenta-
tion Several works have reported promising results
for the automatic detection and segmentation of BMs
from T1 MRI [2, 3], T1 and CT [4], multiple T1s and
FLAIR [5], using standard 2D, 2.5D and 3D Deep
Learning (DL) models.
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Charron et al. [6] were among the first to apply
DL to BM segmentation, using adapted 3D and 2D
models on T1 and FLAIR images. Huang et al. [7]
proposed a DL model utilizing the contrast difference
between consecutive images as a temporal prior, with
the emergence or growth of high contrast an indica-
tor for BMs. Zhang et al. [2] used a region-based
model (Faster R-CNN) for the detection of BMs in
T1 images. In a recent survey, Wang et al. [8] under-
lined the superiority of U-Net and its variants in BMs
segmentation accuracy. Across all referenced stud-
ies, the lesion-wise Dice Similarity Coefficient (DSC)
ranged from 0.55 to 0.915 and the lesion-wise sensi-
tivity from 0.58 to 0.98.

Grøvik et al. [9] proposed a method with input
dropout to handle missing MRI sequences in multi-
modal DL models for BM segmentation. Zhou et
al. [10] proposed a 2-stage algorithm for BM seg-
mentation, with a single-shot detector to first de-
tect regions containing metastases, followed by a DL
model to segment the metastases from those regions.
Three-dimensional U-Net convolutional neural net-
work for detection and segmentation of intracranial
metastases [11] 3D UNet, T1w images. Most studies
agree that small lesions pose a challenge in detection,
leading to a high false negative rate. In particular,
[3, 10] observe a DSC of 0.31/0.17 for lesions <3mm
and 0.87/0.87 for ≥ 6mm. [9, 12, 13] observe a large
performance drop for lesions <10mm3, <15mm and
<0.06mL, respectively. Dikici et al. [12] focused on
detecting small lesions (<15mm) in T1 images by
selecting candidates and using DL classification on
cropped regions around them. Bousabarah et al. [13]
trained a model exclusively on small lesions to achieve
sensitive predictions and ensembled them with pre-
dictions from other models trained on all lesions. Fi-
nally, BM segmentation on pre-treatment images was
the main task of the Brain Tumor Segmentation -
Metastases (BraTS-METS 2023) challenge [14]. The
top-performing algorithm reached an average lesion-
wise DSC of 0.65±0.25 across the three component
enhancing tumor, tumor core and whole tumor.

Several gaps remain to address in the existing lit-
erature, in particular multi-component segmentation
and re-segmentation in follow-up images.

Longitudinal (re-)segmentation Studies on
longitudinal data lesion segmentation primarily ad-
dress the detection of new lesions (e.g. in multiple
sclerosis lesions [15]). Examples include incorporat-
ing auxiliary tasks like image registration [16], and
utilizing multiple time-points as inputs [17, 7]. These
works do not address the re-segmentation of brain le-
sions in follow-up images. This problem is tackled for
instance in whole-body CT scans for tracking soft-
tissue lesions [18], by inputting a region around the
lesion from the previous time-point after registration.

In this work, we explore multiple scenarios of DL
for automated detection and segmentation of BMs in
pre- and post-treatment T1 MRI images motivated
by clinical applications and research. An overview of
the study, put in a clinical context, is illustrated in
Figure 1. This includes the automatic detection and
segmentation of BMs prior to treatment, and the re-
segmentation on consecutive post-treatment images.
We also evaluate the benefit of adding the T2 se-
quence for the segmentation of edema. The research
questions are (i) Can prior knowledge on previously
contoured lesions improve re-segmentation of BMs in
follow-up images ? (ii) Can a DL model segment
separately the enhancing lesion, edema and necroses
? The novelty is therefore two-fold. We incorpo-
rate a BM location prior as input to the DL model
to re-segment previously contoured lesions, and we
propose a model for 3-label segmentation of relevant
BM components including enhancing lesion, edema
and necrosis, using a dataset specifically annotated
for this purpose.

2 Materials and Methods

2.1 Tasks

We define different tasks for corresponding clinical
scenarios. Task 1 is the detection and segmentation
of lesions, particularly focused on the initial appear-
ance of lesions, imaged before treatment. Task 2
is the re-segmentation of lesions on consecutive im-
ages for patient follow-up. During follow-ups, these
two tasks are run in parallel, as shown in Figure 1,
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Figure 1: Overview of the scenarios for different clinical and research applications. In this example,
new lesions are detected as a single label (Task 1.1) and are then re-segmented in follow-up images
with three labels (Task 2.2, enhancing lesion, edema and necrosis).
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to re-segment previously existing lesions, and detect
the appearance of new ones. Both tasks are divided
into sub-tasks for the segmentation of a single label
and multiple labels. Three labels are available from
the annotations; label 1: enhancing lesion, label 2:
edema, and label 3: necrotic part of the lesion (not
all lesions present edema or necrosis).

• Task 1.1: detection and segmentation of whole
lesions (union of labels 1 and 3).

• Task 1.2: multi-label detection and segmenta-
tion of lesions (labels 1, 2 and 3 separately).

• Task 2.1: re-segmentation of whole lesions
(union of labels 1 and 3).

• Task 2.2: multi-label re-segmentation of lesions
(labels 1, 2 and 3 separately).

The targeted clinical and research goals include
detection and segmentation for new SRS treatment,
follow-up for automatic RANO-BM [19] or volume
assessment, and radiomics studies for prediction of
response to treatment.

2.2 Data

The anonymized dataset originates from a retrospec-
tive, single-center, longitudinal study at CHUV [20],
in accordance with the Declaration of Helsinki, the
Swiss legal requirements and the principles of Good
Clinical Practice.The protocol, including the require-
ment for informed consent from all patients whose
data was utilized in the study, was approved by the
Research Ethics Committee of Vaud Canton, Switzer-
land (No. 2019-00448).

The dataset comprises 184 time-points from 49 pa-
tients and a total of 518 BMs. The inclusion criteria
require patients diagnosed with BMs originating from
a melanoma primary cancer, treated with SRS, and
imaged with a post-contrast MPRAGE T1-weighted
MRI. Patients with meningeal metastases were ex-
cluded. Patients and treatments characteristics are
summarized in Table 1.

After training with a senior neuroradiologist (14
years experience), a master student delineated the

lesions on the post-contrast T1 with label 1: enhanc-
ing lesion, label 2: edema, and label 3: necrosis, using
ITK-SNAP[21]. The enhancing lesion and necrosis
were delineated on the T1 sequence, the edema on
the T2 sequence, superimposed with the T1. The
delineations were verified by the senior neuroradiol-
ogist. Examples of manually delineated labels are
illustrated in Figure 2, 4th column.

The average number of time-points per patient is
3.7±3.0 (median 2). There is an average of 2.8±2.6
(median 2) lesions across all patients and time-points.
The percentage of lesions with edema and necrosis is
57% and 23%, respectively. The average volume of
all enhancing lesions is 890±2342 mm3 (median 171).
That of edemas is 7908±17556 mm3 (median 1367),
and necrosis 1089±2546 mm3 (median 158). Exam-
ples of lesions are illustrated in Figure 2, 1st column,
showing the heterogeneity of the data in terms of le-
sion size, location in the brain, structure (enhancing,
edema, necrosis), and appearance.

2.3 Pre-processing

For the re-segmentation models, pairs of consecutive
images are co-registered using the ANTS toolbox [22],
specifically an affine transformation followed by de-
formable transformation, with cross-correlation opti-
mization metric. Brain masks, obtained with HD-
BET [23], restrict the registration within the brain.
The labels from the previous time-point are aligned
using the resulting transform to use as additional in-
put alongside the MRI.

The registration is also used as a potential re-
segmentation method itself, directly using the aligned
labels as predictions.

For all tasks, the images are pre-processed fol-
lowing the nnUNet pipeline [24], including z-score
normalization, 1mm3 resampling of the images (3rd
order spline) and ground truth labels (nearest-
neighbor).

2.4 Models and Training

We use the publicly available 3D nnUNet frame-
work [24], a commonly used semantic segmentation
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Demographics

Gender
Females 18 (36.7%)
Males 31 (63.3%)

Age (years)
Average 65.78
Median 66
Standard deviation 11.96

Diagnosis

Primary site of melanoma
Trunk 15 (30.6%)
Lower limb 9 (18.4%)
Head & neck 7 (14.3%)
Upper limb 6 (12.2%)
Mucosal 2 (4.1%)
Choroid 1 (2%)
Unknown 9 (18.4%)

Treatments

Technique of radiosurgery (number of treatments) [a]
CyberKnife 48
Gamma Knife 26

Systemic treatments - Number (%) of patients receiving

Checkpoint inhibitors
Ipilimumab (anti-CTLA-4) 27 (55.1%)
Nivolumab (anti-PD1) 21 (42.8%)
Relatlimab (LAG-3 inhibitor) 4 (8.2%)

Oncolytic viral immunotherapy
Talimogene laherparepvec (T-VEC) 2 (4.1%)
BRaf- and MEK-selective inhibitors 9 (18.4%)

BRAF inhibitors
Vemurafenib 14 (28.6%)
Dabrafenib 12 (24.5%)

MEK inhibitors
Trametinib 15 (30.6%)
Cobimetinib 3 (6.1%)

Tyrosine kinase inhibitors
Sorafenib 3 (6.1%)
Lapatinib 1 (2%)
Pazopanib 1 (2%)

Chemotherapies
Temozolomide 11 (22.4%)
Dacarbazine 9 (18.4%)
Carboplatin-Taxol 5 (10.2%)
Nab-Paclitaxel 3 (6.1%)
Fotemustine 2 (4.1%)

Table 1: Characteristics of patients and treatments. [a] 19 (38.8%) patients received more than
one radiosurgery treatment.
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model developed to adapt to a given dataset. The
model contains an encoder path, consisting of a stan-
dard convolutional network (including convolutions,
activations, max pooling etc.), and a decoder path.

Various methods are evaluated and compared in-
cluding (i) nnUNet given the image at a single time-
point as input (single input channel); (ii) labels prop-
agated from a previous time-point via registration (as
described in Section 2.3, only for Task 2); (iii) re-
segmentation using nnUNet with labels propagated
from the previous time-point as an additional input
channel (only for Task 2). Besides, we are interested
in the segmentation of each lesion as a single struc-
ture and three separate components. Accordingly, we
use models with a single output label or three output
labels. Methods (ii) and (iii) constitute important
novelty when compared to previously proposed ap-
proaches, which did not considered the propagation
of the lesion masks from the previous time points.

We follow the standard nnUNet training, with
random initial weights, involving a 5-fold cross-
validation trained with Dice and cross-entropy loss
for a total of 1000 epochs, a stochastic gradient de-
scent optimizer with Nesterov momentum. Sliding
windows (160x128x112) are used with patch overlap
and standard data augmentation (e.g. rotation, scal-
ing, noise). As implemented in the nnUNet, ensem-
bling is performed by choosing the best combination
of models on the cross-validation for final prediction
on the test set.

Images from 131 time-points (36 patients, 418
BMs) are used for the cross-validation, the remain-
ing 53 time-points (13 patients, 100 BMs) are used for
testing. All time-points of a patient are in the same
split. The splits are designed to maintain a relatively
constant average number of time-points.

For Task 1, we train and evaluate using the entire
dataset. Since this model is specifically developed
for the segmentation of new lesions, we also evaluate
it on a subset containing pre-treatment lesions only
which are larger and easier to detect than treated
lesions. For Task 2, the goal is to re-segment BMs
already contoured at a previous time-point. Thus,
we consider for this task only pairs of consecutive
images where there is no appearance of new lesion

(36 test pairs). To use all possible data for train-
ing (131 time-points), we “augment” the remaining
images by artificially creating fictitious “previous” la-
bels for new BMs using random dilation, erosion and
translation in all three axes (ranges [0,6] voxels, [0,3]
voxels and [-6,+6] voxels, respectively). We do not
augment the test set to evaluate only on real con-
secutive follow-up images. While future work could
explore learning the distribution of transformations
reflecting lesion evolution, using a simple heuristic
method yielded satisfactory results.

2.5 Evaluation

We employ multiple detection and segmentation met-
rics for the evaluation of the predictions.

Overall segmentation metrics The DSC is
computed as follows.

DSC =
2TP

2TP + FP + FN
, (1)

where TP, FP and FN are true positive, false positive
and false negative voxels, respectively.

DSC is biased to yield greater values for larger
lesions [25]. The normalized DSC (nDSC) is intro-
duced in [26] to de-correlate the DSC with the lesion
load and obtain an unbiased metric of performance.
The nDSC is particularly relevant for comparing the
segmentation of lesions of different sizes, and the cor-
relation of lesion size with segmentation performance
without bias. Let p = FP

TP and n = FN
TP .

nDSC = 2(2 + κp+ n)−1, κ = h(r−1 − 1), (2)

where h represents the ratio between the positive and
negative predicted classes, and 0 < r < 1 is the oc-
currence rate of the positive class averaged across all
samples (i.e. total number of lesion voxels across di-
vided by total number of voxels).

The DSC and nDSC are computed for all images
(possibly containing multiple lesions) and averaged.
The two metrics are also computed per ground-truth
lesion (only in Section 3.3) to evaluate the correlation
with lesion size.
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Detection metrics The F1-score evaluates the
detection performance, i.e. at the lesion level.

F1 =
TPl

TPl + 0.5(FPl + FNl)
. (3)

A predicted lesion that overlaps (intersection over
union) for more than 25% with a ground-truth lesion
is considered a match to calculate the true positive,
false positive and false negative lesions (TPl, FPl and
FNl).

True positive rate (TPR) and false discovery rate
(FDR) are defined as follows.

TPR =
TPl

TPl + FNl
, (4)

FDR =
FPl

TPl + FPl
. (5)

2.6 Statistical tests

Metrics means are reported with standard deviation
and statistical tests are performed with a one-tailed
t-test to compare models performance. Correlation
between lesion volume and model performance is per-
formed with a Spearman correlation. Significance is
considered as p<0.05.

The SciPy library is employed to conduct the sta-
tistical tests and correlation analyses.

3 Results

3.1 Detection and Segmentation

The performance of the models evaluated on Task
1, detection and segmentation on a single image, are
reported in Table 2 for single-label and multi-label.
As illustrated in Figure 2, some very small lesions
are missed by the model. Small lesions are often the
result of effective treatment. Since the analysis per-
formed here is dedicated to newly appeared lesions,
we also evaluate on the more clinically relevant first
appearance of each lesion, resulting in a higher DSC
of 0.79 and F1-score of 0.80 (vs. 0.64 and 0.68, re-
spectively on the full test set). These results are

reported as ”full” and ”pre-treatment” test sets in
Table 2. Other lesions that can be tracked in follow-
up images, often shrunk after treatment, are more
accurately segmented using the re-segmentation al-
gorithm in Section 3.2). These two models can be
run in parallel on follow-up images to optimize both
detection of new lesions and re-segmentation.

To provide a reference, we present the mean Dice
Similarity Coefficient DSC and F1-score achieved on
the single-label training dataset, yielding values of
0.85±0.13 and 0.92±0.15, respectively.

Qualitative results with single label (Task 1.1) are
reported in Figure 2, columns 2 and 3.

3.2 Re-segmentation in Follow-ups

The results of the re-segmentation (Task 2) with lo-
cation prior are reported in Table 3 and compared
with the segmentation results without prior. Note
that the results of the latter are different from those
in Table 2 because the test set does not contain ex-
actly the same cases, see Section 2.2. Additionally,
we report results obtained solely via registration (see
Section 2.3), without re-segmentation. These results
are only reported for single-label Task 2.1 because
registration cannot predict the appearance of necro-
sis or edema.

For comparison, the DSCs and F1-scores on the
entire 3-labels training set are label 1: 0.92± 0.06,
0.98 ± 0.10; label 2: 0.65± 0.38, 0.51± 0.37; and
label 3: 0.96± 0.10, 0.97± 0.11.

The lowest results are obtained for the edema, dif-
ficult to delineate using only T1 sequences. Training
another re-segmentation model with T1 and T2 in-
puts, despite the missing T2 data (10% of the entire
data, all comprised in the training set, T2 is available
for all test cases) replaced by zero values, leads to a
significant increase in performance for edema segmen-
tation (DSC = 0.62∗ (p<0.05) and F1-score = 0.42,
vs DSC = 0.52 and F1-score = 0.38 with the single
T1 sequence).

Qualitative results for Task 2.2 are illustrated in
Figure 2. The first row depicts a small lesion missed
by the segmentation model and correctly segmented
by the re-segmentation model. Other examples of le-
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labels test set mean DSC ↑ mean nDSC ↑ F1-score ↑ TPR ↑ FDR ↓

1+3
full 0.64 ± 0.41 0.64 ± 0.41 0.68 ± 0.44 0.66 ± 0.44 0.01 ± 0.05

pre-treat. 0.79 ± 0.31 0.78 ± 0.31 0.80 ± 0.33 0.78 ± 0.34 0.02 ± 0.05

1
full 0.62 ± 0.38 0.60 ± 0.39 0.66 ± 0.43 0.66 ± 0.44 0.05 ± 0.16

pre-treat. 0.81 ± 0.22 0.79 ± 0.23 0.86 ± 0.26 0.83 ± 0.27 0.03 ± 0.10

2
full 0.52 ± 0.29 0.51 ± 0.26 0.28 ± 0.32 0.23 ± 0.30 0.42 ± 0.44

pre-treat. 0.55 ± 0.29 0.52± 0.26 0.39 ± 0.40 0.38 ± 0.40 0.57 ± 0.38

3
full 0.67 ± 0.25 0.66 ± 0.24 0.78 ± 0.34 0.85 ± 0.36 0.20 ± 0.35

pre-treat. 0.80 ± 0.12 0.77 ± 0.12 0.93 ± 0.12 1.00 ± 0.00 0.11 ± 0.18

Table 2: Results on Task 1, detection and segmentation. Results of two sub-tasks are reported,
separated by a double horizontal line, for the segmentation of a single label (whole lesion, Task
1.1) and three separate labels (Task 1.2). Results are reported separately for all test cases (full, 53
images), and for pre-treatment images only (15 images).

labels model mean DSC ↑ mean nDSC ↑ F1-score ↑ TPR ↑ FDR ↓

1+3
seg. 0.56 ± 0.43 0.57 ± 0.44 0.60 ± 0.47 0.60 ± 0.47 0.01 ± 0.06

regis. 0.74∗ ± 0.18 0.82∗ ± 0.14 0.93∗ ± 0.23 0.94∗ ± 0.23 0.07 ± 0.23

re-seg. 0.78∗ ± 0.26 0.81∗ ± 0.27 0.88∗ ± 0.32 0.88∗ ± 0.32 0.07 ± 0.23

1
seg. 0.53 ± 0.41 0.52 ± 0.42 0.56 ± 0.47 0.56 ± 0.48 0.05 ± 0.19

re-seg. 0.76∗ ± 0.25 0.77∗ ± 0.27 0.86∗ ± 0.32 0.87∗ ± 0.32 0.11 ± 0.29

2
seg. 0.47 ± 0.28 0.47 ± 0.25 0.22 ± 0.25 0.15 ± 0.18 0.35 ± 0.45

re-seg. 0.52∗ ± 0.26 0.51 ± 0.23 0.38∗ ± 0.32 0.38∗ ± 0.37 0.45 ± 0.37

3
seg. 0.63 ± 0.25 0.62 ± 0.24 0.73 ± 0.40 0.82 ± 0.39 0.21 ± 0.36

re-seg. 0.62 ± 0.25 0.60 ± 0.24 0.79 ± 0.38 0.82 ± 0.39 0.14 ± 0.31

Table 3: Results on Task 2, the re-segmentation of previously existing lesions. Results of two
sub-tasks are reported, separated by a double horizontal line, for the segmentation of a single label
(whole lesion,Task 2.1) and three labels (Task 2.2). The re-segmentation model with prior (re-
seg.) is compared to the segmentation model without prior developed for Task 1 (seg.). For the
single label segmentation, the results obtained with a simple non-rigid registration are also reported
(regis.). For the multi-label segmentation, the average results on labels 2 and 3 are computed for
images containing a ground truth volume of the corresponding label (36 and 20 images, respectively)
to avoid boosting the results with perfect predictions resulting from true negatives. The asterisk (*)
denotes statistical significance, investigating the superiority of performance of the re-segmentation
(and registration-only approach) over segmentation without prior.
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Figure 2: Qualitative results (2D axial views) of the automatic BM segmentation in T1 images.
The second column shows the ground truth for a single whole lesion label (labels 1+3). The third
column is the contoured prediction of the detection and segmentation model (Task 1.1). The fourth
column shows the ground truth with the three individual labels, namely 1: enhancing lesion (green),
2: edema (blue), 3: necrosis (red). The last column illustrates the prediction of the re-segmentation
model with these three labels (Task 2.2). The first row illustrate a very small lesion missed by the
segmentation model without prior information on previous time-point.
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sions of different sizes and with different components
are also illustrated.

3.3 Correlation Lesion Volume and
Performance

For single-label segmentation (Task 1.1), the Spear-
man correlation between lesion volume and DSC is
0.73 (significant) when considering all lesions, new
and previously treated. Note that Pearson correla-
tion is lower than Spearman on these evaluations.
The correlation decreases to 0.31 with the nDSC (un-
biased towards lesion size), yet remains statistically
significant due to false negative small lesions. No-
tably, when focusing on the initial appearance of
lesions in baseline images, which is more relevant
to Task 1 and encompasses larger lesions than the
treated ones, no correlation is found using the nDSC
(p=0.19).

With the resegmentation model, no significant cor-
relation (Pearson or Spearman) is observed between
the nDSC and the lesion volume (coefficients -0.17
and -0.07, respectively).

4 Discussion

4.1 Detection and Re-Segmentation

Previous studies [6, 12, 5, 3] reported the challenge in
detecting small lesions (e.g., <15mm diameter) with
standard models. Our experimental results confirm
this observation through the strong correlation be-
tween lesion volume and segmentation performance.
This correlation, however, vanished when using the
prior for re-segmentation and evaluating with the
nDSC. The proposed re-segmentation model with lo-
cation prior significantly improves the segmentation
of small treated lesions, as depicted in Figure 2 (first
row) and reported in the overall segmentation results
(Task 2.1, Table 3, with DSC and F1-score of 0.78 and
0.88, respectively, vs 0.56 and 0.60 with the simple
segmentation model). These results show that an ex-
cellent detection of new lesions and re-segmentation
in consecutive follow-up images can be obtained by

coupling two models specifically trained on Task 1
and Task 2 respectively.

4.2 Comparison with Registration

Employing registration alone for re-segmenting le-
sions in consecutive time-points leads to seemingly
good results (Table 3 3rd row). The F1-score is
high (0.93) because all lesions are present in the
previous time-point and matched after registration
(overlap>25%). However, the boundary often largely
deviates from the actual lesion border due to the
variation in size and shape across post-treatment im-
ages. Moreover, this method cannot handle multi-
ple labels and fails to address lesions that have com-
pletely disappeared, resulting in false positives with
important consequences in patient follow-up. These
drawbacks limit the utility of registration-based re-
segmentation. However, local registration and rules
for detecting complete responses could be used in the
future to improve results using registration only.

4.3 Multi-Label Segmentation

Depending on the clinical application (lesion de-
tection, treatment planning, patient follow-up, ra-
diomics studies), different sublesional components
may be needed. The proposed models can be used
with good performance to segment the whole lesions
as a single label, as performed in other studies, or
three separate labels (enhancing lesion, edema and
necrosis) which is particularly relevant for the follow-
up of patients via a quantitative treatment response
assessment. The boundary of the edema is difficult to
locate on T1 images. Including the T2 sequence as
additional input, despite missing data, significantly
improves its segmentation. However, a drop of per-
formance is observed for the other labels. As the
lesion is more important clinically than the edema,
we primarily reported the results without T2. More
sophisticated handling of the missing data, or an en-
sembling of predictions may be used in the future for
an optimal compromise.
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4.4 Limitations

Interestingly, carefully inspecting the predictions in
the cross-validation allowed us to detect some BMs
that were not manually contoured (similarly to [3])
and to correctly re-delineate them. Limitations of
segmentation metrics [27] also emerged from the eval-
uation and visualization of predictions and manual
delineations. These observations motivate a compre-
hensive user study of segmentation quality for better
evaluation of clinical readiness.

The study’s limitations include potential dataset
biases, which may affect the model’s generalization
to other populations or lesion types (e.g. general-
ization to other centers and non-melanoma primary
cancers). Finally, the segmentation of edema was the
most challenging. While this performance can be im-
proved with additional sequences (T2, as reported in
Section 3.2), it is also less clinically relevant than the
enhancing lesion and necrosis.

4.5 Clinical Significance

The improved segmentation accuracy, particularly
for small lesions, has a significant impact on clini-
cal decision-making. Precise lesion delineation en-
hances treatment planning by ensuring accurate ra-
diation targeting, which may reduce side effects and
improve patient outcomes. Additionally, it enables
reliable tracking of lesion progression, facilitating
timely treatment adjustments. Automatic segmen-
tation, in particular, supports the use of volumet-
ric measurements, which may better represent lesion
size and progression than the standard 2D axial mea-
surements. Additionally, the reduced need for man-
ual corrections by radiologists improves workflow effi-
ciency and minimizes human error, leading to a more
streamlined and effective clinical workflow.

4.6 Integration with Radiomics and
Predictive Analytics

Automatic segmentation enables the extraction of ra-
diomic features essential for training predictive mod-
els, such as 12-month response, radionecrosis, or

brain disease-free survival (DFS). This also supports
the modeling of volume trajectories to identify re-
sponse populations, allowing for personalized patient
management by adjusting follow-up frequency and
SRS treatment plans to optimize the balance between
tumor response and radionecrosis risk. For instance,
Peng et al. [28] demonstrated that radiomic features
from segmented lesions improve the distinction be-
tween progression and radionecrosis after SRS. Accu-
rate delineation by our model could further enhance
such predictions and support precision medicine. In
future work, we plan to use these models to automat-
ically segment the BMs in a larger cohort to conduct
a large-scale radiomics study for automatic response
assessment and outcome prediction, without the need
for manual annotation.

5 Conclusion

In this study, we presented a deep learning model
for the detection and segmentation of brain metas-
tases in longitudinal MRI, demonstrating significant
improvements in accuracy, particularly in handling
small lesions and complex multi-component segmen-
tation tasks. The main novelty of our approach is to
propagate the segmentation from the previous time-
point, referred to as “re-segmentation”, allowing to
significantly improve the detection performance. Our
model’s precise delineation of lesions enhances clini-
cal decision-making by enabling more accurate treat-
ment planning, reliable tracking of lesion progression,
and efficient workflow integration. The reduced need
for manual corrections not only minimizes human er-
ror but also results in substantial time savings, which
is critical in high-volume clinical environments.

Despite the promising results, we acknowledge cer-
tain limitations, such as dataset biases, which may
affect the model’s generalizability. Future research
should focus on addressing these limitations by ex-
panding the dataset. Additionally, the potential in-
tegration of our segmentation model with radiomics
and predictive analytics tools holds promise for ad-
vancing personalized medicine, offering automated
and more accurate assessments of treatment response
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and patient outcomes.
Our findings underscore the potential of advanced

segmentation models to not only improve clinical
workflows but also to contribute to more effective and
personalized patient care.

6 Data availability

The datasets generated and/or analyzed during the
current study are not publicly available as not per-
mitted by the ethics agreement. However, the cor-
responding author can be contacted for any inquiries
or requests related to the data. Interested researchers
are encouraged to reach out to the corresponding au-
thor for further information.
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