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Abstract. We define and investigate the Local Rotation Invariance (LRI)
and Directional Sensitivity (DS) of radiomics features. Most of the clas-
sical features cannot combine the two properties, which are antagonist
in simple designs. We propose texture operators based on spherical har-
monic wavelets (SHW) invariants and show that they are both LRI and
DS. An experimental comparison of SHW and popular radiomics opera-
tors for classifying 3D textures reveals the importance of combining the
two properties for optimal pattern characterization.

Keywords: Radiomics, 3D Texture, Spherical Harmonics, Wavelets.

1 Introduction

Radiomics aims at establishing potential links between radiological image con-
tent and disease phenotypes [1]. Its potential for personalized medicine is enor-
mous, thanks to the ability to accurately identify disease subtypes and respon-
ders to therapy in a noninvasive fashion. Its success fully relies on the relevance
of extracted quantitative image measures for characterizing the manifestation of
disease under the form of local tissue alterations (i.e. 3D texture) observed in
Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET). The tissue alterations can be diverse, including
necrosis, angiogenesis, fibrosis, cell proliferation (e.g. densification and higher
metabolism) [2]. The latter induce corresponding imaging signatures in terms of
3D low-level patterns (e.g. blobs, intersecting surfaces and curves, Fig. 1). Such
patterns are characterized by discriminative directional properties and have arbi-
trary 3D orientations. As a consequence, optimal radiomics image operators must
combine Local Rotation Invariance (LRI) with Directional Sensitivity (DS) [3].

In this paper, we first formally define the notion of LRI and discuss how it
relates to the DS of operators. We then propose a novel texture operator based
on Spherical Harmonic Wavelet (SHW) invariants that can combine the two
properties. Second, we qualitatively compare SHW invariants with classic 3D
radiomics features in terms of LRI and DS. Finally, we evaluate experimentally
the importance of the latter properties for 3D texture classification.
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Fig. 1. 3D low-level patterns associated with biomedical tissue architectures. The latter
include ellipsoid blobs (a), tumor or organ walls (b), and diverse vascular configurations
(c), (d). These patterns can have arbitrary orientations in 3D medical images.

2 Materials and Methods

2.1 Notations

Vectors are written with bold symbols. The Fourier transform of an integrable

function f : R3 → R is f̂(ω) =
∫
R3 f(x)ejω

Txdx. It is naturally extended to any
square-integrable function in the usual manner. We use spherical coordinates
(r, θ, φ) in Fourier domain, with radial distance r ≥ 0, polar angle φ ∈ [0, 2π),
and azimuthal angle θ ∈ [0, π).

2.2 Local Rotation Invariance and Directional Sensitivity

We follow the framework introduced in [3], where it is proposed that any tex-
ture analysis approach can be decomposed into (i) the application of a texture
operator G associating to an image f(x) a response map h(x) = G{f}(x) and
(ii) the aggregation of the response map information, transforming h(x) into a
scalar measurement through the use of an aggregation function1 on a Volume Of
Interest (VOI). This approach allows focusing on the properties of the texture
operator in terms of LRI and DS, which we define as follows.

Definition 1. A texture operator G is Locally Rotation Invariant (LRI) if the
response map at x0 is not affected by the rotation of the input image around x0.
In other terms, if, for any rotation operator R, any x0 ∈ R3, and any input
image f ∈ L2(R3), we have

G{f}(x0) = G{Rx0
f}(x0), (1)

where Rx0 is a translated version of the rotation operator R that is centered
around x0 instead of the origin 0 as Rx0

= Tx0
RT−x0

, with Tx0
is a translation

operator by x0.

The LRI is highly desirable for texture analysis, but is antagonist with the will
of being sensitive to directional features to avoid mixing blobs, edges and ridges.

1 It is worth noting that steps (i) and (ii) are repeated multiple times in Convolutional
Neural Networks (CNN).
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For instance, it can be shown that a convolutional texture operator of the form
G{f} = g ∗ f is LRI if and only if the filter g is isotropic, therefore insensitive
to the directional features of the input signal f . It follows that operators com-
bining LRI and DS require using more complex designs such as SHW invariants
presented in the next section.

2.3 Spherical Harmonic Wavelets

We design operators combining LRI and DS based on SHW. We use wavelets
to characterize the local image information at different scales. The wavelet de-
composition is computed efficiently due to the filterbank structure [4]. In what
follows, we denote by ĝ(r) the 3-dimensional isotropic wavelet of interest, that
only depends on the radius r. In practice, we use the Meyer wavelet [4] known
for its good localization in space and frequency. The scale index is i ∈ Z and we
set ĝi(r) = 22i/3ĝ(2ir) the wavelet at different scale (the normalization is chosen
so that each gi has norm 1). In what follows, I = {imin, . . . , imax} always refer
to a finite subset of Z.

The directional information is taken into account using spherical harmonics.
The family of spherical harmonics is denoted by (Y mn )n≥0,m∈{−n,...,n}, where
n is called the degree and m the order of Y mn . Spherical harmonics form an
orthonormal basis for square-integrable functions in the 2D-sphere S2. They are
defined as [5]

Y mn (θ, φ) = Amn P
|m|
n (cos(θ))ejmφ, (2)

with Amn = (−1)(m+|m|)/2
(

2n+1
4π

(n−|m|)!
(n+|m|)!

)1/2
a normalization constant and P

|m|
n

the associated Legendre polynomial given for 0 ≤ m ≤ n by [6]

Pmn (x) :=
(−1)m

2nn!
(1− x2)m/2

dn+m

dxn+m
(x2 − 1)n. (3)

We consider finitely many degrees, N ≥ 0 being the maximal degree. In par-
ticular, we have

∑N
n=0(2n + 1) = (N + 1)2 harmonics of degree up to N .

Note that one can recover any angular pattern when N → ∞. We then com-
bine isotropic wavelets and spherical harmonics to consider filters of the form
(r, θ, φ) 7→ ĝi(r)Y

m
n (θ, φ) in Fourier domain.

SHW Invariants to Local Rotations Fix an image f . For the scale i ∈ I,
the degree n ∈ {0, . . . , N}, and the order m ∈ {−n, . . . , n}, we set the texture

measurement scalar ci,n,m(f) := 〈f̂ , ĝiY mn 〉 and vector ci,n(f) = (ci,n,m)|m|≤n.
Here, ci,n(f) contains the spectral information for the degree n, once we have
projected the 3D image on the sphere using the isotropic wavelet ĝ at scale i.
We set

αi,n(f) =
‖ci,n(f)‖22

2n+ 1
=

1

2n+ 1

∑
−n≤m≤n

|ci,n,m|2, (4)

that represents the spherical energy of the image, centered around 0, and aver-
aged on the (2n + 1) components of ci,n, for the degree n and at scale i. The
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quantities (4) represent the directional information of the image of interest f at
the location x0 = 0. The texture operators are defined by sliding the image to
different center x0 ∈ R3. For i ∈ I and n ≤ N , we set

hi,n(x0) = Gi,n{f}(x0) = (αi,n(f(· − x0)))1/2. (5)

Here, hi,n is a new image (i.e. response map) that can be interpreted as follows.
It extracts the energy contained in the spatial and spherical frequencies corre-
sponding to the degree n, at scale i, for the image f centered around the location
x0. Then, Gi,n is a texture operator in the sense of [3].

Proposition 1. The texture operators Gi,n are LRI in the sense of Def. 1.

Proof. We show (1) for x0 = 0. It is then easily extended by exploiting that
Rx0

= Tx0
RT−x0

. The rotated spherical harmonic RY mn is in the span of the
spherical harmonics of same degree Y m

′

n ; that is,RY mn =
∑n
m′=−n sn,R[m,m′]Y m

′

n .
Because rotations are isometric operators, we have that

1 = ‖Y mn ‖L2
= ‖RY mn ‖L2

=

∥∥∥∥∥ ∑
m′=−n...n

sn,R[m,m′]Y m
′

n

∥∥∥∥∥
L2

= ‖sn,R[m, ·]‖2.

(6)
Moreover, RY mn and RY m′n are orthogonal as soon as m 6= m′, implying that
〈sn,R[m, ·], sn,R[m′, ·]〉 = 0 form 6= m′. In other terms, Sn,R = (sn,R[m,m′])m,m′

is a matrix preserving the Euclidean norm2. We then have, using that the ro-
tations commute with the Fourier transform and expanding R∗Y mn where R∗ is
the adjoint rotation of R,

ci,n(Rf) =
(
〈Rf̂ , ĝiY mn 〉

)
m

=
(
〈f̂ , ĝiR∗Y mn 〉

)
m

= (Sn,R∗ci,n(f))m . (7)

Finally, since Sn,R∗ preserves the Euclidean norm, we deduce that

Gi,n{Rf}(0) =
1

2n+ 1
‖ci,n(Rf)‖22 =

1

2n+ 1
‖Sn,R∗ci,n(f)‖22

=
1

2n+ 1
‖ci,n(f)‖22 = Gi,n{f}(0). (8)

In summary, Gi,n incorporates directional information by considering differ-
ent spherical frequencies defined by the degree n, and taking the norm of the
vector ci,n(f) allows extracting the spherical frequencies in a rotation invari-
ant fashion. The latter can qualitatively be interpreted as the spherical Fourier
modulus computed for a degree n, at a position x0 and scale i. This is the main
advantage of the proposed method.

To obtain a set of scalar texture measurements, we use the average of the
image Gi,n{f} over a VOI M as an aggregation function µi,n in the sense of [3].

2 The matrix Sn,R is called the steering matrix in the literature [7]. We recovered the
well-known property that the steering matrix of spherical harmonics is orthogonal.
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3 Results

3.1 LRI and DS of Popular Radiomics Operators

We provide a qualitative comparison of popular radiomics operators3 in terms
of their DS and LRI. This comparison is presented in Table 1 and includes SHW
invariants, aligned Riesz wavelets [8], separable Haar wavelets and Coiflets [4],
Laplacians of Gaussians (LoG) and the three main approaches based on Gray-
Level Matrices (GLM): Gray-Level Co-occurrence Matrices (GLCM) [9], Gray-
Level Run-Length Matrices (GLRLM) [10], Gray-Level Size Zone Matrices (GLSZM)
[11]. We refer to [3] for detailed descriptions of the texture operators. We observe
that only SHW invariants and can combine LRI with DS. Aligned Riesz wavelets
can approximately combine the two properties.

Table 1. Qualitative comparison of popular radiomics operators.

Directional sensitivity Invariance to local rotations

SHW invariants
Yes, i.e. in terms of spherical

frequencies of a given degree n.

Yes
(via Proposition 1).

aligned Riesz
wavelets [8]

Yes, i.e. in terms of higher order
partial image derivatives.

Approximately, via the local
alignment of the filters based on

the structure tensor.

Haar wavelets
and Coiflets [4]

Yes. The separable filters are
directional and aligned with

image axes.

No, rotations will redistribute
energies among the subbands.

LoGs

No. The convolutional texture
operator g(x) = g(||x||) = g(r)

is isotropic.

Yes
(via isotropy).

GLCMs [9]
No. The texture operators

become isotropic when averaged
over all image directions.

Approximately
(via discrete isotropy).

GLRLMs [10]
No. The texture operators

become isotropic when averaged
over all image directions.

Approximately
(via discrete isotropy).

GLSZMs [11]
No, the texture operator will
mix elongated and circular

zones.

Approximately
(via discrete isotropy).

3.2 3D Synthetic Texture Classification

We evaluate the importance of radiomics operators combining directional sen-
sitivity and local rotation invariance on the synthetic RFAI database [12]. The

3 Considered popular operators are those included in radiomics libraries including
pyRadiomics, TexRAD, IBEX, CERR, MAZDA, QIFE, LifeX and QuantImage.
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Fig. 2. The 15 classes of the Fourier dataset of the RFAI database [12]. Each instance
is a 3D image of 64× 64× 64 voxels.

texture images resemble medical tissues observed in CT, MRI and PET, in-
cluding pronounced directional components. The Fourier dataset includes 15
classes built from various synthetic power spectrums (see Fig. 2). There are ten
64 × 64 × 64 instances per class, which are built from randomly selected phase
values in the Fourier domain. Two test suites are available. The first one, re-
ferred to as Normal contains the initial 150 instances. A second one, referred to
as Rotate includes 150 new instances that underwent random 3D rotations of
the initial power spectrum. We use linear Support Vector Machines (SVM) in
order to classify adequately the 3D textures, where the cost of errors is optimized
in [10−4; 106]. We use a Leave-One-Out (LOO) cross-validation to evaluate the
average classification performance in terms of accuracy. For both Normal and
Rotate test suites, only instances from the Normal set are used for training the
models. Mirror boundary conditions and average energies of the coefficients were
used for all convolutional approaches. Specific settings of the feature groups are
listed in the following paragraphs.

SHW Invariants One considers the feature vector µ = (µi,n)i∈I, 0≤n≤N from

the SHW invariants. The number of features is therefore |I|×(N+1), the number
of scales |I| being chosen as 4. Concatenated degrees up to N = 11 are tested,
resulting in feature vectors of dimensionalities from 4 to 48.

Aligned Riesz wavelets We compute features from aligned 3D Riesz wavelets
as developed in [8] and included in the QuantImage platform4. The Meyer
isotropic wavelet is used with four scales. The variance of the Gaussian win-
dow regularizing the structure tensor is fixed to 1. Separated Riesz orders in
[0; 4] are tested, resulting in feature vectors of dimensionalities from 4 to 60.

Haar wavelets and Coiflets 3D Separable Haar wavelets and Coiflets [4]
are computed using the pyRadiomics toolbox5 [1]. The pure Lowpass (L) filter is
not used, resulting in 7 filters involving the Highpass (H) per scale (i.e. following
x− y− z convention: HHH, HLL, LHL, LHH, LLH, HHL, HLH). Coiflets with 1
to 5 Vanishing Moments (VM) were tested, where one VM provided best results.
Concatenated scales in [1; 4] are tested, resulting in 7 to 28 features.

4 https://radiomics.hevs.ch, as of June 2018.
5 https://pyradiomics.readthedocs.io, as of June 2018.
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Laplacians of Gaussian 3D LoGs are computed using pyRadiomics [1].
Concatenated variances σ = 1, 1.5, . . . , 5 are tested, resulting in 1 to 9 features.
Gray level matrices GLMs features including GLCMs, GLRLMs and GLSZMs
are computed using pyRadiomics [1]. Default values are used. 23 GLCMs features
are computed as listed in pyRadiomics’ documentation. GLCMs operators with
distances in [1; 5] are tested resulting in 23 to 115 features when concatenated.
16 GLRLMs and 16 GLSZMs features are computed using default values.
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Fig. 3. Classification accuracies with respect to the number of features for both Normal
and Rotate test suites. Chance level accuracy is 0.07.

The classification accuracies with respect to the number of features are re-
ported in Fig. 3 for Normal and Rotate test suites. SHW invariants provide
excellent classification performance for a low number of features (i.e. 16 with
N=3). They also showed high generalization abilities with best performance on
the Rotate dataset. The degradation of classification performance is caused by
(i) the use of interpolation for implementing rotations in RFAI and (ii) impor-
tant boundary effects when using four dyadic wavelet scales on 64 × 64 × 64
images, which are more or less present based on a given rotation. Separable
wavelets showed poor generalization on Rotate, which is due to their lack of
LRI. LoGs, and all GLM designs achieved relatively poor performance on both
datasets, which highlights the importance of DS. While LoGs showed excellent
generalization on Rotate, all GLMs did not perform well on rotated instances.
This suggests that approximate LRI via discrete isotropy is not sufficient. Over-
all, the results strongly support our hypothesis that combining LRI with DS is
essential for optimal texture characterization.

We did not included CNNs in the comparison as the number of features
largely exceeds the dimensionalities considered here and they require many more
instances for training. However, it is worth noting that although classical CNNs
are DS but not LRI, recent designs such as group equivariant CNNs can approx-
imate LRI [13].
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4 Conclusions

We introduced the notions of LRI and DS and their importance for designing
optimal radiomics image operators. The difficulty of combining the two proper-
ties was highlighted, and we subsequently proposed a simple approach based on
SHW invariants to fulfill the two requirements. A qualitative comparison of pop-
ular radiomics operators revealed that none of them are able to combine LRI and
DS. We demonstrated the importance of these two properties for 3D synthetic
texture classification, where the proposed SHW invariants showed improved clas-
sification performance on rotated images. We believe that such operators capable
of combining LRI and DS will yield optimal performance for radiomics.
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