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Abstract— The prediction of cancer characteristics, treatment
planning and patient outcome from medical images generally
requires tumor delineation. In Head and Neck cancer (H&N),
the automatic segmentation and differentiation of primary
Gross Tumor Volumes (GTVt) and malignant lymph nodes
(GTVn) is a necessary step for large-scale radiomics studies
to predict patient outcome such as Progression Free Survival
(PFS). Detecting malignant lymph nodes is also a crucial step
for Tumor-Node-Metastases (TNM) staging and to support the
decision to resect the nodes. In turn, automatic TNM staging
and patient outcome prediction can greatly benefit patient care
by helping clinicians to find the best personalized treatment. We
propose the first model to automatically individually segment
GTVt and GTVn in PET/CT images. A bi-modal 3D U-Net
model is trained for multi-class and multi-components segmen-
tation on the multi-centric HECKTOR 2020 dataset containing
254 cases. The dataset has been specifically re-annotated by
experts to obtain ground truth GTVn contours. The results
show promising segmentation performance for the automation
of radiomics pipelines and their validation on large-scale studies
for which manual annotations are not available. An average test
Dice Similarity Coefficients (DSC) of 0.717 is obtained for the
segmentation of GTVt. The GTVn segmentation is evaluated
with an aggregated DSC to account for the cases without GTVn,
which is estimated at 0.729 on the test set.

I. INTRODUCTION

Head and Neck (H&N) lymph nodes contain prognos-
tically relevant information in PET/CT that can be used
in radiomics analyses to predict patient outcomes such as
Progression Free Survival (PFS). While tissue metabolism
can be high in both the primary tumor (GTVt) and the lymph
nodes (GTVn) when observed in PET, radiomics prognostic
models should use distinct visual biomarkers from these two
Volumes Of Interest (VOI) types as different tissular and
metabolic profiles are expected. Both GTVt and GTVn carry
complementary information for the prediction of patient
outcome and staging. In clinical routine, radiologists and
nuclear physicians will base decisions regarding treatment
planning using both the GTVt and GTVn (lymph node
positivity). Biopsy remains the gold standard to determine
the malignancy of lymph nodes and is requested, for instance,
for small primary tumors with suspicious lymph nodes. The
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multi-label segmentation of GTVt and GTVn is therefore a
crucial step for the automation of patient outcome prediction
to improve personalized medicine in H&N cancer. Segment-
ing GTVn also allows tackling the challenge of automatic
Tumor-Node-Metastases (TNM) staging and could provide
decision support for the resection of malignant lymph nodes.

In [1], [2], the authors proposed the segmentation, in
PET/CT images of patients with H&N cancer, of GTVt and
GTVn without distinction between the two VOI types (i.e.
single label versus background). While this work was an
important first step, its clinical relevance is limited as no
differentiation is made between the two types of tumorous
volumes. Various deep learning models were proposed in
the context of the two editions of the HECKTOR challenges
(2020 [3], [4] and 2021 [5]) to segment the GTVt only.
The relevance of this type of automatic segmentation was
revealed in [6], where radiomics features were extracted from
automatically segmented GTVt, leading to promising results
for fully automatic PFS prediction. In [7] and [8], multi-
task CNNs were proposed for the prediction of PFS in H&N
PET/CT images, guiding this task with the auxiliary task
of GTVt segmentation. The existing literature specifically
related to GTVn segmentation is limited. The automatic
segmentation has been proposed in other regions including
axillary and supraclavicular tumoral lymph nodes in [9], and
thoracic lymph nodes in [10].

We propose the first method to segment GTVn and GTVt
from PET/CT images in H&N patients, while being able to
distinguish between the two types of tumoral volumes. Our
approach is based on a bi-modal 3D U-Net model trained
with a combination of standard Dice loss and a specific
aggregated Dice loss to accommodate multi-class and multi-
components GTVn segmentation. A similar batch-aggregated
Dice loss was used in [11] for cardiac aorta and brain tumor
segmentation to maintain a smooth, continuous and non-
constant loss when facing no-target labels.

II. METHODS

A. Dataset

We use the HECKTOR 2020 dataset [3], [4], which was
originally released for the development of automatic GTVt
segmentation from PET/CT images in the oropharyngeal
region. Part of the data originates from [12]. The data were
collected from five centers, of which four are used for the
training, one for testing. An expert re-annotated this data to
obtain high-quality annotations of both GTVt and GTVn,



which is detailed in [3]. Lymph nodes are considered malig-
nant if they are pathologically confirmed, have a SUV greater
than 2.5, or have a diameter greater than 1cm. The training
and test split proposed in the HECKTOR 2020 challenge are
used in the experiments. After splitting the training data for
validation (60%, 40%), the training set contains 119 cases
and the validation set 82 cases. The test set contains 52 cases.
All of the test cases contain GTVt, but only 44 cases contain
at least one GTVn. The average number of GTVn volumes
(i.e. connected components) per case on the entire dataset
is 1.8 (40 cases with 0, 83 with 1 and 130 with more than
1). The images are resampled using a trilinear interpolation
to a 1mm3 isotropic voxel size and further cropped using
bounding boxes of size 144 × 144 × 144 provided with
the data and automatically obtained as described in [13].
Z-score normalization is applied to the PET images and the
CT images are clipped in [-300, 300] and mapped to [0, 1].

Importantly, the annotations will be shared publicly, to-
gether with additional data for the HECKTOR 2022 chal-
lenge to allow other researchers to evaluate and compare
their state of the art methods on this challenging task.

B. Segmentation Models

For these experiments, we use simple 3D U-Net mod-
els [14]. The encoder part of the U-Net is composed of
five consecutive residual blocks with 4, 8, 16, 32 and 64
output feature maps. The decoder part contains four blocks
with transpose convolution and skip-connections from the
encoder and with 32, 16, 8 and 4 output feature maps. The
output block is composed of a first convolution with 24
filters and a final layer depending on the configuration used,
which we detail in the next paragraph. All the intermediate
convolutions are ReLU activated and the residual blocks
contain batch normalization. We test multiple variants to
evaluate (i) the individual contributions and complementarity
of the PET and CT modalities in a multi-modal approach
(two input channels with a single encoder/decoder); (ii) the
benefit of training the model for the segmentation of GTVt
and GTVn simultaneously, as opposed to individual models.

For the single segmentation task, the models output a
single channel with sigmoid activation in the final layer. The
models trained for GTVt and GTVn in parallel output three
channels for the background, GTVt and GTVn respectively,
with softmax activation (there is no overlap between the
classes). The implementation is available on our GitHub
repository1. Note that ensembles of multiple deeper models
trained for many more epochs reach higher performance on
the same data for GTVt segmentation task (best Dice Simi-
larity Coefficient, DSC, of 0.759 [15] in HECKTOR 2020).
However, we limit our experiments to a single relatively
lightweight model to maintain the computational time and
energy footprint low as we evaluate various settings (uni-
/multi- modal and uni-/multi- task).

1https://github.com/voreille/hecktor/tree/master/
src/segmentation_gtvtn, as of April 2022.

C. Training Scheme

The GTVt classification models are trained using a simple
Dice loss computed as follows.

LDice = 1−
2
∑

k ŷkyk + ε∑
k(ŷk + yk) + ε

, (1)

where ŷk ∈ [0, 1] is the softmax output for a voxel k, yk ∈
{0, 1} is the value of this voxel in the 3D ground truth2

mask, ε = 10−7 is a smoothing term added so the loss is
zero for empty sets of prediction and ground truth, and the
sum is computed over all voxels of the image. This loss is
averaged for all images in a training batch.

A main difference between the GTVt and GTVn annota-
tions is that the former contains one single volume per case,
while the latter may contain zero, one or more volumes. The
classic Dice loss is therefore not suitable for the segmentation
of GTVn since images with no GTVn will have a gradient of
zero and therefore not contribute to learning. To counter this
effect, we employ a batch-aggregated extension of (1). The
intersections and unions are aggregated for the N images in
a training batch to avoid empty sets of positive voxels for
cases that do not contain GTVn as

LAggDice = 1−
2
∑N

i

∑
k ŷi,kyi,k + ε∑N

i

∑
k(ŷi,k + yi,k) + ε

. (2)

The multi-class models are trained using the sum of
Dice losses of the GTVt and GTVn segmentations defined
above, namely Dice loss (1) and aggregated Dice loss (2),
respectively.

Standard hyperparameters are used, including a batch
size of 4, a maximum number of epochs of 200 with an
early stopping on the validation loss with a patience of 20
epochs. The initial learning rate is 10−3 which is scheduled
using cosine decay with warm restart [16]. The models are
implemented in TensorFlow and trained on an Nvidia V100
32GB.

D. Evaluation

The evaluation metrics are computed and reported for the
individual labels (GTVt and GTVn). The DSC ranges from
zero to one, with one reflecting a perfect similarity between
predicted and ground truth contours. It is computed as

DSC =
2TP

2TP + FP + FN
=

2
∑

k ȳkyk∑
k(ȳk + yk)

, (3)

where TP, FP and FN are the number of True Positive, False
Positive and False Negative voxels, respectively, and ȳ is the
hard attribution to the class with highest softmax activation.
The DSC measures the volumetric overlap between the
predicted and ground truth contours. The reported DSCs for
the GTVt segmentation are averaged across all test cases.

For the GTVn segmentation, we report the DSCagg , where
the intersections and unions are aggregated for the entire
test set. This measure is performed to account for the FP

2With a slight misuse of language, we use the term ground truth to refer
to the target annotations.

https://github.com/voreille/hecktor/tree/master/src/segmentation_gtvtn
https://github.com/voreille/hecktor/tree/master/src/segmentation_gtvtn


TABLE I
PERFORMANCE COMPARISON FOR THE SEGMENTATION OF GTVT AND

GTVN. THE AVERAGE DSCS ARE REPORTED FOR GTVT

SEGMENTATION ON THE TEST SET TOGETHER WITH STANDARD

DEVIATIONS. THE AGGREGATED DICE IS REPORTED FOR THE GTVN

SEGMENTATION (THERE IS NO STANDARD DEVIATION DUE TO

AGGREGATTION OF INTERSECTIONS AND UNIONS ACROSS THE ENTIRE

TEST SET). WE COMPARE MODELS TRAINED ONLY FOR GTVT

SEGMENTATION, ONLY FOR GTVN, AND FOR BOTH.

mod. training tasks GTVn (DSCagg) GTVt (DSC)

CT
GTVt only - 0.428±0.245

GTVn only 0.609 -
GTVt & GTVn 0.600 0.420±0.267

PET
GTVt only - 0.651±0.252

GTVn only 0.647 -
GTVt & GTVn 0.679 0.658±0.199

PET/CT
GTVt only - 0.694±0.227

GTVn only 0.722 -
GTVt & GTVn 0.729 0.717±0.208

predictions in cases without ground truth positives (8 out
of 52 test cases). This aggregation is similar to the division
in (2), summing for all test images instead of all N images in
a batch. For direct comparison of GTVt and GTVn, we also
report the average DSC for the best model in the discussion
section, using a smoothing term in (3), making the DSC of
a case without GTVn ground truth equal to 1 if there is no
false positive, 0 otherwise.

We also compute the confusion matrix of all voxels to
evaluate misclassifications at the voxel level across the three
classes: background, GTVt and GTVn. Finally, we report
the average Surface Dice Similarity Coefficient (SDSC) at
1mm and the median Hausdorff Distance at 95% (HD95) as
defined in [17] for the GTVt segmentation. These metrics
are not well suited for the GTVn segmentation with less or
more than a single volume since a single FP or FN lymph
node makes the performances drop drastically.

III. RESULTS

A. Quantitative Results

The segmentation performance is reported in Table I.
We also compute additional metrics for the best model,
obtaining a SDSC of 0.622 and HD95 of 8.11 on the GTVt
segmentation, and 0.433, 13.31 for the GTVn segmentation.
The confusion matrix with three classes (background, GTVt,
GTVn) is reported in Fig. 1 for the best model, i.e. the multi-
modal model trained for GTVt and GTVn and corresponding
to the last row of Table I.

A comparison of segmentation performance measured
with the DSCagg for different ranges of volumes of GTVn is
reported in Fig. 2. In this evaluation, we partition the 44 test
cases containing at least one GTVn volume into four sub-
groups based on the quartiles of the distribution of all test
GTVn volumes (Q1 = 1,454, Q2 (median) = 3,469 and Q3 =
12,384.5 mm3). Each case is assigned to a range [Q0,Q1] (4
cases), [Q1-Q2] (10 cases), [Q2,Q3] (10 cases) or [Q3,inf]
(20 cases) based on its largest GTVn volume.

Fig. 1. Normalized confusion matrix of all test voxels predictions using
the PET/CT model learning GTVt and GTVn in parallel. Left: grount-truth;
bottom: predictions. The total numbers of ground truth voxels associated
with the three classes are: background (153,901,994), GTVt (705,025) and
GTVn (664,149).

Fig. 2. Comparison of DSCagg for different volumes of GTVn. The four
ranges of volumes are based on the quartiles of the test volumes. There is
no error bar due to the nature of the aggregated measure.

B. Qualitative Results

Qualitative results of the best model (multimodal U-
Net trained on the GTVt ad GTVn tasks simultaneously),
including correct segmentation, FPs and FNs of both GTVt
and GTVn, are shown in Fig. 3.

C. Benefit of Aggregated Loss

The comparison of the proposed aggregated loss
(LAggDice, Eq. 2) with those of identical models trained with
a standard Dice loss (LDice in Eq. 1) is reported in Table II.
The models are trained with the same splits and in a similar
manner except for the GTVn segmentation loss.

IV. DISCUSSION AND CONCLUSIONS

This paper presented the first method for GTVn segmenta-
tion from PET/CT images and showed its feasibility. The best
model obtained a DSCagg of 0.729 for GTVn segmentation
and average DSC of 0.717 for the GTVt segmentation.
For comparison across tasks, the average DSCs for GTVn
segmentation is 0.562, illustrating the difficulty of this task.



TABLE II
PERFORMANCE COMPARISON OF GTVN SEGMENTATION (DSCagg )

AND GTVT SEGMENTATION (DSC) ACROSS MODELS TRAINED WITH

AND WITHOUT AGGREGATED DICE LOSS.

LAggDice LDice

mod. training tasks GTVn GTVt GTVn GTVt

CT GTVn only 0.609 - 0.646 -
GTVt & GTVn 0.600 0.420 0.600 0.445

PET GTVn only 0.647 - 0.665 -
GTVt & GTVn 0.679 0.658 0.686 0.655

PET/CT GTVn only 0.722 - 0.735 -
GTVt & GTVn 0.729 0.717 0.726 0.693

Some non-malignant lymph nodes resulting from an inflam-
mation can be visually similar to malignant ones. Besides this
difficulty of discriminating between malignant and benign
lymph nodes, the annotated GTVn volumes are smaller than
the GTVt ones (median of 3,469 versus 7,408 voxels in the
test set, see full histogram in Fig. 4), which biases the DSCs
towards lower values as demonstrated in [18]. The difference
of performance due to volume size is illustrated in Fig. 2,
showing a DSCagg of 0.319 and 0.784 for the smallest and
largest volumes respectively. In future work, metrics that
measure detection accuracy instead of voxel-wise accuracy
should also be considered for the evaluation of an automatic
TNM staging method or to support the decision of lymph
node resection.

Fig. 4. Histogram of GTVt and GTVn volumes measured in voxels in
the test set. Individual connected components are considered for the GTVn.
Best viewed in color.

As reported in previous studies [1], most discriminative
information for the segmentation of tumor volumes originate
from the PET image showing the metabolic activity of the
tumor. Yet, the best segmentation results are obtained with
the multimodal models. An example of PET signal that
expands outside the tumor area (in the trachea) is shown
in Fig. 3(b) and is nevertheless correctly segmented thanks
to the anatomical information of the CT image. Simultane-
ously training the segmentation of GTVt and GTVn tend
to improve the segmentation quality of both regions types,
as both tasks help each other thanks to their similar goal

(i.e. segmentation of active cancer regions). The best GTVn
segmentation, however, is obtained with a model trained only
for this task, and with the standard dice loss.

The use of a batch-aggregated Dice loss improves the
performance of the GTVt and GTVn segmentation as shown
in Table II in the multi-task setting, where cases without
positive GTVn voxels are better managed when compared
to the classical Dice loss, limiting the FPs in the final
predictions. Note that the number of cases without GTVn
in the dataset is low (approx. 15%), resulting in a marginal
performance difference between the two losses.

In future work, we will evaluate the benefit of using
radiomics features extracted from both primary tumors and
lymph nodes to predict patient outcome such as PFS [6]. This
could be investigated on large patient cohorts without the
need to manually annotate GTVt and GTVn contours, being
a tedious task and with limited intra-observer consistency.
Deep multi-task models will also be explored as in [1] to
guide deep radiomics models with both GTVt and GTVn
contours for the prediction of patient outcome.
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(a) GTVt: 0.872, GTVn: 0.847

(b) GTVt: 0.593, GTVn: 0.670

(c) GTVt: 0.886, GTVn: 0.549

(d) GTVt: 0, GTVn: 0

Fig. 3. Illustrations of 2D PET (SUV scale 0-7 mg/L) and CT slices
overlayed with GTVt (blue) and GTVn (red) automatic segmentation. The
corresponding DSC are reported in the captions. The ground truth is in
bright color, the prediction in dark color. (a,b) Correctly detected and
segmented GTVt and GTVn; (c) One GTVn correctly segmented (right),
one largely undersegmented (left); (d) Standard DSC is reported for each
case to evaluate the 3D segmentation of GTVt and GTVn (when there is a
ground truth volume for the latter). Best viewed in color.
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