Keywords:
- adversarial learning
- Automatic segmentation
- Challenge
- Classification
- Computer Vision and Pattern Recognition (cs.CV)
- concept vectors
- curriculum learning
- Deep convolutional neural network
- Deep Learning
- explainable AI (XAI)
- eye fundus images
- Feature ranking
- feature reuse
- finetuning
- FOS: Computer and information sciences
- glaucoma diagnosis
- Global explainability
- head and neck cancer
- Histopathology
- HPV status explanation. TNM explanation
- human-machine interaction
- interpretability
- Local explainability
- machine learning
- Machine Learning (cs.LG)
- medical imaging
- morphometric features
- multi-task learning
- Natural Language Processing
- Open access
- Oropharynx
- rule extraction
- wrong labels
Publications of Vincent Andrearczyk sorted by first author
| 1-50 | 51-86 |
G
Interpreting intentionally flawed models with linear probes, in: ICCV workshop on statistical deep learning in computer vision, Seoul, Korea, 2019 | , and ,
![]() |
Concept discovery and Dataset exploration with Singular Value Decomposition, ICLR Workshop on Trustworthy ML, 2023 | , , , and ,
![]() |
Learning Interpretable Microscopic Features of Tumor by Multi-task Adversarial CNNs To Improve Generalization (2023), in: Machine Learning for Biomedical Imaging (MELBA), 2 | , , , and ,
![]() [DOI] |
Guiding CNNs towards Relevant Concepts by Multi-task and Adversarial Learning, arxiv, 2020 | , , and ,
![]() [URL] |
Sharpening Local Interpretable Model-agnostic Explanations for Histopathology: Improved Understandability and Reliability, in: MICCAI 2021, Springer, 2021 | , , , , and ,
![]() |
H
An Exploration of Uncertainty Information for Segmentation Quality Assessment, in: SPIE Medical Imaging 2020: Image Processing, Houston, TX, USA, pages 381-390, SPIE, 2020 | , , , , , , and ,
![]() |
I
ImageCLEF 2019: Multimedia Retrieval in Medical Nature, Security and Lifelogging Applications, in: ECIR 2019, Cologne, Germany, 2019 | , , , , , , , , , , , , , , , , , , , , , , , , and ,
![]() |
Overview of ImageCLEF 2018: Challenges, Datasets and Evaluation, in: CLEF conference proceeding, Avignon, France, Springer, 2018 | , , , , , , , , , , , , , , , , , , and ,
![]() |
K
Generalizing Convolution Neural Networks on Stain Color Heterogeneous Data for Computational Pathology, in: SPIE Medical Imaging, Houston, TX, USA,, 2020 | , , and ,
![]() |
L
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision, 2023 | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and ,
[URL] |
M
Fast Rotational Sparse Coding (2018)(arXiv:1806.04374) | , , and ,
![]() [URL] |
Using Publicly Available Medical Images from the Open Access Literature and Social Networks for Model Training and Knowledge Extraction, in: Multimedia Modeling (MMM 2020), Seoul, Korea, 2020 | , , , , and ,
![]() |
O
Disentangling Neuron Representations with Concept Vectors, in: Proceedings of the 2nd Explainable AI for Computer Vision (XAI4CV) Workshop at CVPR 2023, 2023 | , , and ,
![]() |
3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis, 2020
|
, , , and ,
![]() [URL] |
Head and Neck Tumor Segmentation in PET/CT: The HECKTOR Challenge (2022), in: Medical Image Analysis, 77(102336)
|
, , , , , , , , , , , , , , , , , , , , , , , , , and ,
![]() [URL] |
Multi-Organ Nucleus Segmentation Using a Locally Rotation Invariant Bispectral U-Net, in: Medical Imaging with Deep Learning, 2022 | , , , and ,
![]() [URL] |
Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology (2019), in: Frontiers in Bioengineering and Biotechnology-Bioinformatics and Computational Biology
|
, , , and ,
![]() |
Image Magnification Regression Using DenseNet for Exploiting Histopathology Open Access Content, in: MICCAI 2018 - Computational Pathology Workshop (COMPAY), Granada, Spain, 2018 | , , and ,
![]() |
A systematic comparison of deep learning strategies for weakly supervised Gleason grading,, in: SPIE Medical Imaging, Houstonm, TX, USA, 2020 | , , , , and ,
![]() |
P
Glaucoma Diagnosis from Eye Fundus Images Based on Deep Morphometric Feature Estimation, in: OMIA at MICCAI, Granada, Spain, 2018 | , , , and ,
![]() |
S
Automated Tumor Segmentation in Radiotherapy (2022), in: Seminars in Radiation Oncology, 32:4(319-329) | , , , , and ,
![]() [DOI] [URL] |
Deep-PRL: a deep learning network for the identification of paramagnetic rim lesions in multiple sclerosis, in: ISMRM 2025, 2025 | , , , , , , , , , , and ,
![]() |
Identification of paramagnetic rim lesions using conventional MRI - a deep learning approach, in: 39th Congress Of The European Committee For Treatment And Research In Multiple Sclerosis (ECTRIMS), 2023 | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and ,
![]() |
Explainability in automatic Paramagnetic Rim Lesion classification, in: 40th Congress Of The European Committee For Treatment And Research In Multiple Sclerosis (ECTRIMS), 2024 | , , , , , , , , , , , and ,
![]() |
Exploiting XAI maps to improve MS lesion segmentation and detection in MRI, in: Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI, 2024 | , , , , , , and ,
![]() |
Instance-level quantitative saliency in multiple sclerosis lesion segmentation (2024), in: arxiv | , , , , , , , and ,
[URL] |
Instance-level explanations in multiple sclerosis lesion segmentation: a novel localized saliency map, in: ISMRM 2024, 2024 | , , , , , , , and ,
FLAIR vs MPRAGE contribution to white matter lesion automatic segmentation in MS using localized saliency maps, in: Bern Interpretable AI Symposium (BIAS), 2023 | , , , , , , , and ,
![]() |
V
Radiomics Analysis Using The Image Biomarker Standardization Initiative (IBSI) Benchmarks And Guidelines, in: Radiological Society of North America (RSNA) 2021 Annual Meeting, 2021
|
, , , , , and ,
![]() |
W
The Image Biomarker Standardisation Initiative (IBSI) On Reproducible Convolutional Radiomics, in: European Society of Radiology, 2022 | , , , , , and ,
![]() |
The image biomarker standardization initiative: Standardized convolutional filters for reproducible radiomics and enhanced clinical insights (2024), in: Radiology, 310:2
|
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and ,
[DOI] |
Training Deep Neural Networks for Small and Highly Heterogeneous MRI Datasets for Cancer Grading, in: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine \& Biology Society (EMBC), IEEE, pages 1758--1761, 2020 | , , , , and ,
![]() |
Training a deep neural network for small and highly heterogeneous MRID datasets for cancer grading, in: EMBC Conference, IEEE, 2020 | , , , , and ,
![]() |
Z
Standardized quantitative radiomics for high-throughput image-based phenotyping (2020), in: Radiology, 295:2(328-338)
|
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and ,
![]() |
| 1-50 | 51-86 |