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Synopsis 
Keywords: Machine Learning, Multiple Sclerosis, Paramagnetic Rim Lesion, Classification, 
Chronic Active Lesion 

Motivation: PRLs are an important diagnostic biomarker in people with multiple sclerosis 
(pwMS). Their identification on MRI is time-consuming and subject to high inter-rater variability. 
However, the use of AI could support this identification process. 

Goal(s): We leverage multi-contrast MRI to improve the identification of PRLs.  

Approach: Deep-PRL is an attention-based CNN, fusing features of T1-w and unwrapped phase 
images from 185 pwMS. The approach follows a nested cross-validation with patient 
stratification. 

Results: The test performance outperformed state-of-the-art methods, achieving a mean F1 
score of 0.860 ± 0.048 and an AUC of 0.982 ± 0.007. 

Impact: These results represent a significant step towards the integration of an AI tool to assist 
clinicians in the identification of PRLs, thereby improving the management of pwMS. 
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Body of the abstract 

Introduction 
Paramagnetic rim lesions (PRLs) are an emerging biomarker valuable for diagnosing multiple 
sclerosis (MS), and have potential for patient prognosis and stratification1. Identifying PRLs on 
magnetic resonance imaging (MRI) is time-consuming and prone to high inter-rater variability. 
Artificial intelligence (AI) has the potential to improve PRL identification, providing significant 
benefits for both clinicians and people with MS (pwMS). PRLs are a subset of white matter 
lesions (WMLs), which can be distinguished from non-PRLs on susceptibility-sensitive MRI 
contrasts, such as unwrapped phase (UP), quantitative susceptibility mapping (QSM), and 
susceptibility-weighted imaging. According to a recent consensus statement1, each of these 
contrasts has distinct advantages and disadvantages for assessing this biomarker. In 
histopathology, PRLs findings are highly correlated with the presence of chronic active lesions2 
(CALs), characterized by a demyelinated core surrounded by a ferritin-bound iron rim. Recent 
AI-based methods exploit a combination of conventional MRI, and either UP or QSM to 
distinguish PRLs from other WMLs. APRL1

3, RimNet4,5 and APRL2
6 used UP, while QSMRim-Net7 

and DeDA8 adopted QSM, following deep learning and radiomics approaches. 
 

Methods 
Brain MRI acquisitions from 185 pwMS (age: 47 ± 14; sex: 111 females; 61 secondary 
progressive, 23 primary progressive, and 101 relapsing-remitting; 495 PRLs and 5415 
non-PRLs) were collected at the University Hospital of Basel, Switzerland. A WML mask was 
obtained using a CNN9 and corrected by a neurologist on FLAIR; non-confluent PRLs were 
independently annotated by an expert neurologist and a medical student, reaching a consensus 
on UP images in the T2* space. UP were derived with MEDI algorithm10 from T2* segmented 
echo planar imaging (EPI). Magnetization prepared 2 rapid acquisition gradient echoes 
(MP2RAGE) images were skull-stripped using FreeSurfer11,12 and HD-BET13, and registered to 
the T2* space using FSL14,15,16. The acquisition MRI protocol is described in Figure 1.  
We propose Deep-PRL, a patch-based convolutional neural network (CNN) that uses three 
inputs in the T2* space: MP2RAGE, UP, and the dilated WML mask. The architecture, illustrated 
in Figure 2, exploits the WML mask through an attention branch. 
To train and test the network, pwMS were stratified into four groups based on PRL count (i.e. 0, 
1-3, 4-7, >7), and a nested cross-validation technique was applied (k=5 outer loop, k=3 inner 
loop). Patches of around 28x28x28 voxels were extracted around each lesion’s center of mass, 
normalizing intensities between 0 and 1. In the training set, patches of positive examples were 
augmented by shifting the center of mass by 5 voxels. Data augmentation was used for random 
Gaussian noise injection, intensity shifts, flips along axes, 90-degree rotations, and affine 
transformations. The network was trained for 100 epochs using a polynomial learning rate 
scheduler, Adam optimizer, a batch size of 32 and a focal loss17 function (𝛾=2, 𝛼=0.2).  
Models with the best F1 validation performance were selected for external tests, and the average 
F1, sensitivity, specificity, and area under the receiver operating characteristic curve (ROC AUC) 
were reported. 



 

Results 
Deep-PRL achieved a mean (± standard deviation) test F1 score of 0.860 ± 0.048, sensitivity of 
0.874 ± 0.031, specificity of 0.986 ± 0.09, and a ROC AUC of 0.982 ± 0.007. A comparison to 
state-of-the-art methods is provided in Figure 3, with detailed results for each of our test sets 
shown in Figure 4. 

Discussion 
As summarized in Figure 3, our network performs better than state-of-the-art methods in 
classifying PRLs, with significantly higher F1 scores, sensitivity, and AUC. However, comparisons 
must be interpreted cautiously, as results from these methods are obtained with different 
premises, datasets, and MRI contrasts. For example, confluent lesions were manually split by 
one rater and included in RimNet, QSMRim-Net and DeDA, whereas APRL1 and APRL2 followed 
an automatic pipeline. Additionally, APRL1, QSMRim-Net and DeDA report validation 
performances, while RimNet, APRL2 and Deep-PRL adopted a holdout test approach.  
To enhance the clinical applicability of our method, future work should address the following 
limitations: 1) the exclusion of confluent PRLs, which may result in neglecting a significant 
number of PRLs; 2) the need for deeper characterization of artifacts or pseudo-PRLs1,18 in UP 
that may reduce annotation specificity, potentially impacting the network’s ability to identify CALs; 
3) in Deep-PRL a lesion mask or clinician’s input is required to define the target patch, and to 
enhance performances through the attention branch; 4) expanding experiments from single to 
multi-centric data would boost the generalizability of results. 

Conclusions 
Deep-PRL represents a significant advancement in the automatic identification of PRLs, offering 
a promising approach to expedite manual assessment and potentially facilitate clinical use. 
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Figure 1 

 
Description of the MRI protocol. Abbreviations: repetition time (TR), echo time (TE), 
inversion time (TI), flip angle (FA), fluid-attenuated inversion recovery (FLAIR), echo planar 
imaging (EPI), magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE). 
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Figure 2

 

Overview of the network’s architecture. The attention branch combines low level features 
from the lesion mask with those of T2* phase and MP2RAGE. This encourages the network 
to extract high level features on meaningful regions of T2* phase and MP2RAGE. 
 
Figure 3 

 
Performance comparison between Deep-PRL and state-of-the-art methods. In APRL1 the 
numbers in parentheses are obtained excluding confluent lesions. Abbreviations: true 
positives (TPs), false positives (FPs), false negatives (FNs), true negatives (TNs), positive 
predictive value (PPV), area under the receiver operating characteristic curve (ROC AUC). 
 
Figure 4 



 

 

Detailed performance in the separate test folders. Abbreviations: true positives (TPs), false 
positives (FPs), false negatives (FNs), true negatives (TNs), positive predictive value (PPV), 
area under the receiver operating characteristic curve (ROC AUC). 
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