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Abstract— Using medical images recorded in clinical practice
has the potential to be a game-changer in the application of
machine learning for medical decision support. Thousands of
medical images are produced in daily clinical activity. The
diagnosis of medical doctors on these images represents a
source of knowledge to train machine learning algorithms for
scientific research or computer-aided diagnosis. However, the
requirement of manual data annotations and the heterogeneity
of images and annotations make it difficult to develop algo-
rithms that are effective on images from different centers or
sources (scanner manufacturers, protocols, etc.). The objective
of this article is to explore the opportunities and the limits
of highly heterogeneous biomedical data, since many medical
data sets are small and entail a challenge for machine learning
techniques. Particularly, we focus on a small data set targeting
meningioma grading. Meningioma grading is crucial for patient
treatment and prognosis. It is normally performed by histolog-
ical examination but recent articles showed that it is possible
to do it also on magnetic resonance images (MRI), so non-
invasive. Our data set consists of 174 T1-weighted MRI images
of patients with meningioma, divided into 126 benign and 48
atypical/anaplastic cases, acquired using 26 different MRI scan-
ners and 125 acquisition protocols, which shows the enormous
variability in the data set. The performed preprocessing steps
include tumor segmentation, spatial image normalization and
data augmentation based on color and affine transformations.
The preprocessed cases are passed to a carefully trained 2-
D convolutional neural network. Accuracy above 74% was
obtained, with the high-grade tumor recall above 74%. The
results are encouraging considering the limited size and high
heterogeneity of the data set. The proposed methodology can
be useful for other problems involving classification of small
and highly heterogeneous data sets.

Index Terms— deep learning, classification, grading, small
data set, meningioma

I. INTRODUCTION

Training a deep neural network using small and highly
heterogeneous data set is a challenging task. However, it is a
common issue in many medical problems. Very often there is
not enough annotated or available data, or otherwise data can
easily come from different medical centers, using different
acquisition protocols. This problem is not trivial since using
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small and diverse data sets usually leads to overfitting or lack
of knowledge generalization [1]. In this work, we present
an approach to correctly train a deep neural network with
a small and heterogeneous set of data represented by an
exemplary data set dedicated to meningioma grading.

Meningiomas are common cancers and account for 33.8%
of all primary intracranical neoplasms in the USA [2], [3].
Meningiomas are histopathologically graded into 3 classes:
benign, atypical and anaplastic, abbreviated as Grade I,
Grade II and Grade III respectively [2]. Based on the grading,
a different treatment needs to be delivered to the patient.
Currently, the grading is done by histological examina-
tion (a procedure that is in most cases invasive and time-
consuming). Grading based on magnetic resonance imaging
(MRI) could lead to faster and more efficient treatment
planning.

Currently, there are no widely accepted methods to pre-
dict histological grading based on MRI, but recent work
showed that deep learning classification can be a promising
approach to address this problem [1]. Automatic, learned
extraction of features that distinguish between differently
graded tumors would be a great tool supporting treatment
planning. However, predicting histological grading based on
MRI is a challenging problem, also due to the fact that data
sets are often relatively small (compared to the computer
vision domain) and that data can be characterized by high
heterogeneity (the images being acquired in many medical
centers, using different equipment and protocols).

A. Related work

Several papers targeted the use of small data sets for deep
learning in medical imaging domain. In [4], the authors pro-
posed to use deep polynomial networks on small, but homo-
geneous, breast and prostate ultrasound data sets achieving
better performance than traditional architectures. An interest-
ing work about skin tumor diagnosis was presented in [5],
where the authors trained a network on a relatively small data
set obtaining better classification results than dermatologists.
In [6], the authors combined transfer learning with domain
adaptation, to perform emotion recognition using a small
and heterogeneous data set. Influencing comparison between
deep, shallow and deep-regularized networks was discussed
in [7]. The authors showed that using shallow networks
provides better results on small data sets than a deep, not
regularized, model. In [8] a comprehensive study on deep
image classification with small data sets was discussed. An
interesting concept about supervised layer-wise training for
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Fig. 1. Visualization of the data set heterogeneity using the slices with the largest tumor area. Images (a)-(e) present low-grade meningiomas while images
(f)-(h) show high-grade meningiomas. One can see the data heterogeneity by examining both the intensity distribution and appearance differences between
the cases.

deep networks was discussed in [9], showing results compa-
rable to careful fine-tuning but with a significantly lower
computational cost. An interesting concept about domain
adaptation with adversarial training was discussed in [10],
where the authors performed training on data coming from
a distribution that was different from the data used for
evaluation.

Regarding the meningioma grading, several studies
showed that using a machine learning approach can be useful
for the MRI-based improvement of the meningioma treat-
ment. In [11], the authors proposed a method to firstly detect
and then segment meningiomas in T1-weighted contrast-
enhanced MRI using a relatively small data set. In [12], [13],
the authors used the pretrained deep networks to perform the
grading, independently using the contrasted T1 and ADC
maps. The main drawback of the research was connected
to manual intensity corrections. In [14], the authors used a
traditional machine learning approach (based on hand-crafted
features and logistic regression) to analyze a small data set
that was acquired in a single medical center. An end-to-
end deep network for meningioma grading, with a strong
statistical validation, was proposed in [15], and achieved
results better than approaches based on hand-crafted features.
However, the data set was relatively homogeneous, since it
was acquired in two hospitals. In this paper, we show that
our approach is able to obtain comparable results using a
highly heterogeneous data set, without the need of manual
feature extraction.

B. Contribution

In this work, we present a deep learning approach to grade
meningiomas using the T1-weighted, post-contrast MRI with
an extremely small data set acquired in highly heterogeneous
settings (i.e. in different medical centers, using several MRI
scanners and acquisition protocols). We use a 2-D network
to classify 3-D medical volumes. We show that a proper,
careful training approach and a proper preprocessing may
lead to a knowledge generalization even for such difficult
and small data sets. The preprocessing consists of offline
resampling, tumor cropping and strong data augmentation,
while the training takes benefits from freezing and schedul-
ing learning rates, oversampling less numerous classes and
weighting them accordingly. The proposed methodology can
be generalized to other deep learning problems involving
small and highly heterogeneous data sets.

II. METHODS

A. Method Description

We present a deep learning-based approach for cancer
classification using a small meningioma data set acquired in
heterogeneous clinical settings. The small data set size and its
heterogeneity lead to instant overfitting for both training any
deep network from scratch, as well as for a naive fine-tuning
after transferring the weights from a pretrained network. As
a result of the different acquisition protocols, the naively
trained networks tend to learn features connected to a given
scanner, not the features distinguishing between differently
graded cancers. An exemplary visualization of the data set,
showing its diversity, is presented in Figure 1.



The basic idea is to maximize the amount of useful
information provided to the network while minimizing the
number of parameters being optimized. We start by an initial,
offline, preprocessing of the data set. At this point, all cases
are resampled to the same physical spacing being the median
of the spacing defined during the data acquisition (0.54mm
x 0.54mm x 4mm). Eventually intensity normalization is
performed. After the offline stage, all the processing is done
online in the custom data loader, separately for each epoch.
First, during the training set loading, a custom sampler is
used to oversample the less numerous class. The menin-
giomas graded as atypical or anaplastic are occurring less
frequently than the benign. In general, in real clinical set-
tings, it is natural that one class is occurring more frequently
than others. Therefore, the oversampler is used to ensure an
equal number of weight updates per class. Afterwards, the
volumes are strongly augmented by affine transformations,
random cropping and flipping, and randomly changing the
hue, saturation, and contrast. The augmentation is being done
at the slice-level because, in further processing, the geo-
metrical information between slices is not directly utilized
during the convolutions. Then, only the slices with a present
tumor are chosen and the area is cropped to contain only
the tumor with a small, predefined, absolute offset equal to
about 6mm. In this way, the amount of irrelevant information
provided to the network is minimized. We do not utilize
the 3-D information directly because: (i) 3-D convolutions
often require much more training data to avoid overfitting,
(ii) the data is highly anisotropic, (iii) the data sets used
for pretraining 3-D networks are much smaller and harder
to get than the 2-D ones (e.g. ImageNet [16] which was
used for pretraining the used feature extractor). Then, the
slices are properly reshaped, stacked in the batch dimension
and passed to the network. We experimentally chose the
pretrained ResNet-18 [17] as deep neural network, without
noticing any substantial changes (apart from a lower training
time and slower overfitting) compared to DenseNet-121 [18]
or InceptionNet-v3 [19]. For each patient, the classification
outcome is combined after the model forward pass, before
calculating the loss, by averaging the calculated probabilities
for all slices. In this way, it is possible to avoid direct slice-
level training and labeling.

Important adjustments were done directly in the training
procedure. We used Adam as the optimizer, after an exper-
imental verification that it provides a slightly more stable
learning process than SGD or RMSprop [20]. We froze
all the parameter updates except the last fully connected
layer and the last convolutional layer, together with its batch
normalization. We used different learning rates for the fully
connected layer and the convolutional layer, 10−4 and 10−6

respectively. We experimentally verified that using all the
convolutional layers or providing too high learning rate for
the last convolutional layer resulted in instant overfitting.
Moreover, we applied a learning rate scheduler to decrease
the learning rates by a constant factor after each epoch. The
weighted cross-entropy was used as the cost function. We set
a higher weight to the atypical and anaplastic cases than to

the benign ones because in practice it is more important to
not miss any malignant tumor than incorrectly grade benign
cancer as malignant. Finally, the optimization starting point
resulted crucial to obtain reasonable results. Since it was not
time-consuming for training a network with a limited number
of optimized parameters and a small data set, we randomly
reinitialized the training procedure a random number of
times.

B. Experimental Setup

The data set consists of 174 meningioma cases acquired
using 26 different MRI scanners and 125 different acquisition
protocols (with different magnetic field strength, acquisition
plane, repetition time, echo time, flip angle, pixel size, slice
thickness). There is no single acquisition protocol that can
be considered as majority. The most frequently occurring
protocol comes from a 1 Tesla scanner, using 5.5mm slice
thickness, 0.937mm pixel size and echo time, flip angle
and repetition time equal to 12ms, 90 degrees and 531ms
respectively. The data set is divided into 126 benign and
48 atypical/anaplastic cases which are grouped together into
a single class. There are 48, 40, 77 and 9 cases acquired
with 1T, 1.5T, 3T and other magnetic field respectively. The
slice thickness varies from 0.49mm to 5.5mm and the pixel
size is between 0.21mm to 1mm. The data set was randomly
divided into 5 folds to do the cross-validation, each with a
4:1 split ratio between the training and the validation set. The
experimental procedures involving human subjects described
in this paper were approved by the Ethical Committee of the
University of Padua.

III. RESULTS

A. Classification Results

All the training and validation procedures were done 5
times, for each fold separately to average the results and
make them more realistic. In this way, it is possible to
somehow approximate the results as if using a separate test
set, which was impossible due to the very limited size of
the data set. We show the averaged (average ± standard
deviation) confusion matrix in Table I and the averaged
grading results in Table II. We compared the results with two
naive approaches: (i) training the network from scratch, (ii)
naive fine-tuning the network without using the scheduling,
different learning rates and freezing the parameters. The
accumulated ROC curves, for the proposed and compared
approaches, together with the AUC are shown in Figure 2.
The achieved accuracy and recall are at the level of 74%
while the accuracy obtained for the naive fine-tuning and
training from scratch are 57% and 55% respectively.

TABLE I
THE AVERAGED CONFUSION MATRIX FOR THE VALIDATION SET.

Predicted
Grade I Grade II/III

A
ct

ua
l Grade I 19.2± 2.0 6.6± 2.1

Grade II/III 2.4± 1.2 6.8± 1.2



TABLE II
CLASSIFICATION SUMMARY FOR THE VALIDATION SET BY AVERAGING

RESULTS FROM DIFFERENT FOLDS.

Precision Recall Support
Grade I 0.89± 0.04 0.74± 0.08 ∼ 25

Grade II/III 0.52± 0.07 0.74± 0.12 ∼ 10
Accuracy: 0.74 ± 0.04

Fig. 2. The accumulated ROC curves of the techniques are shown. The
positive class is represented by the high-grade meningiomas.

IV. DISCUSSION AND CONCLUSION

The results show that with a proper, careful training
procedure, the classification using deep learning on a highly
heterogeneous and relatively small data set can be successful
and provide better results than training from scratch or naive
fine-tuning. The outcomes are comparable to the results
presented in the study [14] where a traditional machine
learning approach was used, with time-consuming manual
feature extraction and logistic regression. Noteworthy, in the
mentioned study, the data set was acquired in a controlled
setting in a single medical center, using the same scanner
and acquisition protocol, which makes it easier to learn the
model.

In this study, we addressed the meningioma grading.
However, the same problems occur in practice for many other
medical tasks. The problem of very limited, heterogeneous
data sets with a strong class imbalance is common. There-
fore, the proposed approach to use deep learning for such
problems may find its relevance also in other domains.

In future work, we plan to combine several MRI modalities
to further improve the results. In general, the T1-weighted
post-contrast seems not to be the best modality to do the
meningioma grading. Recent studies have shown that the
ADC maps are better at differentiating the tumors [21].
However, the meningioma segmentation in ADC is difficult.
Therefore, a proper combination of these modalities, the
post-contrast T1 where the tumors are easily segmented,
with the ADC maps where the grading can be done more
reliably, together with registering them together, can lead to
even better grading outcomes.

In conclusion, we presented a method based on deep learn-

ing to perform meningioma grading, using small and strongly
heterogeneous dataset. We showed that by using proper
transfer learning, together with a strong data augmentation,
carefully choosing the region of interest and proper training
scheme, it is possible to achieve reasonable results. The
outcomes are comparable to the traditional machine learning
approach, without the necessity to use expert knowledge to
manually extract the differentiating features.
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