Vincent Andrearczyk
Vorname(n): Vincent
Nachname(n): Andrearczyk

Publikationen von Vincent Andrearczyk sortiert nach Aktualität
| 1-50 | 51-86 |

Marek Wodzinski, Tommaso Banzato, Manfredo Atzori, Vincent Andrearczyk, Yashin Dicente Cid und Henning Müller, Training Deep Neural Networks for Small and Highly Heterogeneous MRI Datasets for Cancer Grading, in: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine \& Biology Society (EMBC), IEEE, Seiten 1758--1761, 2020
attachment
Mara Graziani, Thomas Lompech, Henning Müller, Adrien Depeursinge und Vincent Andrearczyk, Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging, in: Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2020, 2020
attachment
Vincent Andrearczyk, Valentin Oreiller und Adrien Depeursinge, Oropharynx Detection in PET-CT for Tumor Segmentation, in: Irish Machine Vision and Image Processing Conference, 2020, 2020
attachment
Vincent Andrearczyk, Julien Fageot, Valentin Oreiller, Xavier Montet und Adrien Depeursinge, Local Rotation Invariance in 3D CNNs (2020), in: Medical Image Analysis, 65(101756)
  • []: IF 2018 = 8.79

attachment
[DOI]
[URL]
Mara Graziani, Henning Müller und Vincent Andrearczyk, Interpreting intentionally flawed models with linear probes, in: ICCV workshop on statistical deep learning in computer vision, Seoul, Korea, 2019
attachment
Sebastian Otalora, Manfredo Atzori, Vincent Andrearczyk, Amjad Khan und Henning Müller, Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology (2019), in: Frontiers in Bioengineering and Biotechnology-Bioinformatics and Computational Biology
  • []: (IF 2017= 5.122)

attachment
Vincent Andrearczyk, Julien Fageot, Valentin Oreiller, Xavier Montet und Adrien Depeursinge, Exploring local rotation invariance in 3D CNNs with steerable filters, in: Medical Imaging with Deep Learning, Seiten 15-26, Proceedings of Machine Learning Research, 2019
  • []: Won the overall best paper award of MIDL 2019 !

attachment
[URL]
Mara Graziani, Vincent Andrearczyk und Henning Müller, Regression Concept Vectors for Bidirectional Explanations in Histopathology (2018), in: Lecture Notes in Computer Science, Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2018(8)
  • []: Best paper award

attachment
Vincent Andrearczyk, Adrien Depeursinge und Henning Müller, Learning Cross-Protocol Radiomics and Deep Feature Standardization from CT Images of Texture Phantoms, in: SPIE Medical Imaging 2019, International Society for Optics and Photonics, Seiten 109-116, SPIE, 2019
attachment
Adrien Depeursinge, Julien Fageot, Vincent Andrearczyk, John-Paul Ward und Michael Unser, Rotation Invariance and Directional Sensitivity: Spherical Harmonics versus Radiomics Features, in: Machine Learning in Medical Imaging (MLMI), Seiten 107--115, Springer International Publishing, 2018
attachment
[URL]
| 1-50 | 51-86 |