Trefwoorden:
Publicaties van Manfredo Atzori gesorteerd op eerste auteur
C
Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping (2022), in: Frontiers in Artificial Intelligence(199) | , , en ,
![]() |
Eye-hand coordination to improve grasp-type recognition in hand prostheses, in: Cybathlon Symposium, Zürich, Switzerland, 2020 | , , en ,
![]() |
Multi-functional control and usage of a 3D printed robotic hand prosthesis with the Myo armband by hand amputees (2018), in: BioRxiv | , , , , , , , , en ,
![]() |
Head-mounted eye gaze tracking devices: An overview of modern devices and recent advances (2018), in: Journal of Rehabilitation and Assistive Technologies Engineering, 5 | , en ,
![]() [DOI] [URL] |
Analyzing the trade-off between training session time and performance in myoelectric hand gesture recognition during upper limb movement, in: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, Canada, 2019 | , , , en ,
![]() |
Gaze, visual,myoelectric data of grasps for intelligent prosthetics (2020), in: Nature Scientific Data | , , , , , , , , , , , , en ,
![]() |
Semi-automatic training of an object recognition system in scene camera data using gaze tracking and accelerometers, in: International Conference on Computer Vision Systems (ICVS), Shenzhen (China), 2017 | , , , , , , , en ,
![]() |
D
Exploiting the PubMed Central repository to mine out a large multimodal dataset of rare cancer studies, in: SPIE Medical Imaging, Houston, TX, USA, 2020 | , , , en ,
![]() |
Classification of noisy free-text prostate cancer pathology reports using natural language processing, in: Workshop AIDP at ICPR, 2021 | , , en ,
![]() |
A systematic comparison of deep learning methods for Gleason grading and scoring (2024), in: Medical Image Analysis | , , , , , en ,
[DOI] |
F
Semantic wikis as flexible database interfaces for biomedical applications (2023), in: Scientific Reports, 13:1(1095) | , en ,
A full pipeline to analyze lung histopathology images, in: Digital and Computational Pathology, SPIE Medical Imaging, 2024 | , , , , , , , en ,
[DOI] |
G
Visual Cues to Improve Myoelectric Control of Upper Limb Prostheses, in: 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Enschede, The Netherlands, pagina's 783-788, IEEE, 2018 | , , , en ,
[DOI] [URL] |
Measuring Movement Classification Performance with the Movement Error Rate (2014), in: IEEE Transactions on neural systems and rehabiliation engineering
|
, , , en ,
![]() |
Megane Pro: myo-electricity, visual and gaze tracking integration as a resource for dexterous hand prosthetics, in: IEEE International Conference on Rehabilitation Robotics, London, UK, 2017 | , , , , , , , , , , , en ,
![]() |
On the visiomotor behavior of amputees and able-bodied people during grasping, (2019), in: Frontiers in Bioengienering and Biotechnology
|
, , , , en ,
J
A large calibrated database of hand movements and grasp kinematics (2020), in: Scientific Data
|
, en ,
![]() |
Kinematic synergies of hand grasps, in: ESB 2019, Vienna, Austria, 2019 | , , , , en ,
![]() |
Kinematic synergies of hand grasps: a comprehensive study on a large publicly available dataset (2019), in: Journal of Neuroengineering and rehabilitation | , , en ,
![]() |
Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score, in: SPIE Medical Imaging, pagina's 101400O-101400O-9, 2017 | , , , , , , en ,
![]() [DOI] [URL] |
Elsevier book on Texture Analysis, hoofdstuk Analysis of Histopathology Images: From Traditional Machine Learning to Deep Learning, 2017 | , , , , , , en ,
![]() |
Deep Multimodal Case-Based Retrieval for Large Histopathology Datasets, in: MICCAI 2017 workshop on Patch-based image analysis, Quebec City, Canada, 2017
|
, , en ,
![]() |
Artifact Augmentation for Learning-based Quality Control of Whole Slide Images, in: EMBC, Sydney, Australia, 2023 | , , , en ,
K
Generalizing Convolution Neural Networks on Stain Color Heterogeneous Data for Computational Pathology, in: SPIE Medical Imaging, Houston, TX, USA,, 2020 | , , en ,
![]() |
M
Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter-and Intra-Subject Study (2021), in: Sensors, 21:22(7500) | , , , , en ,
M
Empowering Digital Pathology Applications through Explainable Knowledge Extraction Tools (2022), in: Journal of Digital Pathology | , , , , , , , , , , , , en ,
![]() |
M
H&E-adversarial network: a convolutional neural network to learn stain-invariant features through Hematoxylin & Eosin regression, in: ICCV 2021 workshop on Computational Challenges in Digital Pathology, 2021 | , , , en ,
![]() |
Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations (2022), in: Nature Partner Journal on Digital Medicine | , , , , , , , , , , , , , , , , , , en ,
![]() |
Multimodal Representations of Biomedical Knowledge from Limited Training Whole Slide Images and Reports using Deep Learning (2024), in: Medical Image Analysis | , , , , , , , , , , , en ,
![]() [DOI] |
Multi-Scale Multiple Instance Learning for the Classification of Digital Pathology Images with Global Annotations, in: COMPAY workshop at MICCAI, 2021 | , , , , , , , en ,
![]() |
Semi-supervised learning with a teacher-student paradigm for histopathology classification: a resource to face data heterogeneity and lack of local annotations, in: Workshop Artificial Intelligence for Digital Pathology, ICPR, Milano, Italy, 2021 | , , en ,
![]() |
Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: an experiment on histopathology image classification (2021), in: Medical Image Analysis | , , en ,
![]() |
Multi_Scale_Tools: A Python Library to Exploit Multi-Scale Whole Slide Images (2021), in: Frontiers in Computer Science | , , , , , , en ,
![]() |
A multi-task Multiple Instance Learning algorithm to analyze large whole slide images from the BRIGHT challenge 2022, in: ISBI Challenges 2022, Bangalore India, 2022 | , , en ,
![]() |
Modelling digital health data: The ExaMode ontology for computational pathology (2023), in: PMC | , , , , , , , , , , , en ,
[DOI] |
Modelling digital health data: The ExaMode ontology for computational pathology (2023), in: Journal of Pathology Informatics(100332) | , , , , , , , , , en ,
Using Publicly Available Medical Images from the Open Access Literature and Social Networks for Model Training and Knowledge Extraction, in: Multimedia Modeling (MMM 2020), Seoul, Korea, 2020 | , , , , en ,
![]() |
Combining object recognition, gaze tracking and electromyography to guide prosthetic hands: experiences from two reserch projects (2019), in: Jedlik Laboratory reports, VII:2 | en ,
![]() |
O
Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology (2019), in: Frontiers in Bioengineering and Biotechnology-Bioinformatics and Computational Biology
|
, , , en ,
![]() |
Image Magnification Regression Using DenseNet for Exploiting Histopathology Open Access Content, in: MICCAI 2018 - Computational Pathology Workshop (COMPAY), Granada, Spain, 2018 | , , en ,
![]() |
Identification and retrieval of prostate cancer cases using a content-based search tool (2019), in: Pathology Informatics | , , , , , , en ,
![]() |
Combining Unsupervised Feature Learning and Riesz Wavelets for Histopathology Image Representation: Application to Identifying Anaplastic Medulloblastoma, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pagina's 581-588, Springer International Publishing, 2015 | , , , , , , , en ,
![]() [DOI] |
A systematic comparison of deep learning strategies for weakly supervised Gleason grading,, in: SPIE Medical Imaging, Houstonm, TX, USA, 2020 | , , , , en ,
![]() |
Semi-Weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks, in: MICCAI workshop Labels, Lima, Peru, 2020 | , , en ,
![]() |
Combining weak and strong supervised learning improves strong supervision in Gleason pattern classification (2021), in: BMC Medical Imaging | , , en ,
![]() |
stainlib: a python library for augmentation and normalization of histopathology H&E images (2022), in: bioArXiv | , , , , , , en ,
![]() |
Determining the scale of image patches using a deep learning approach, in: IEEE International Symposium on Biomedical Imaging (ISBI), Washington, DC, USA, 2018 | , , , , en ,
![]() |
Deep learning based retrieval system for gigapixel histopathology cases and open access literature (2018), in: BioArXiv | , , , en ,
![]() |
P
Variability of Muscle Synergies in Hand Grasps: Analysis of Intra-and Inter-Session Data (2020), in: Sensors, 20:15(4297) | , , en ,
![]() |
An Augmented Reality Environment to Provide Visual Feedback to Amputees during sEMG Data Acquisitions, in: TAROS (Towards Autonomous Robotic Systems), London, United Kingdom, 2019 | , , , en ,
![]() |