Manfredo Atzori
Voornamen: Manfredo
Achternamen: Atzori

Publicaties van Manfredo Atzori gesorteerd op eerste auteur
| 1-50 | 51-100 | 101-130 |


C

Matteo Cognolato, Manfredo Atzori en Henning Müller, Head-mounted eye gaze tracking devices: An overview of modern devices and recent advances (2018), in: Journal of Rehabilitation and Assistive Technologies Engineering, 5
attachment
[DOI]
[URL]

D


F


G

Andrea Gigli, Valentina Gregori, Matteo Cognolato, Manfredo Atzori en Arjan Gijsberts, Visual Cues to Improve Myoelectric Control of Upper Limb Prostheses, in: 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Enschede, The Netherlands, pagina's 783-788, IEEE, 2018
[DOI]
[URL]
Arjan Gijsberts, Manfredo Atzori, Claudio Castellini, Henning Müller en Barbara Caputo, Measuring Movement Classification Performance with the Movement Error Rate (2014), in: IEEE Transactions on neural systems and rehabiliation engineering
  • []: Impact Factor=3.255

attachment

J

Oscar Jimenez del Toro, Sebastian Otalora, Mats Andersson, Kristian Euren, Martin Hedlund, Mikael Rousson, Henning Müller en Manfredo Atzori, Elsevier book on Texture Analysis, hoofdstuk Analysis of Histopathology Images: From Traditional Machine Learning to Deep Learning, 2017
attachment
Oscar Jimenez del Toro, Sebastian Otalora, Manfredo Atzori en Henning Müller, Deep Multimodal Case-Based Retrieval for Large Histopathology Datasets, in: MICCAI 2017 workshop on Patch-based image analysis, Quebec City, Canada, 2017
  • []: IF 2005=0.402

attachment

K


M


M


M


O

Sebastian Otalora, Manfredo Atzori, Vincent Andrearczyk, Amjad Khan en Henning Müller, Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology (2019), in: Frontiers in Bioengineering and Biotechnology-Bioinformatics and Computational Biology
  • []: (IF 2017= 5.122)

attachment
Sebastian Otalora, Oscar Perdomo, Manfredo Atzori, Mats Andersson, Martin Hedlund en Henning Müller, Determining the scale of image patches using a deep learning approach, in: IEEE International Symposium on Biomedical Imaging (ISBI), Washington, DC, USA, 2018
attachment

P

| 1-50 | 51-100 | 101-130 |