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ABSTRACT

Malignant lesions in breast tissue specimen whole slide im-
ages (WSIs), may lead to a dangerous diagnosis, such as
cancer. However, WSIs analysis is time-consuming and ex-
pensive, requiring the work of expert pathologists. This paper
aims to present a method for the 2022 BRIGHT Challenge,
that involves the analysis of breast WSIs. The organizers
provided over 550 breast WSIs and over 3900 regions of
interest (ROIs) to develop and validate methods for breast
cancer images. The method presented in this work is based
on a Multiple Instance Learning instance-based Convolu-
tional Neural Network (CNN), allowing the combination of
strongly-annotated data (from ROIs) and weakly-annotated
data (from WSIs) via the optimization of a multi-task loss
function. Furthermore, during the CNN training, the input
patches are clustered and filtered according to their entropy,
to reduce the non-informative content used to train the model.
The CNN reaches an averaged F1-score = 0.63 ± 0.02 on
the 3-class classification task and averaged F1-score = 0.39
± 0.08 on the 6-class classification task, considering the val-
idation partition; an averaged F1-score = 0.65 on the cancer
risk classification task and averaged F1-score = 0.45 on the
sub-typing cancer risk classification task, considering the
best result achieved on the test partition. These results show
that Multiple Instance Learning instance-based CNNs may
represent a good resource to tackle this kind of problem.

Index Terms— Deep Learning, Image classification,
BRIGHT, Breast cancer, Multiple Instance Learning

1. INTRODUCTION

Breast cancer image analysis is still a critical challenge, de-
spite the recent advancements in the development of auto-
matic methods for the analysis of images may reduce the ef-
forts needed to diagnose it. The analysis of breast whole slide

images (WSI) is still expensive and time-consuming, requir-
ing the manual work of medical experts[1] (i.e. pathologists)
and aims to identify lesions linked to dangerous conditions
in tissue specimens [2], according to predefined grading sys-
tems. Grading systems aim to distinguish between different
subtypes of cancer, to better identify the risk related to the
disease, and plan the most effective treatment for the patient.
However, some findings related to breast cancer subtypes in-
clude high tissue morphology variability and require the anal-
ysis of an expert pathologist [3]. This low intra- and inter-
observer agreement [4] on the diagnosis limits the possibility
to adopt the right treatment for the patient. Computational
pathology is a domain involving the development of auto-
matic algorithms for the analysis of WSIs [5]. Currently, con-
volutional neural networks (CNNs) are state-of-the-art algo-
rithms for solving several tasks, such as classification. How-
ever, especially in computational pathology, CNN applica-
tion still has to face several challenges. CNNs require large
datasets, not always easy to be collected, to learn robust and
invariant features to solve tasks. Furthermore, local anno-
tations are needed to train CNN with fully-supervision, but
they are expensive to be collected since a pathologist is re-
quired to produce them. New frameworks were developed to
tackle these problems, such as weak-supervision [5] and self-
supervision [6]. Weak-supervision involves algorithms, such
as Multiple Instance Learning (MIL) [5, 7, 8, 9], trained us-
ing labels referring to the whole image (usually the most dan-
gerous diagnosis), without any information about the regions
of interest within the image. Currently, the MIL framework
shows high performance in WSI analysis, allowing to build an
image as a set of patches without any knowledge about their
content. Self-supervision is a framework that allows learning
features from unlabeled data, learning relationships between
the data, such as similarity. Self-supervised algorithms (such
as MoCo [10]) is usually adopted to pre-train a CNN before
the training on a specific task, called downstream task. The



goal of the BRIGHT Challenge is to collect and rank auto-
matic algorithms developed to classify breast cancer images,
providing a dataset including 753 WSIs and over 4000 re-
gions of interest with rare and atypical lesions, to alleviate
the manual analysis made by pathologists. This paper aims to
present a MIL CNN method to contribute to BRIGHT Chal-
lenge. The method optimizes a multi-task loss function: one
term involves the classification of the WSIs, while the other
is the classification of patches coming from the ROIs, to ex-
ploit the relatively small amount of data provided. Further-
more, non-informative patches are filtered, allowing to focus
the learning process only on informative regions.
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Fig. 1. Overview of the training schema for the multi-task
Multiple Instance Learning CNN. The framework adopted is
an instance-based MIL (the CNN produces predictions at both
patch- and image-level).

2. METHODS

2.1. Data structure and pre-processing

The dataset includes 753 WSIs (423 for training, 80 for val-
idation, 200 for testing) and 3989 regions of interest (ROIs,
3566 from training data and 489 from validation data), from
BRACS dataset [2]. WSIs are gigapixel images (around
100′0002 pixels per image) globally annotated with a label
representing a condition (Cancerous, Pre-cancerous, Non-
Cancerous) or the breast morphology subtype (six subtypes).
ROIs are smaller sections coming from the WSIs (around
2′0002 pixels per image). Due to ROIs small dimensions,
the labels assigned to each section can be considered local
annotations. Both WSIs and ROIs are split in patches of di-
mension 224x224 from magnification 10x, as shown in [11].
WSIs are split in a grid and only patches including tissue are
extracted [12].

2.2. Multiple Instance Learning algorithm

The paper proposes an instance-based Multiple Instance
Learning CNN combined with patch clustering to exploit the
data (locally-annotated ROIs and globally-annotated WSIs),

to classify breast cancer WSIs. An overview of the CNN
is shown in Figure 1. The instance-based MIL CNN makes
predictions on the single patches (y′) and aggregates them
through an attention-model [7] to make image-level predic-
tions (Y ′). The choice of adopting this framework is driven
by the nature of data provided for the competition: WSIs
with global annotations (i.e. the class) and small ROIs with
local annotations. To exploit both the type of annotations, the
optimization of the global loss function Loss involves two
terms: the first one, LossWSI , measures the error in the clas-
sification of WSIs, the second one, Losspatches, measures the
error in the classification of patches from the ROIs. A scalar
coefficient λ is used to weigh the importance of the second
term, as follows:

LossWSI = (
1

N

N∑
n=1

LCE(Yn, Y
′
n) (1)

Losspatches = (
1

N

N∑
n=1

LCE(yn, y
′
n) (2)

Loss = LossWSI + λ ∗ Losspatches (3)

WSIs are large images paired with global labels referring
to a malignant condition that involves a small amount of tis-
sue, even if most of the tissue is healthy or non-informative.
To filter the non-informative tissue, a hierarchical patch clus-
tering algorithm is adopted. The algorithm is applied to the
patch embeddings (the number of levels varies depending on
the number of patches included in the WSI). The CNN makes
a cluster-level prediction and if the entropy of the cluster is
over a threshold value, the patches are not considered in the
WSI prediction, under the hypothesis that clusters with high
entropy include heterogeneous patches and not a defined mor-
phology.

2.3. Hyperparameters and Experimental setup

The CNN, for both the tasks, is implemented using PyTorch,
with the same hyperparameters and the same training ap-
proach. The CNN has a ResNet34 backbone, including an
additional intermediate layer (128 elements with Tanh as ac-
tivation function) between the output of the ResNet and the
classifier layer, and an attention network [7]. The CNN is
pre-trained using MoCo v2, using a pipeline including patch
rotation, flipping, color augmentation (involving the hue, the
saturation, the contrast, and the RGB shift), Gaussian noise,
elastic transformation, grid, and optical distortions. Further-
more, the CNN is pre-trained to learn features invariant to
the H&E stain variability through a H&E-adversarial training
[13]. For both MoCo and classification training, the hy-
perparameters are selected through a grid search algorithm,
including the optimizer (Adam in both cases), the learning
rate (10−4 for both cases), the weight decay (10−4 for both
the cases) and the epochs (10 epochs for MoCo, 20 for clas-
sification). At the beginning of the training phase, until the



Table 1. Overview of the CNN results for the first task (3-class cancer risk WSI classification) on BRIGHT validation set. The
results are evaluated considering the F1-score metric and compared with the baseline [11] provided by the organizers.

Method Noncancerous Precancerous Cancerous Avg F1-score
BRIGHT baseline 0.57 ± 0.05 0.43 ± 0.06 0.74 ± 0.03 0.58 ± 0.01
Our method 0.58 ± 0.03 0.51 ± 0.05 0.80 ± 0.03 0.63 ± 0.02

Table 2. Overview of the CNN results for the second task, 6-class subtyping WSI classification, on BRIGHT validation set.
The subtypes are: Pathological Benign (PB), Usual Ductal Hyperplasia (UDH), Flat Epithelia Atypia (FEA), Atypical Ductal
Hyperplasia (ADH), Ductal Carcinoma in Situ (DCIS), and Invasive Carcinoma (IC). The results are evaluated considering the
F1-score metric and compared with the baseline [11] provided by the organizers.

Method PB UDH FEA ADH DCIS IC Avg F1-score
BRIGHT baseline 0.43 ± 0.06 0.23 ± 0.08 0.20 ± 0.08 0.16 ± 0.08 0.41 ± 0.05 0.89 ± 0.01 0.39 ± 0.02
Our method 0.18 ± 0.10 0.36 ± 0.12 0.28 ± 0.14 0.22 ± 0.08 0.40 ± 0.23 0.87 ± 0.04 0.39 ± 0.08

first two epochs, only the images including less than 2’000
patches were used for training. The class unbalanced, for
both the competition tasks, is tackled using a class-wise data
augmentation approach. The model weights are saved only
when the loss function is lower compared with the values
reached in the previous epochs.

3. RESULTS

The proposed method outperforms the method provided as
baseline [11] on the first classification task (3 classes), con-
sidering both the single class predictions and the global pre-
diction, while, the performance reached on the second task
(6 classes) is comparable to the one provided as the baseline.
The classification performance is evaluated in terms of F1-
score for each class and averaged F1-score for the cumulative
results, on the validation partition, since the challenge orga-
nizers decided to not provide the labels for the test partition.
Table 1 and Table 2 show the performance for respectively the
3-class cancer risk WSI classification and the 6-class subtyp-
ing WSI classification, reporting the average and the standard
deviation of five models. The methods are also evaluated on
a test partition including 200 WSIs (provided without ground
truth). Considering the four submission made, the method
obtains averaged F1-score = 0.611 ± 0.025 in the 3-class task
and averaged F1-score = 0.427 ± 0.029. The highest score
reached in the 3-class classification task is averaged F1-score
= 0.65 (3rd highest score in the competition), while the high-
est score reached in the 6-class classification task is averaged
F1-score = 0.45 (4th highest score).

4. DISCUSSION

The paper presents a contribution to the BRIGHT challenge
with a MIL CNN that filters non-informative patches. The
obtained results show good performance, outperforming the
baseline proposed by organizers in the first task and reaching

a result comparable with the baseline proposed by organiz-
ers. The performance of the CNN shows a good capability to
classify the presence of Cancerous and Precancerous condi-
tions, while the capability to classify NonCancerous class is
similar to the baseline proposed by the organizers. This result
may help pathologists since the analysis of Cancerous and
Precancerous tissue morphologies require the work of experts
pathologists. However, most of the samples analyzed in dig-
ital workflows include NonCancerous tissue. Therefore, the
performance obtained on NonCancerous tissue may be con-
sidered a limitation for the application of this method in clin-
ical settings. The CNN reaches a performance comparable to
the baseline on the classification of tumor subtyping. Also in
subtyping classification, the global CNN performance is hin-
dered in the NonCancerous (PB and UDH) and PreCancerous
(FEA and ADH) classification. In particular, while the results
reached in PreCancerous subtypes are slightly higher than the
baseline, the results reached in NonCancerous subtypes are
lower, in particular regarding PB subtype. The result obtained
on this task can be the consequence of aspects involving the
method adopted. The first aspect involves the MIL instance-
based framework. Multiple Instance Learning is a framework
that requires large datasets to learn robust features from input
data, while the training partition includes only 423 WSIs. The
small dimension of the dataset influences particularly the per-
formance on subtyping classification, where the CNN shows
large standard deviation values. In particular, the instance-
based framework produces an image-level prediction through
the aggregation of the predictions on the single patches and
was chosen considering the availability of ROIs. It is possible
that the network overfitted on the patches coming from the
ROIs, hindering the learning process of the attention network
responsible for the aggregation. Another aspect involves the
clustering algorithm, developed to discard non-informative
patches during the training. The clustering algorithm, dis-
carding non-informative patches, may have focused the learn-
ing process only on features linked to the malignant condi-
tion, explaining the good but not perfect results obtained on



PB in the subtype classification task. Furthermore, the Non-
Cancerous class does not include morphologies that can lead
to malignant conditions, but healthy or non-informative tis-
sue, so the NonCancerous class (and its subtypes) represents
the absence of the other classes (PreCancerous and Cancer-
ous). On the other hand, the clustering algorithm, tuned with
fixed thresholds, may remove a too large number of patches,
including informative ones, contributing to increase the noise
during the training, in addition to the weak labels, and forcing
the network to not identify the correct relationships between
patches. The high standard deviations obtained in the second
task may confirm this lack of robustness in the predictions of
the model.
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