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Abstract. Object detection and recognition algorithms usually require
large, annotated training sets. The creation of such datasets requires
expensive manual annotation. Eye tracking can help in the annotation
procedure. Humans use vision constantly to explore the environment and
plan motor actions, such as grasping an object.
In this paper we investigate the possibility to semi-automatically train
object recognition with eye tracking, accelerometer in scene camera data,
learning from the natural hand-eye coordination of humans. Our ap-
proach involves three steps. First, sensor data are recorded using eye
tracking glasses that are used in combination with accelerometers and
surface electromyography that are usually applied when controlling pros-
thetic hands. Second, a set of patches are extracted automatically from
the scene camera data while grasping an object. Third, a convolutional
neural network is trained and tested using the automatically extracted
patches.
Results show that the parameters of eye-hand coordination can be used
to train object recognition automatically. These can be exploited with
proper sensors to fine-tune a convolutional neural network for object
detection and recognition automatically. This approach opens interest-
ing options to train computer vision and multi-modal data integration
systems and lays the foundations for future applications in robotics. In
particular, this work targets the improvement of prosthetic hands by
recognizing the objects that a person may wish to use. However, the
approach can easily be generalized.
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1 Introduction

Grasping an object is a complex task with several senses being involved. Vision
provides the information needed to precisely control the hand and perform the
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task. Vision precedes the grasping action according to precise schemes called
“hand-eye coordination” [4, 8]. Thus, the parameters related to eye-hand coor-
dination can be used to provide information about the object that the subject
is aiming to grasp. Object recognition and detection have been strongly im-
proved during the last years, also thanks to the application of deep learning and
Convolutional Neural Networks (CNNs) [20] that require much training data for
optimal results. The creation of annotated datasets is most often done manually,
which is expensive and time consuming. It was recently shown that eye tracking
can simplify the annotation procedure [18, 22].

Human gaze interacts with the surrounding reality in several ways. Gaze al-
ternates between fixations (when the subject’s gaze is stable on a portion of the
scene) and saccades (when eyes and/or the body are moved to look somewhere
else). The advancement of eye/gaze tracking devices allowed to identify where a
subject is looking in real time and in many scenarios. Thanks to these devices,
it was shown that the gaze precedes and guides the hand also when performing
grasps in routine tasks [16, 12]. In the robotic literature the challenge of grasp-
ing various objects while regulating the control with visual information has been
covered extensively. The object to be grasped is looked at 40-100 ms before the
movement [9, 2, 19] and the fixation lasts for 350-450 ms [14, 5]. During the fix-
ation, the subjects attempts to detect the affordance of an object (the physical
possibility of an action on the object). As Bohme and Heinke described in [3], the
gaze naturally converges to the grasping point of tools [6]. Eye tracking and gaze
information have already been introduced successfully in the control of manual
prehension and object detection/recognition [22, 18]. In Mishra et al. [17], the
authors propose active segmentation methods using the fixation points in the
image. Papadopoulos et al. [18] present a gaze-based method to annotate train-
ing sets for object detection. In Toyama et al. [22] the gaze information provided
by a head-mounted eye tracker is used to perform real time object recognition.

However, the parameters related to the natural hand-eye coordination have
never been used to train an object recognition system automatically. In this pa-
per we investigate if this approach can be used to create a training dataset for
object classification automatically. The approach is tested on data acquired to
investigate both vision and kinematic aspects of grasping, with the aim of im-
proving the control of a myoelectric hand prosthesis. The test consisted of intact
subjects grasping various object with several grasps. [11] The data are acquired
using head-mounted eye tracking with a scene camera and sEMG electrodes con-
taining accelerometers. The dataset is then used to fine-tune and test a CNN to
perform object recognition. Currently, the approach is designed and tested to be
used to improve the control of a myoelectric hand prosthesis. Object recognition
can make the prosthesis capable to autonomoysly understand the required grasp.
Thus, it can improve control robustness. On the other hand, the same approach
can easily be extended to create a dataset for object detection by annotating the
position of the objects in the scene with a bounding-box.
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2 Data Acquisition

2.1 Acquisition Setup

The acquisition setup is designed to support the experiment investigating the
grasp of several objects. The setup is composed of acquisition hardware and
software. The acquisition hardware is composed of a set of surface electromyo-
graphy electrodes (Delsys Trigno Wireless EMG); a pair of eye tracking glasses
with scene camera (Tobii Pro Glasses 2) and a laptop (Dell Latitude E5520).
The acquisition software simultaneously records and stores all the data provided
by the sensors.

The Delsys Trigno Wireless System consists of 14 electrodes, each equipped
with a triaxial accelerometer. It records the surface EMG signal at 2 kHz and the
accelerometers at 148 Hz with a baseline noise lower than 0.5 mV RMS (Root
Mean Square). The electrodes are placed around the forearm of the subject using
a dense sampling approach to record the activity of the muscles controlling
the hand. Eight electrodes are placed around the forearm starting from the
radio-humeral joint, forming a circular array. The other six electrodes are placed
after the first eight, creating a second array in a more distal position, as shown
in (Figure 1). These electrodes are placed in correspondence to the gap between
the electrodes of the first array, starting from the gap between the first and
second electrodes. A latex-free elastic band is used to maintain the electrodes
in contact with the skin. The Tobii Pro Glasses 2 are a mobile lightweight gaze
tracker recording both point-of-regard and scene in front of the subject. The
gaze point data are sampled at 100 Hz with a theoretical accuracy and RMS
precision of 0.5 and 0.3 degrees respectively. The scene in front of the subject is
recorded with a scene camera embedded in the frame in full HD resolution at 25
fps (frames per second). Finally, the laptop manages hardware connections and
runs the acquisition software that guides the subjects during the exercise, while
recording and storing the data from all the devices.

The acquisition software is a multithreaded application based on the producer-
consumer pattern and developed in C++. To synchronize the data from the var-
ious sensors, a high resolution timestamp is assigned to each sampled datum. A
Graphical User Interface (GUI) developed with Qt is used to guide the subject
with vocal instructions.

2.2 Acquisition Protocol

The test was designed to investigate both kinematic and visual aspects of grasp-
ing. The aim is to robustly identify the grasp that the subject wants to perform.
Each grasp is performed on more objects and, if appliable, more grasps are
performed on the same object. Therefore, it mainly consists of grasping 30 ob-
jects with 15 types of grasps. Grasps and objects are selected based on a grasp
taxonomy [10] and their importance in Activities of Daily Living (ADL). The
considered grasps together with the used objects are reported in the columns
of Figure 2.
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Fig. 1: Overview of the acquisition setup.

The subject is asked to sit comfortably in front of a desk where the acquisition
laptop and the objects to be grasped are positioned. Before each set of grasp
repetitions two videos from lateral and first person points of view explain to the
subject how to perform the grasp. During this phase, the subject can try the
grasp on the objects in order to get confident with them. Afterwards, a fixed
image of the grasp is shown on screen in order to minimize the distractions during
the exercise. The subject is guided by two vocal instructions: the first asking to
grasp the object and the second to release it and to return to the rest position.
The instructions have the same duration (four seconds) for both grasping and
resting and they are recorded as stimulus signal. The exercise can be viewed
as composed of five phases: 1) rest (arm comfortably leaning on the desk); 2)
movement to reach an object; 3) grasp of an object; 4) release; 5) return to rest.
Each grasp is repeated 12 times, while the number of repetitions performed on
each object depends on the number of objects used for the specific grasp.

In order to avoid staring at objects between grasps, the subjects were asked
to look at the eye tracker calibration target during the resting phase. The ac-
quisition protocol was tested on 6 healthy subjects: 4 males, 2 females, average
age 26.6± 5.3, all right handed.

3 Data Analysis

In this section we present the approach used to train a computer vision system
automatically with eye tracking and accelerometers using the scene camera data.
Learning is based on the natural parameters of hand-eye coordination. The sec-
tion is divided into two parts: the first describes the automated creation of the
training dataset for object classification; the second describes the fine-tuning of
the CNN using the automatically created training dataset and the evaluation on
the test data.



Semi-automatic training of an object recognition system 5

Fig. 2: Overview of the objects and the grasps performed.

3.1 Automatic Creation of the Training Dataset

Several papers have already investigated the parameters of the coordination
between gaze and grasping within eye-hand coordination [14, 2, 5, 16]. They
provide information that can be used to localize objects in the scene by detecting
the beginning of the movement and the gaze fixations. Thus, we investigated and
evaluated the feasibility of using these parameters to automatically extract video
patches containing the object that the subject is aiming to grasp. These patches
are then used to fine-tune a CNN and tested on the object recognition task.

The video patches containing the object that the subject is aiming to grasp
are identified by first detecting the beginning of the movement that the sub-
ject performs to reach the object. Based on this, the gaze fixations related to
the object to be grasped are used. We investigated two approaches to identify
the beginning of the movement: the movement of the arm towards the object,
identified with the accelerometer or when the hand started to be pre-shaped
for grasping, identified as finger movement with the sEMG signals. However,
preliminary analysis showed that the accelerometer performed better than the
sEMG. Thus, it was decided to use the movement of the arm towards the object
using the accelerometer signals. First, the data acquired are preprocessed and
synchronized following the procedure described in [1].

In order to detect the beginning of the movement to reach the object, the
forearm was considered as a rigid body to which all the sensors are firmly at-
tached. The magnitude of the 3-axis acceleration vector is calculated for each
sensor. The signals obtained are averaged and the results denoised using a db2
wavelet of level 9. The beginning of the movement is identified as the maximum
value of the signal obtained right after the resting of each repetition (identified
thanks to the stimulus signal).

The eye fixation on the object to be grasped can be identified based on the
parameters describing the eye-hand coordination. Following the results presented
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in the literature, the fixations are identified between 50 ms before and 450 ms
after the beginning of the movement using the EyeMMV Toolbox [15]. A fixation
cluster is identified when the gaze of the subject is remaining within a radius
of 250 px for more than 70 ms. The fixation coordinates are calculated taking
into account only the points with a fixed distance regarding the mean point of
the cluster lower than 3s, with s = (sx + sy)

1/2, sx and sy standard deviation of
horizontal and vertical coordinates.

The identification of the fixation allows the extraction of patches, centered
around the fixation point and with a size of 512 by 512 pixels. The patches are
extracted from the first two frames of the scene camera video after the beginning
of the identified fixation. The labels of the patches, indicating which object the
subject was asked to grasp, are automatically assigned using the information
provided by the stimulus signal. These patches are then used to fine-tune a
CNN to recognize the object that the subject is aiming to grasp. A flow diagram
of the proposed method is showed on Figure 3.

Data
Acquisition

Movement
identification

Fixation
identification

Patches
extraction

Finetuning
CNN

Fig. 3: Flow diagram of the proposed method.

3.2 Evaluation of the Training Dataset on Object Recognition

As reported in section 1, CNNs are currently obtaining good results in many
recognition tasks, including object recognition. The training data automatically
extracted are tested using one of the CNN architectures that has shown the best
results on both image classification and single object localization: the GoogLeNet
network [20]. The 2158 patches extracted (subsection 3.1) were divided into 30
classes representing the objects. The object recognition was performed using the
Berkeley Vision and Learning Center (BVLC) GoogleNet model [21] pre-trained
on ImageNet Large Scale Visual recognition Competition (ILSVRC) 2012 [7]
using the deep learning framework caffe 1.0.0-rc3 [13] together with the frame-
work NVIDIA Deep Learning GPU Training System (DIGITS). To evaluate the
performance, a leave-one-person-out approach was used. The fine-tuning of the
network is performed with the patches of 5 subjects and tested on the patches
of the subject left out. The training and validation datasets are composed of
1438 and 360 (20%) patches on average resized to 256 px respectively. The test
datasets were containing the patches extracted from a single subject (360 patches
on average).

4 Results

The object top 1 classification accuracy is 71.97% ± 2.67%, considering the 30
classes (range between 68.33% and 75.56%). The probability of having the correct



Semi-automatic training of an object recognition system 7

class in the first 5 results (indicated as top 5 accuracy in Table 1) is, 82.53%±

1.77%, with a range of 3.33% ( 81.39% − 84.72%). The detailed results of the
classification for each subject are reported in Table 1.

The average per-class accuracy (accuracy achieved on each object class) high-
lights how various objects can be more easily and robustly recognized by the
detector. As shown in Table 2, the remote control is the object recognized with
the best accuracy (91.67%±12.91%), while sunglasses is the one with the lowest
per-class accuracy (43.61%± 15.00%). The button is the object with the highest
classification uncertainty (±49.16% of standard deviation) while the belt is the
one classified with highest precision (±4.19% of standard deviation).

The per-class accuracies for all subjects (30 objects for 6 subjects) range from
0% to 100%. In 4 cases (∼ 2%) the object is recognized in none of the tested
images, so with a per-class accuracy of 0%. This happened for classes: button
for Subject 1, cardboard cup for Subject 2, and button and peeler for Subject 3.
On the other hand, in 44 cases (∼ 24%) the object is recognized in all tested
patches, so a per-class accuracy of 100%.

5 Discussion and Conclusion

The results show that the parameters of hand-eye coordination can be used
to semi-automatically create a training dataset for object recognition from eye
tracking, accelerometer and scene camera data. Several approaches can be ap-
plied to obtain further improvements.

The application of the eye-hand coordination parameters to gaze and ac-
celerometer data allows the identification of the time interval during which the
subject is looking at the object to grasp. This information allows to automat-
ically identify the object within a video or image of the scene. The described
procedure can be applied to automatically create a training dataset, in particu-
lar in application involving the eye-hand coordination, such as myoelectric hand
prosthesis. A trained system can then be used to perform object recognition, for
example to automatically identify the object that the subject is aiming to grasp.
This can be useful in several applications and fields such as in robotics and pros-

Table 1: Top 1 and Top 5 accuracy on object identification for each subject.

Top 1 Accuracy [%] Top 5 Accuracy [%]
Sbj 1 70.00 80.56
Sbj 2 72.78 81.94
Sbj 3 68.33 81.39
Sbj 4 74.02 81.84
Sbj 5 75.56 84.72
Sbj 6 71.11 84.72

Average Accuracy 71.97 82.53
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thetics where movements can be adapted to objects to be grasped. The same
approach can also be used to train or fine-tune object detectors by automati-
cally drawing a bounding-box around the objects to annotate their position in
the scene. It can be used to create a training set for object detection or recogni-
tion in a real world scenario, with the objects represented in various orientations
and positions. Moreover, it can be also extended in an unsupervised scenario in
which the ground truth is given by saying the object class and then transcribed
by speech recognition.

A few aspects negatively influenced the results, in particular the quality of
the patches and the small size of the dataset. The main limitation of the auto-
matic extraction of the patches is related to object representation. Many external
factors such as distraction or adaptation to the task (decreasing the level of vi-
sual attention) may have an influence on patch extraction. In some cases, the
patches can contain: part of the object; the object being occluded by the sub-
ject’s hand; the object to be grasped and parts of the other objects in the scene
and background. In the worst case a patch does not contain any object (Fig-
ure 4). From visual inspection we noticed that approximately one third of the
patches extracted are not containing the object or just a small portion of it.
Increasing the quality of the patches can most likely increase the performance of
the classification. This can be done by segmenting the objects in the scene (for
example, using an objectiveness filter or a Region Proposal Network). The gaze
information may then be used to select the object that the subject seems to be
interested in, i.e. selecting the region of the object containing the gaze or the
closest one. This can lead to a more robust and precise patch extraction, avoid-
ing the mentioned problems. The acquisitions were made in the same location

Table 2: Average per-class object classification accuracies.

Object Per-class Accuracy [%] Object Per-class Accuracy [%]
belt 68.75± 4.19 razor 55.56± 27.22
book 69.45± 24.53 remote control 91.67± 12.91
fork 74.82± 17.94 scissor 78.46± 16.21
cardboard cup 63.89± 37.14 screwdriver 78.94± 10.74
hairbrush 68.10± 37.05 shoe 45.00± 20.74
key 65.65± 22.22 cell phone 81.25± 15.31
knife 79.17± 24.58 torch 72.92± 16.61
button 58.33± 49.16 zip 61.90± 26.60
mug 68.06± 26.04 measuring tape 87.92± 6.74
mouse 75.00± 29.35 can 80.56± 12.54
peeler 66.67± 40.83 cup 60.00± 21.91
pen 74.00± 16.00 disk 56.25± 24.69
bottle 80.00± 25.30 handle 70.83± 29.23
pencil 77.65± 10.89 ball 76.25± 33.68
plate 75.00± 22.36 sunglasses 43.61± 15.00
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using the same setup and objects. This aspect that can influence the classifica-
tion accuracy as well as limit the portability of the approach. On the other hand,
it does not reduce the importance of the presented approach. Increasing both
size and variability of the dataset can also help to recognize a larger number
of objects in various conditions, such as changing light. Moreover this method
can easily be applied in a semi-supervised manner, setting a threshold for the
classification accuracy below which the system requires human intervention to
define the correct object in the scene.

The information provided by the eye-hand coordination was successfully used
to automatically create a training dataset for object detection and classification
starting from eye tracking, accelerometer and scene video data.

(a) (b) (c) (d)

Fig. 4: (a) Object correctly represented in the patch. (b) Object being occluded
by the subject’s hand. (c) Two objects partially represented in the patch. (d)
The patch does not contain the object.
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