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Abstract—Hand amputation can completely change the life
of the concerned persons in terms of every day activities and
personal independence, even much stronger so if both hands
are lost. Most hand prostheses are little accepted by amputees
and only give basic functionalities back to the amputees, such
as simple opening and closing. Some modern prostheses allow
for much more complex movements but the control mechanisms
really need to be improved for good and natural control (some
prosthesis are controlled with the arm/shoulder, so body-powered
and non-natural). On this topic several research projects exist
with varying objectives, from invasive methods to using additional
signals such as cameras in the prostheses, which is described in
this text.

This article summarises several years of research executed
in the MedGIFT research group in two projects funded by the
Swiss National Science Foundation in collaboration with national
and international partners. It starts with the descirption of a
basic acquisition setup that uses mainly electromyography and
acceleration sensors and finishes with the current multi-sensor
integration that also includes a scene camera, object recognition
and gaze tracking of the person using a prosthesis combined
with surface Electromyography and acceleration sensors on the
forearm. The text finishes with a short outlook into future
research challenges for controlling hand prostheses.

Index Terms—multi-sensory information, gaze tracking, pros-
thesis control, electromyography

I. INTRODUCTION

A hand amputation is not one of the most frequent injuries
but it is one that can have a strong personal impact, as
many daily activities can become difficult to perform. It was
estimated that around 41,000 people were living with a major
upper limb loss in the USA in 2005 [1]. There are cosmetic
prostheses, for example a simple hook without any active
functionality. Then there are body-powered prostheses, where
a non-natural moment is used for opening and closing a hand.
This is usually only possible for a single movement and not
for more complex parts. surface Electromyography (sEMG)
allows to measure the electrical activity of the remnant muscles
and it constitutes the third large group of professional prosthe-
ses Most often this is also only used for one movement or a
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very small number of movements but more complex prostheses
with single fingers and up to 50 movements exist as well. A
review of hand prostheses can be found in [2].

In research environment also invasive methods that do not
only use muscles but also connected directly to the nerves
have been implemented, as well as brain-computer interfaces,
both as invasive and non invasive methods, for example via
EEG (Electro-EncephaloGram) [3].

Unfortunately commercial prostheses are frequently rejected
by the users and so only a minority of amputated persons uses
prostheses. Critical points are for example linked to heat and
the wight of prostheses [4]–[6]. Most commercial prostheses
are also very expensive [7], [8]. Addition of video streams for
the analysis of grasps has also been done in research work [9].

Comparing quality of prosthesis control has been difficult,
as the number of movements and subjects varies strongly form
one publication to another.

II. METHODS EMPLOYED AND RESULTS OBTAINED IN THE
PROJECTS

This section describes the main results obtained in the
MeganePro and NinaPro1 projects, from the standardised ac-
quisition setup developed to the obtained classification results
of the tests with amputated persons and healthy controls.
Ethics approval for the project was obtained both in Switzer-
land and in Italy (at the University hospital of Padova, Italy),
where most data acquisitions were done.

A. Acquisition setup

Figure 1 shows one example setup for the MeganePro and
NinaPro project. Usually sEMG electrodes are placed around
the forearm, with several types of electrodes having been used
in the project, from Otto Bock, to the Myo armband and
Delsys Trigno wireless electrodes that are all compared in [10].
After an analysis for an acquisition protocol described in [11]
first tests were performed with an amputated subject [12] to
make sure that good signal quality could be obtained and

1http://ninapro.hevs.ch/



also to measure how difficult and stressful such tests are for
amputees. Based on the first experiences the protocol was
slightly simplified and more breaks were included to limit
the amount of stress and the impact of fatigue. The objective
of the protocol was clearly to favour natural control of the
prosthesis [13]. In several setups, tests were also run using a
CyberGlove and echoing the movement from one hand on
the other. Force measurements were also used in some of
the tests, also to possibly synchronise movements. Several
slightly different setups were used for the acquisitions, usually
with a large number of around 50 movements, exceeding in
complexity what was commonly used in the field and to allow
for a maximum of possible uses.

Fig. 1. Acquisition setup in the MeganePro project including the description
of movements to execute on a screen and data acquisition with electromyog-
raphy and acceleration tracking and in addition the gaze tracker that includes
a scene camera for analysing the field of view of the person.

Several of the data sets produced in the NinaPro project
were published and are also publicly available for other re-
searchers to use them [14], [15]. In the setup of the MeganePro
project [16] a gaze tracking device from Tobii (Tobii 2 glasses)
was added, as can be seen in Figure 2. This adds information
for making a decision on the movement to be taken by
recognising objects in the images [17] and also by analysing
the gaze point prior to starting a new movement and adapting
the movement to the object that was selected. An overview
of such gaze trackers with more technical information of the
devices can also be found in [18].

Fig. 2. The Tobii glasses that were used in opur experiments.

One of the major challenges in recording data from several
sources is the synchronisation of the data sources, from the
sEMG stream of 12 electrodes, to 12 acceleration sensors in

3 directions, the video stream and gaze point in the video
recorded. Participants were following a video showing the
movements to before, and a delay in starting the movement
after it is shown on video can vary from one movement to
another and also between repetitions of the same movement.
Frequencies of the devices are not at all the same and there
are possibilities for up- or down-sampling the devices, which
can both have an impact on the classification results. It is
important to well identify the onset of a movement to then be
able to react quickly. In general the maximum amount of time
for starting a movement that the prosthesis user initiated

Fig. 3. Several data sources need to be combined for the final decision making,
including complex synchronisation of data acquired with varying frequencies.

Most of the data acquisition were performed without an
actual prosthesis but wit the help of a 3D printed prosthesis it
was in the end possible to also have such visual feedback for
the participants in the study [19], [20], as such feedback also
allows the amputees to have visual feedback on the movements
detected and thus possible the participants can adapt their
behaviour, leading to much better classification results.

B. Outcomes of the NinaPro and MeganePro projects
Based on the initial NinaPro data acquisitions [11] and

several studies that were done later with the same protocol
but different electrodes, for example [10] much research was
made possible both in our research group but also in several
other researcher groups that obtained access to the data set.
Many techniques have been applied for the data classification,
for example deep learning approaches [21].

One outcome has been the important correlation of some
of the clinical parameters with the performance of amputees
in [22]. It was shown that remaining forearm percentage
is clearly correlated with performance. More surprising also
personal, subjective phantom limb sensation was correlated
with performance, which has so far no clear explication. The
time since the amputation is also positively correlated with
classification accuracy of movements and this independent on
whether the persons use a prosthesis or not, which was sur-
prising A possible explication is that natural re-innervation in-
creases the quality if the signal that is available for movement



recognition. Neuroscience experiments on the other hand show
that the brain area responsible for a missing limb decreases
over time. The general accuracy of movement recognition of
persons who use or who do not use prostheses can be found
in [23].

An important aspect of such experiments and data acqui-
sitions is whether the results can be repeated and for this
s protocol was defined where the same ten persons were
recorded for five straight days twice per day, once in the
morning and once in the afternoon [24]. The results show that
there are significant differences in the data and that it is hard
to lear across sessions even for the same persons. This can be
linked to the exact electrode position but also to fatigue in the
afternoon and external factors.

The availability of the large amount of recorded data of
muscle activities for many movements also allowed further
analyses. In [25], several synergies of the muscles were
identified and this can have an important possible impact
for the analysis of neural diseases or rehabilitation beyond
prosthesis control- I can also help to build better prostheses
by using the detected synergies.

Another project that was made possible via all the acquired
data is the creation of a new hand taxonomy that is not based
on subjective human analysis but on experimental quantitative
data [26]. Such a taxonomy can equally have an important
impact on the domains of prosthesis control and more general
in rehabilitation involving the hand, also for example after
stroke.

III. CONCLUSIONS AND FUTURE WORK

Within the NinaPro project the foundations for a protocol for
data acquisition with many amputees and also non-amputees
was created with a large number of movements that allow
to cover most movements for activities of daily living in a
realistic scenario. This created a benchmark for performance
analysis of movement control and sharing the benchmark data
with the community was valuable, thus allowing to compare
the many approaches on the same bases. Links between
clinical data and movement quality were made but also several
shortcomings were found in the repeatability experiments
meaning that transfer learning was very difficult and might
be impossible in the current setup. The difference between
amputees and healthy subjects is significant and when using
many movements the quality of classifying movements fully
correctly is somewhat limited in amputees. Some information,
for example of the thumb muscle is simply absent in amputees.
Additional information can be obtained with the gaze tracker
and a scene camera, which allows to identify objects in a
scene and which of the objects is likely to be used via the
gaze information. This has the potential to partly leverage
the missing information and might improve the classification
accuracy particularly for amputees. These differences can also
be explained by other parameters. In most studies the amputees
are patients with a large variety in age and socioeconomic
status. The control group are most often volunteers from the
university campus who are usually of a higher socioeconomic

class and thus healthier and usually quite young compared
to amputees. This can already make an important difference
in acquisition quality and in the MeganePro project a data
set will soon be released that contains 20 amputees and a
control group that is matched by age, gender and partly the
education status. Another difference is that healthy persons
have feedback on the movement with their hands whereas
amputees do not have any feedback in the experiments. In a
small test [20] with a real, 3D printed prosthesis showed that
amputees are able to adapt to the system, possibly leading
to higher results. Showing results in augmented reality for
training can also help with thus basic sensory feedback.

As a conclusion, both the NinaPro and MeganePro projects
have created an open environment for research in hand pros-
thetics by making data and source code available ands sharing
openly with the research community.
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