
1Scientific Data |            (2020) 7:12  | https://doi.org/10.1038/s41597-019-0349-2

www.nature.com/scientificdata

A large calibrated database of hand 
movements and grasps kinematics
Néstor J. Jarque-Bou   1*, Manfredo Atzori2 & Henning Müller   2,3

Modelling hand kinematics is a challenging problem, crucial for several domains including robotics, 3D 
modelling, rehabilitation medicine and neuroscience. Currently available datasets are few and limited in 
the number of subjects and movements. The objective of this work is to advance the modelling of hand 
kinematics by releasing and validating a large publicly available kinematic dataset of hand movements 
and grasp kinematics. The dataset is based on the harmonization and calibration of the kinematics 
data of three multimodal datasets previously released (Ninapro DB1, DB2 and DB5, that include 
electromyography, inertial and dynamic data). The novelty of the dataset is related to the high number 
of subjects (77) and movements (40 movements, each repeated several times) for which we release for 
the first time calibrated kinematic data, resulting in the largest available kinematic dataset. Differently 
from the previous datasets, the data are also calibrated to avoid sensor nonlinearities. The validation 
confirms that the data are not affected by experimental procedures and that they are similar to data 
acquired in real-life conditions.

Background & Summary
The hand is a complex functional limb including over 30 muscles and more than 20 joints that allow performing 
a wide range of activities with a high level of precision. Kinematics is essential for hand functioning. The human 
hand has a linear actuator structure and it has control requirements that differ from the most common designs 
used to replicate it1,2. The analysis of complex hand movements is useful for several applications, including robot-
ics3,4 (to improve grasping by manipulators), 3D modelling5 (to develop more realistic models of the hand for 
movies or computer games), rehabilitation and physiotherapy6–8 (to improve hand rehabilitation), bioengineer-
ing, medicine and neuroscience (to better understand human hand movements, also in relationship to muscular 
and kinematic synergies9,10).

Although studies are improving the understanding of hand kinematics11–15, scientific research in this field is 
still often affected by several limitations. First, most of the studies involve a small number of subjects (up to 10 
subjects to our knowledge13), lacking the possibility to generalize the results. Second, the studies often involve a 
small number of grasps, (up to 25 grasps to the best of our knowledge13), lacking result completeness. Third, usu-
ally only postural movements were considered, without taking into account the entire movement, while “reach to 
grasp” and release are important phases in grasps modelling. Finally, most studies are based on raw instrumented 
glove data, which do not provide the linear outputs required to obtain reliable joint angles and can invalidate 
kinematic models obtained without a specific and accurate calibration method16,17.

Hand movements can be measured with different methods, but most of them fail when capturing kinematics 
while performing ADL (Activities of Daily Living). Goniometers do not allow for the simultaneous measurement 
of all DoFs (Degrees of Freedom). Electromagnetic systems are susceptible to magnetic and electrical interfer-
ence from metallic objects in the environment. Marker-based optical systems can be used only within the area 
covered by the cameras, require a substantial amount of time to setup the markers, and markers often become 
occluded during the recording of tasks. Recently, portable and relatively low-cost devices became available, such 
as the Leap Motion controller system. However, these systems lack of accuracy to obtain reliable kinematic data 
during the performance of ADL18. At this point, instrumented gloves seem to be the most effective method for 
collecting data without occlusion problems and are among the most frequently used methods to collect data 
from finger joints and hand movements. However, the use of data gloves is not always straightforward. First, the 
response of the sensors can change depending on the size of the hand of the user. Second, the sensors can have 
non-linear relationships with the joint anatomical angles16, due to their position or due to the influence of other 
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joint movements. Therefore, calibration processes are fundamental to obtain reliable gains for the sensors that 
record each degree of freedom.

Subject-specific data glove calibration procedures are time consuming. Thus, it is not easy to include them in 
data acquisition protocols (that are often already long and tiring). This consideration is true for healthy controls 
and particularly for patients and persons affected by disabilities, for which data acquisitions can be even more 
stressful and physically demanding.

A recently presented calibration method assures the possibility to calibrate the kinematic data recorded with a 
data glove in post-processing17. The method was described having a reasonable maximum precision error (below 
5 degrees), thus it can improve the accuracy with which hand kinematics and anatomical angles are quantified.

In this work we apply the post-processing calibration method to kinematic data from 77 intact subjects included 
in the Ninapro (Non Invasive Adaptive Prosthetics) database (Ninapro Repository (http://ninapro.hevs.ch)  
and Zenodo19 (10.5281/zenodo.3354437)). The novelty of the paper is related to the high number of subjects and 
movements and to the fact that the data are for the first time calibrated. The 77 subjects performed 40 hand move-
ments and grasps plus rest, leading to our knowledge to the biggest hand kinematics dataset currently available. 
To obtain the hand anatomical angles, an across-subject calibration procedure17 was applied.

This dataset aims at allowing worldwide research groups to study hand kinematics. The calibrated data are 
expected to foster the progress in many scientific domains, such as medicine, neuroscience, rehabilitation, phys-
iotherapy, robotics, prosthetics and computer aided model design, leading for instance to a better understanding 
of human hand movements, improved rehabilitation protocols, robotic grasps that better correspond to human’s 
and more realistic 3D graphical models.

In conclusion, the kinematic dataset Ninapro DB9 improves the scientific state of the art with the most com-
prehensive reference for kinematic data existing to the best of our knowledge. The technical validation section 
verifies that the data are similar to data acquired in real-life conditions by statistical analyses and the visual 
inspection of the 3D hand model representations.

Methods
Subjects and ethical requirements.  The data were recorded from 77 intact subjects (56 males, 21 females; 
69 right handed, 8 left handed; age 28.80 ± 3.96 years, see Table 1) and were originally released as part of three 
multimodal datasets (Ninapro DB1, DB2, DB5) including uncalibrated kinematic data20,21 of respectively 27, 40 
and 10 subjects.

Before the data acquisition began, each subject was given a thorough written and oral explanation of the 
experiment, including the associated risks; the subject was then asked to sign an informed consent form. The 
experiment was conducted according to the principles expressed in the Declaration of Helsinki (http://www.wma.
net/en/20activities/10ethics/10helsinki) and it was approved by the Ethics Commission of the Canton of Valais 
(Switzerland).

Acquisition setup.  Hand kinematics was measured for all subjects using a 22-sensor CyberGlove II data 
glove (CyberGlove Systems LLC, www.cyberglovesystems.com). The CyberGlove is a motion capture data glove, 
instrumented with joint-angle measurement sensors. It uses proprietary resistive bend-sensing technology to 
transform hand and finger motions into real-time digital joint-angle data. Data from the CyberGlove were trans-
mitted over a Bluetooth-tunnelled serial port at slightly less than 25 Hz. Each data sample provided was associated 
with an accurate timestamp using Windows performance counters. Then, the data streams were super-sampled 
to the highest sampling frequency in the acquisition setup (100 Hz, 2 kHz and 200 Hz respectively for Ninapro 
DB1, DB2 and DB5). The number and the corresponding position of each Cyberglove sensor is shown in Fig. 1.

Electromyography data are also available for each subject in the original multimodal datasets (Ninapro DB1, 
DB2 and DB5)20,21. We invite the users willing to use calibrated kinematic, sEMG or other modalities together to 
read these papers for a detailed description of the acquisition setups (including sEMG, inertial, and force exer-
tion data), the sEMG sensors (respectively including 10 OttoBock MyoBock 13E200, 12 Delsys Trigno Wireless 
electrodes and 2 Thalmic Myo armbands (http://www.thalmic.com/) and the synchronization procedures20,21.

Acquisition protocol.  Subjects were asked to sit at a desk in an office chair, adjusted to match the maximum 
comfort, while comfortably resting their arms on the desktop. A laptop in front of the subject provided visual 

Kinematic Ninapro

Available subjects 77

Considered subjects 77

Males 56

Females 21

Right-handed 69

Left-handed 8

Avg. Age (years) 28.8 ± 3.96

Avg. Height (cm) 172.6 ± 9.48

Avg. Weight (kg) 69.5 ± 11.97

Avg. BMI (Kg/m2) 23.06 ± 3.18

Table 1.  Information on the input data used for the data set created in this paper.
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stimuli for each task, while also recording data from the data acquisition devices. The experiment is divided into 
one training part and several exercises addressing different types of movements, interrupted by rest time in order 
to avoid muscular fatigue.

The exercises included in the kinematic dataset consist of 40 hand movements plus rest and correspond to 
exercise B and C described by Atzori et al.20. Exercise B (Fig. 2) consists of 8 isometric and isotonic hand configu-
rations and 9 basic movements of the wrist; Exercise C (Fig. 3) consists of 23 grasping and functional movements 
(everyday objects are presented to the subject for grasping, in order to mimic daily-life actions). The Ninapro DB1 
and DB5 datasets originally included exercises A, B and C20, while DB2 included exercises B, C and D21.

During the exercises performed using the Cyberglove II, the subjects were asked to mimic the actions shown 
in short videos on the screen of the laptop with their right hand. All the subjects were asked to concentrate on 
mimicking the movements rather than on exerting high forces. The set of movements was selected from the hand 
taxonomy, robotics and rehabilitation literature with the aim of corresponding to the hand movements encoun-
tered in activities of daily living (ADL)22–25. Each movement repetition lasted 5 seconds, and it was followed 
by 3 seconds of rest. The sequence of movements was not randomized in order to encourage repetitive, almost 
unconscious movements.

The calibrated kinematic dataset is available online on the official Ninapro repository as Ninapro DB9 (http://
ninapro.hevs.ch/db9) and on Zenodo19.

Signal processing.  Several signal processing steps were performed before making data publicly available in 
the repositories. These steps include relabelling and joint angle computation. The raw glove data are also available 
on Zenodo19.

Relabelling.  The movements performed by the subjects may not perfectly match with the stimuli proposed 
by our software due to human reaction times and experimental conditions. The resulting erroneous movement 
labels were corrected by applying movement detection algorithms offline, such as the generalized likelihood ratio 
algorithm26 and the Lidierth threshold based algorithm27,28.

Joint angles.  Calibration is required to keep into account some issues related to datagloves, such as 
non-linearities. Therefore, joint angles were computed by transforming the raw data according to specific gain 
values computed on the basis of a post-processing calibration protocol17 that was recorded for 10 subjects. The 
protocol consists of recording 65 poses and guided movements to obtain the sensor gains and some corrections 
to cross-coupling effects for specific anatomical angles. Thirteen calibration trials correspond to the calibration 
of wrist flexion/extension (WRIST_F) and deviation (WRIST_A). The trials include postures corresponding to 
different, mixed wrist flexion and deviation levels of the wrist. The sensor gains for the wrist are shown in Table 2.

Twenty-eight calibration trials correspond to the calibration of 14 flexion sensors (two static postures per 
sensor) that measure the flexion of the metacarpophalangeal joints (MCP_F), proximal interphalangeal joints 
(PIP_F) and distal interphalangeal joints (DIP_F) (respectively 1 to 5 corresponding from thumb to little digit). 
The gains of these flexion sensors assume a linear relationship between the flexion angle at these joints and the 
glove output signals. The sensor gains for the flexor/extensor digit gauges are shown in Table 3.

Eighteen calibration trials correspond to the calibration of 3 abduction sensors, corresponding to relative 
abduction of MCP of the fingers (MCP2-3, MCP3-4, MCP4-5). Due to the placement of the sensors on the glove, 
the output signal of the abduction sensors varies when the adjacent MCP joints are also flexed. This happens also 
when there is no variation of the abduction angles, requiring to correct the abduction output angles16. In order 
to correct this effect on the abduction angles, the gains of these sensors assume a second order polynomial rela-
tionship between the flexion angles of adjacent MCP joints and the glove output signals. The sensor gains for the 
abduction/adduction digit gauges are shown in Table 4.

Two calibration trials are used for CMC1 flexion/extension (CMC1_F), leading to a linear relationship with 
sensor 1 (Fig. 1, right) and to an adjustment factor related to the sensor 4 movement. Similarly, two calibration 

Fig. 1  Cyberglove II device and the placement of the 22 sensors.
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trials are used for CMC1 abduction (CMC1_A), considering a linear relationship with sensor 4 and an adjust-
ment factor related to sensor 1 movement. Finally, two postures are needed for a palmar arch (CMC5_F), which 
is estimated from sensor 20 assuming a linear relationship. The sensor gains for the thumb CMC and palmar arch 
are shown in Table 5.

The calibration protocol was recorded on 10 subjects. Afterwards, the gains obtained for each sensor were 
used to compute the joint angles for all the subjects. In order to do this, the sensor signals were transformed 
according to the outputs relative to a reference posture. The reference posture was chosen as the central part of 
movement 11 in exercise B (Fig. 2), corresponding to the hand resting on the table with the fingers closed together 
and extended. The anatomical angles resulting from the calibration phase are represented in Fig. 4. The defined 
sign criteria are shown in Table 6 and Fig. 5.

Data Records
The kinematic data produced with the described methods are stored on Zenodo19 (a general-purpose open-access 
repository developed under the European OpenAIRE program and operated by CERN) and on Ninapro (a reposi-
tory with publicly available data resources to improve robotic hands and prostheses control, http://ninapro.hevs.ch/)  
as Ninapro DB9 dataset. The format and content for data sets are described hereafter. For each subject and exer-
cise, the database contains one.mat file (http://www.mathworks.com/) with synchronized variables. The variables 
included in the files are:

•	 subject: subject number;
•	 exercise: exercise number;

Fig. 2  Graphical representation of each movement for the Exercises B: 8 isometric and isotonic hand 
configurations and 9 basic movements of the wrist.
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Fig. 3  Graphical representation of each movement for the Exercises C: 23 grasping and functional movements 
(everyday objects are presented to the subject for grasping, in order to mimic daily-life actions).

Sensor gains

Anatomical angle calculationG1 G2 G3

WRIST_F 0.008 −190.451 — S212*G1 + G2

WRIST_D −1.020 0.467 75.336 S22*G1 + S21*G2 + G3

Table 2.  Information on the sensor gains used for the calibration of the wrist gauges. Sx corresponds to the 
sensor number, according to Fig. 1.

https://doi.org/10.1038/s41597-019-0349-2
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•	 glove (22 columns): uncalibrated signal from the 22 sensors of the Cyberglove. Details on the location of the 
sensors are described in Fig. 1;

•	 angles (22 columns): calibrated signal from the 22 sensors of the Cyberglove by applying the post-processing 
calibration procedure17.

•	 re-stimulus (1 column): the a-posteriori refined label of the movement;
•	 re-repetition (1 column): re-stimulus repetition index;
•	 stimulus (1 column): the label of the movement;
•	 repetition (1 column): stimulus repetition index;
•	 order of angles (22 columns): name of the angles corresponding to variable “angles”.

Technical Validation
In order to allow better modelling of hand kinematics (to improve robotics, 3D modelling, rehabilitation, medi-
cine and neuroscience) the data needs to correspond to data acquired in real life conditions. They need to corre-
spond as much as possible to the movements included in the acquisition protocol and they should not be affected 
by experimental conditions.

The technical validation is thus performed in two phases. The first phase aims at verifying that the calibrated 
data correspond to the movements included in the acquisition protocol. The second phase verifies that the data 
are similar to data produced in real life by evaluating the effect of experimental conditions (such as movement 
repetition, movement number and subject number) on the range of the joint angles.

Correspondence to the recorded data.  In order to verify that the calibrated data correspond to the 
movements included in the acquisition protocol, we computed a graphic representation of each average posture. 
For each movement and for all the subjects, all movement repetitions (as identified after the re-labelling) were 

Sensor gains

Anatomical angles calculationDigit1 Digit2 Digit3 Digit4 Digit5

DIP_F — 1.08 1.82 2.08 1.26 *Sensor gain·sensor gauge value

IP/ PIP_F 1.19 0.91 1.07 1.57 0.89

MCP_F 0.562 0.91 0.95 0.97 1.06

Table 3.  Information on the sensor gains used for the calibration of the flexion/extension gauges.

Sensor gains

Anatomical angle calculationG1 G2 G3 G4 G5 G6

MCP2-3_A −0.503 −0.071 −0.004 0.091 −0.010 0.014 G1·S11 + (G2·S5 + G3·S8 + G4·S52 + G5·S82 + G6·S5·S8)

MCP3-4_A 0.229 −0.169 0.006 0.167 0.007 −0.013 G1·S15 + (G2·S8 + G3·S12 + G4·S82 + G5·S122 + G6·S8·S12)

MCP4-5_A 0.214 −0.091 0.004 0.250 0.005 −0.011 G1·S19 + (G2·S12 + G3·S16 + G4·S122 + G5·S162 + G6·S12·S16)

Table 4.  Information on the sensor gains used for the calibration of the abduction/adduction gauges. Sx 
corresponds to the sensor number, according to Fig. 1.

Sensor gains Anatomical angle 
calculationG1 G2

CMC1_F 0.713 0.623 G1*S1 + G2*S4

CMC1_A −0.321 0.050 G1*S4 + G2*S1

CMC5_F 0.285 — G1*S20

Table 5.  Information on the sensor gains used for the calibration of the thumb CMC and palmar arch 
gauges. Sx corresponds to the sensor number, according to Fig. 1.

DIP(2-5)_F, PIP(2-5)_F, IP1_F, MCP(1-5)_F Flexion+/Extension−

WRIST_F Flexion+/Extension−

WRIST_D Radial deviation+/Cubital deviation−

MCP(2-3, 3-4, 4-5)_A Fingers separated+/Fingers together−

P_Arch (CMC5_F) Flexion+/Extension−

CMC1_F Flexion+/Extension− (See Fig. 5)

CMC1_A Abduction+/Adduction− (See Fig. 5)

Table 6.  Sign criteria considered.

https://doi.org/10.1038/s41597-019-0349-2
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divided into three parts. While the first part of the movement in general corresponds to reaching the posture 
targeted within the movement and the last part of the movements corresponds to getting back to the rest position, 
the central parts are the ones that are statistically expected to correspond the most to the target posture. The aver-
age postures were thus computed as the mean value of the central (second) part among all the subjects. Figures 2 
and 3 present the average postures as obtained with the described procedure using a publicly available OpenSim 
model of the hand skeleton (https://doi.org/10.13140/RG.2.2.13115.21282). The visual inspection of the average 
graphic representations allows us to verify that the obtained data correspond and closely resemble the postures 
expected according to the acquisition protocol. When the fist is closed (exercise B, movement 6) there is no full 
correspondence between the original movement and the computed average model. The central part of the move-
ment (considered to compute the visual representation) may in a few cases involve parts of the reaching phase, as 
well as of the phase in which the hand gets back to the rest position.

Effect of experimental conditions on the hand kinematics.  In order to verify that the data are sim-
ilar to data produced in real life, the effect of experimental factors on the range of the joint angles was evaluated. 
Factors that can affect the joint angles are the joint (since each one corresponds to a specific sensor), the move-
ment, the subject or the movement repetition. This analysis was performed separately for the exercises included 
in the dataset and are reported in Figs. 6 and 7.

Fig. 4  List of recorded anatomical angles. Nomenclature: _D for deviation (double arrow), _F for flexion/
extension (circles or ellipses in the image), _A for abduction/adduction (triangles in the image); 1 to 5, digits.

Fig. 5  Movements of the carpometacarpal joint.
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In exercise B, a large variability can be noticed when considering how the angles change in relation to the 
joints. In particular, the MCPs present a positive median with the largest range of motion, together with the PIP 
of the index finger. Considering angles vs. movements, the movements 1, 6, 7 and 15 present the widest range of 
motion, which is in agreement with the fact that these movements include flexion of at least 4 fingers, since they 

Fig. 6  Effect of experimental conditions on the hand kinematics for the Exercises B. Subplots represent different 
experimental conditions: joints (subplot a) referred as 1 to 22, according to Fig. 4; movement (subplot b); 
subject (subplot c); movement repetition (subplot d). The horizontal central mark in the boxes is the median; 
the edges of the boxes are the 25th and 75th percentiles; the whiskers extend to 1.5 times the interquartile range.

Fig. 7  Effect of experimental conditions on the hand kinematics for the Exercises C. Graphical representation 
of each movement is shown in subplot a. Different subplots represent different experimental conditions: joints 
(subplot a) referred as 1 to 22, according to Fig. 4; movement (subplot b); movement repetition (subplot c); 
subject (subplot d). The horizontal central mark in the boxes is the median; the edges of the boxes are the 25th 
and 75th percentiles; the whiskers extend to 1.5 times the interquartile range.

https://doi.org/10.1038/s41597-019-0349-2
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include at least partially a fist. Considering angles vs. subjects, variability is limited among subjects. Considering 
angles vs. movement repetitions, it is interesting to notice that the first movement repetitions present a wider 
range of motion, probably because this is the first-time subjects are performing the task and the movements are 
not linked to specific objects that can limit the movement of the hand across different repetitions.

For the exercise C, visualizing the angles for each joint, it is observed that the MCPs present a positive median 
with a large range of motion, together with the PIP of the fingers.

In general, all movements present a range of motion that is wider than in exercise B. This is logical since these 
are grasps and functional activities that need more complex joint movements. Considering angles vs. subjects, 
variability is limited among subjects also for this exercise. Differently from exercise B, the first repetition presents 
a smaller range of motion. This may be due to the higher complexity of the tasks, which can require more atten-
tion and results in slower motion by the subjects. In this exercise, the movements are linked to specific objects that 
limit the movement of the hand across repetitions.

In conclusion, it is clear from these results that the Ninapro DB9 kinematic dataset appears as a reliable 
resource to improve current scientific advancement in robotics, rehabilitation, prosthetics, etc.

Usage Notes
Many factors can affect the amplitude of the signal from the sensors, including the acquisition setup, the anatom-
ical characteristics of the subject and fatigue.

Sensor 11 (that corresponds to MCP2-3_A) was not included in the calibrated data due to noise problems.
DIP sensors provide reliable angles when a subject’s hand size is large (i.e. when the glove properly fits the 

hand). They may provide partial results when the hand of the subject is small. Therefore, attention needs to be 
taken when using the information.

Sensor gains specified in this manuscript are only valid for the Cyberglove used during these experiments are 
not valid for any other glove.

The number of subjects included in the dataset (77) is not high by a statistical point of view, but it is high in 
comparison to the number of subjects included in previous studies on kinematic data (which usually include up 
to 10 subjects). To our knowledge, this dataset is currently the biggest publicly available dataset of kinematic data. 
Regarding gender factors, the male/female ratio of the collected data is 2.7 with 21 females of the 77 subjects. A 
higher number of female participants can provide additional value for studies in which correlation between sex 
and hand movements are studied. However, we cannot currently record additional subjects. So, for such studies 
we suggest users to create matched samples choosing subjects from the dataset.

Code availability
The Matlab code used to calculate hand joint angles from CyberGlove instrumented gloves raw data can be 
accessed as open access29.
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