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The Movement Error Rate for Evaluation of
Machine Learning Methods for sEMG-based Hand

Movement Classification
Arjan Gijsberts, Manfredo Atzori, Claudio Castellini, Henning Müller, and Barbara Caputo

Abstract—There has been increasing interest in applying learn-
ing algorithms to improve the dexterity of myoelectric prostheses.
In this work, we present a large-scale benchmark evaluation on
the second iteration of the publicly released NinaPro database,
which contains surface electromyography data for 6 DOF force
activations as well as for 40 discrete hand movements. The
evaluation involves a modern kernel method and compares
performance of three feature representations and three kernel
functions. Both the force regression and movement classification
problems can be learned successfully when using a non-linear
kernel function, while the exp-χ2 kernel outperforms the more
popular Radial Basis Function kernel in all cases. Furthermore,
combining surface electromyography and accelerometry in a
multimodal classifier results in significant increases in accuracy
as compared to when either modality is used individually. Since
window-based classification accuracy should not be considered
in isolation to estimate prosthetic controllability, we also provide
results in terms of classification mistakes and prediction delay.
To this extent, we propose the Movement Error Rate as an
alternative to the standard window-based accuracy. This error
rate is insensitive to prediction delays and it allows therefore
to quantify mistakes and delays as independent performance
characteristics. This type of analysis confirms that the inclusion
of accelerometry is superior, as it results in fewer mistakes while
at the same time reducing prediction delay.

Index Terms—prosthetics, electromyography, machine learning

I. INTRODUCTION

Machine learning is increasingly being employed in the
research setting to improve myoelectric control of prostheses
(see [1, 2] and references therein). Potential advantages of
these methods over traditional approaches include an increased
level of dexterity and a more intuitive form of control [3].
Furthermore, these learned models adapt to the specific signals
provided to them, so that precise positioning of the electrodes
is no longer essential to achieve acceptable performance [4].

The Non-Invasive Adaptive Prosthetics (NinaPro) project
aims to support this stream of research by publicly releasing
large-scale datasets of myoelectric data [5, 6]. In the present
work, we perform a benchmark evaluation on the second
version of the NinaPro database, which at the moment contains
data collected from 40 intact subjects. The evaluation covers
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two distinct approaches to myoelectric control, namely force
regression for 6 Degrees of Freedom (DOFs) (i.e., the four
fingers and two axes for the thumb) and classification of 40
different hand movements. We employ a modern kernel-based
learning algorithm and compare combinations of linear as well
as non-linear kernels with three different feature representa-
tions. Following recent promising results on the inclusion of
accelerometry (ACC) as an auxiliary modality [7, 8], we also
investigate the benefit of combining surface electromyography
(sEMG) with accelerometry in a multimodal classifier.

Recent studies have found that the commonly used window-
based classification accuracy is only weakly related to online
controllability [9, 10]. It certain cases, methods with a lower
overall classification accuracy actually performed better in
terms of controllability [10, 11]. Hargrove et al. [10] there-
fore caution against using classification accuracy as the sole
measure of performance, suggesting that besides the accuracy
also the type of errors affects controllability [11]. Smith
et al. [12] provided insight on this distinction by varying the
window length of feature extraction. They found that longer
window lengths led to increased classification accuracy as
well as higher controller delays. Both these consequences
have an opposite effect on controllability, indicating that error
rates as well as delays are important offline indicators for
controllability that should be considered jointly.

A shortcoming of using the standard window-based accu-
racy in this context is that it equally penalizes both misclas-
sifications (e.g., false activations) as well as mistakes due
to controller delay. This means that window-based accuracy
is in fact partially dependent on controller delays, reducing
the effectiveness of considering both measures as competing
characteristics. We therefore propose the Movement Error Rate
(MER) as alternative for window-based accuracy, inspired
by the similar Word and Phoneme Error Rates commonly
used in automated speech recognition [13]. This error rate
measures the similarity of the true and predicted sequences
of movements, rather than sequences of windows, and is
therefore insensitive to delays in the predictions. This allows
classification mistakes and prediction delays to be quantified as
independent performance characteristics. We use this joint per-
formance characterization to further establish the improvement
of the multimodal classifier over the sEMG-only classifier.

The remainder of this paper is organized as follows. The
data acquisition, exercises, and data postprocessing steps are
described in Section II. Subsequently, the experimental setup
for the benchmark evaluation is detailed in Section III, which
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contains a description of the considered feature representations
and learning method, as well as the definition of the Movement
Error Rate. Both the regression and classification benchmark
results are presented in Section IV, which additionally contains
further analysis in terms of the MER and delay tradeoff. A
discussion of the results as well as pointers to future work are
given in Section V, while the paper is concluded in Section VI.

II. DATABASE

The database used in this work is the second version of the
database released within the Ninapro project [5], which aims
to support the scientific community working on sEMG-based
hand prostheses by publicly releasing large-scale databases [6].
The two database versions share a common acquisition proce-
dure, in which myoelectric activity is recorded while subjects
perform multiple repetitions of a large set of hand movements.
Practical experience with the first version and feedback from
amputated subjects have led to a number of improvements;
for instance, the number of repetitions for each movement
has been reduced from 10 to 6 to limit fatigue and cognitive
load on amputated subjects. In addition, the use of a different
type of electrodes allows recording raw myoelectric signals,
while for the single digit movements we now record forces at
the fingertips rather than hand kinematics. The motivation for
this latter modification is to support research both on discrete
movement classification as well as proportional control of the
individual fingers. In the following, the acquisition setup and
protocol as well as low-level postprocessing are described in
more detail.

A. Acquisition Setup and Protocol

The primary component in the acquisition setup is a
DelsysTM Trigno Wireless System R©, which consists of a base
station and multiple wireless sEMG electrodes. These elec-
trodes are equipped with a self-contained rechargeable battery
and they allow an operative range of 40m. Myoelectric signals
are sampled at a rate of 2 kHz with a baseline noise of less than
750 nV RMS. An advantage of these specific electrodes is that
they also integrate a 3-axes accelerometer sampled at 148Hz.
The base station receives the sEMG and accelerometry streams
over a proprietary wireless communication protocol and relays
these via a standard USB connection to the laptop responsible
for data acquisition.

There is debate in the scientific literature about the optimal
placement strategy for sEMG electrodes. Some prefer to
carefully position the electrodes with respect to the muscular
anatomy of the forearm [14], while others have reported
success when combining dense sampling with machine learn-
ing techniques [15]. Hargrove et al. [4] found that machine
learning based methods are insensitive to nominal electrode
placement, provided that the same locations are used for
training and testing. In our acquisition setup, twelve electrodes
were attached to the subject’s arm following a hybrid of both
strategies (see Figure 1). The first eight electrodes were placed
around the forearm to obtain a dense sampling of the muscles
located at the proximal part of the forearm. Their exact
position was determined by placing the first electrode on the

11 Biceps

12 Triceps 1-8 Equally spaced around arm
at height of radio-humeral joint

9 Finger Extensor

10 Finger Flexor

Fig. 1. Placement of the 12 electrodes on the arm. The electrode on the
finger flexor is occluded by the arm and therefore not visible in this image.

(a) Movement Exercise (b) Force Exercise

Fig. 2. Acquisition setup for the (a) discrete movement and (b) force
exercises.

forearm in exact sagittal correspondence to the radiohumeral
joint. The remaining seven electrodes were placed equidistant
in the same sagittal plane around the forearm. This plane
was the one most proximal to the biceps while keeping
the forearm perpendicular to the upper arm. Four additional
electrodes were instead targeted at specific muscles, which
were identified by palpation while the subject was repeatedly
contracting the muscle. Electrodes 9 and 10 were placed on
the main activity spots of the extensor digitorum communis
and the flexor digitorum superficialis, while electrodes 11 and
12 were placed on the biceps and triceps. These muscles were
selected based on their importance for motor control of the
hand and forearm, and since these muscles are still available
in the majority of transradial amputees. Prior to attaching the
electrodes with adhesive tape, the skin of the subject was care-
fully cleaned with isopropyl alcohol. To prevent displacement
or even detachment during the experimental procedure, the
electrodes were subsequently secured using a latex-free self-
adhesive bandage, as seen in Figure 2.

During the acquisitions, subjects were seated at a desk
resting their arm comfortably on the desktop. A laptop in front
of the subject provided visual stimuli while at the same time
acquiring data from all measurement devices. Subjects were
asked their consent prior to the experiment and to fill in a brief
questionnaire concerning personal data, such as age, gender,
height, weight, laterality, and self-reported health status. The
acquisition procedure was approved by the Commission Can-
tonale Valaisanne d’Étique Médicale under identifier CCVEM
010/11 in the canton of Valais in Switzerland.
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TABLE I
DESCRIPTION OF THE 40 MOVEMENTS.

# Description
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1 Thumb up
2 Extension of index and middle finger while flex-

ing others (cf. “V-sign”)
3 Flexion of ring and little finger while extending

others
4 Thumb opposing base of little finger
5 Abduction of the fingers
6 Fingers flexed together in fist
7 Pointing index
8 Adduction of extended fingers

9-10 Wrist supination and pronation (rotation axis
through the middle finger)

11-12 Wrist supination and pronation (rotation axis
through the little finger)

13-14 Wrist flexion and extension
15-16 Wrist radial and ulnar deviation

17 Wrist extension with closed hand

G
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ts 18-19 Large and small diameter grasp

20-21 Fixed hook and index finger extension grasp
22 Medium wrap

23-24 Ring and prismatic four fingers grasp
25-26 Stick and writing tripod grasp
27-29 Power, three finger, and precision sphere grasp
30-32 Tripod, prismatic, and tip pinch grasp
33-35 Quadpod, lateral, and parallel extension grasp

36 Extension type grasp
37 Power disk grasp
38 Open a bottle with a tripod grasp
39 Turn a screw
40 Cut something

B. Exercise 1 and 2: Discrete Movements

In the first two exercises, subjects were instructed to perform
a large set of hand movements, which were demonstrated by
means of a video on the acquisition laptop. In this manner,
they performed 6 consecutive repetitions of the 40 movements
described in Table I, where each repetition lasted around 5 s.
To ensure a consistent start and end position, repetitions were
alternated with a rest posture lasting approximately 3 s. The set
of movements was selected from the hand taxonomy, robotics,
and rehabilitation literature (see [5] for more information),
with the aim of covering the majority of hand postures
encountered in daily activities. Furthermore, the sequence of
movements was not randomized as to encourage repetitive,
almost unconscious movements.

To avoid muscle fatigue, the 40 movements were split
over two exercises. The first exercise covered 17 hand and
wrist movements and lasted around 23min, while the second
exercise took 31min and consisted of the remaining 23 grasps
and functional movements. Both exercises were separated by
approximately 5min of rest, even though no subject reported
fatigue at the end of either exercise. Prior to starting the
acquisition, each subject was introduced to the experimental
procedure by means of a short training sequence.

C. Exercise 3: Finger Forces

In the third and final exercise, subjects were required to
produce a set of 9 force patterns (see Table II) by pressing with
one or more digits of their dominant hand. The activations

TABLE II
DESCRIPTION OF THE 9 FORCE PATTERNS.

# Description

1 Flexion of the little finger
2 Flexion of the ring finger
3 Flexion of the middle finger
4 Flexion of the index finger
5 Abduction of the thumb
6 Flexion of the thumb
7 Flexion of the index and little finger
8 Flexion of the ring and middle finger
9 Flexion of the index finger and the thumb

involved six DOF, namely flexion of the five digits as well
as abduction of the thumb. An initial calibration phase was
performed to establish the rest and maximal voluntary con-
traction (MVC) force levels for all DOFs. The actual exercise
required subjects to match the force levels indicated by bar
stimuli (i.e., one for each DOF) on the laptop screen. This
stimulus followed a bell-shaped curve reaching up to 80% of
the MVC force level established during calibration. Although
subjects did not receive feedback of their own forces during
the acquisition, each of the patterns in Table II was preceded
by a brief training phase with visual feedback that allowed
them to adjust to 80% MVC.

For this exercise, the previously described setup was ex-
tended with a Finger-Force Linear Sensor (FFLS) [16]. This
device measures flexion and extension forces of the four
parallel fingers using a linear single-axis strain gage force
sensor, while flexion and extension as well as abduction and
adduction forces of the thumb are measured using a similar
dual-axis sensor. These sensors are characterized by high
signal repeatability, minimal drift over time, almost perfect
linearity, and virtually non-existent hysteresis (both parameters
deviate no more than 0.3%). Each force sensor was connected
to a dedicated amplifier, whose outputs were subsequently
acquired at 100Hz using a National Instruments DAQ card
(NI-DAQ PCMCIA 6024E, 12-bit resolution).

As seen in Figure 2b, the sensors were placed according
to the anatomy of a hand on a solid base, which allowed
repositioning of the sensors to accommodate different hand
sizes. A wooden support was placed in front of the FFLS to
support the wrist and forearm, while a wooden block shaped
to fit the palm was placed under the subject’s hand to promote
a stable hand configuration and to avoid wrist flexion as
well as forearm pronation or supination during pressing. The
four fingers were attached to the sensors using Velcro hook-
and-loop straps with minimal slack, to ensure accurate force
readings in positive and negative directions. Similarly, custom
made gypsum casts in varying sizes were used for backlash-
free attachment of the subject’s thumb to the dual-axis sensor.
The subject’s forearm was not constrained other than resting
on the wooden supports, as to increase comfort and encourage
natural movements by allowing some freedom of movement.
Subjects were however instructed to only activate the indicated
digits and to refrain from flexing the wrist.
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D. Subjects

A total of 40 intact subjects participated in the data ac-
quisition, consisting of 28 men and 12 women, 34 right-
handed and 6 left-handed subjects. The age, weight, and height
averages and standard deviations are respectively 29.9± 3.9 y,
70.9± 14.2 kg, and 172.8± 10.4 cm. All self-reported prop-
erties are available in anonymous form as part of the database.

E. Postprocessing

Each sample from each device was assigned a high-
resolution timestamp at the moment of acquisition in a ref-
erence time based on the CPU’s invariant timestamp counter.
These timestamps were used during postprocessing to syn-
chronize the data streams. More specifically, all streams were
supersampled to the 2 kHz sampling rate of the sEMG stream
using linear interpolation (real-valued streams) or nearest-
neighbor interpolation (discrete streams). Prior to synchro-
nization, the sEMG signals were cleaned from 50Hz (and its
harmonics) power-line interference using a Hampel filter [17].

A difficulty with the described acquisition procedure is that
the movements performed by the subjects in the first two
exercises may not match perfectly with the video stimulus. On
several occasions, a subject would start the actual movement
slightly after the start of the video and finish the movement
either in advance or with some delay. This misalignment be-
tween the stimulus and the actual movement can be attributed
to human reaction times as well as our explicit instruction
to perform natural movements rather than exactly copying
the kinematics of the video stimulus. The resulting erroneous
movement labels have been corrected using an offline Gen-
eralized Likelihood Ratio approach [18], which realigns the
movement boundaries by maximizing the likelihood of a rest-
movement-rest sequence.

III. EXPERIMENTAL SETUP

We employ the control scheme proposed by Englehart and
Hudgins [3], which consists of preprocessing the signals,
segmenting them in windows, subsequently extracting features
from the windows, and finally classification or regression
based on the extracted features. These phases will be detailed
in the following subsections. A nearly identical setup has been
used for both the force regression and movement classification
benchmarks.

A. Preprocessing, Windowing, and Data Split

All channels were standardized to have a zero mean and
unit standard deviation, based on statistics calculated solely on
data from the training set. After this scaling, the signals were
segmented using a sliding window with a length of 400ms
(800 samples). Although this window length is larger than in
related work, preliminary experiments indicated that longer
windows resulted in higher accuracy (see also [12, 18]). The
increment of the sliding window was set to 10ms (20 samples).

The data for each subject was split into training and test sets
based on repetitions: the second and fifth repetition for each

movement were used for testing, while the training set con-
tained the remaining four repetitions. To ensure computational
feasibility, the training and hyperparameter optimization sets
were reduced in size by subsampling at regular intervals of 10
and 40 windows for classification (i.e., a window increment
of 100ms and 400ms), and subsampling at intervals of 2
and 8 for the regression benchmark (i.e., a window increment
of 20ms and 80ms). This configuration resulted in roughly
15 000 training samples in both settings.

B. Features
Selecting an appropriate feature representation is one of the

most important determinants for regression and classification
accuracy. To minimize the chance of reporting suboptimal
performance in our benchmark, we select three popular types
of features for sEMG data based on their diversity and their
excellent results in earlier studies [18, 8]. For accelerometry
signals, on the other hand, we follow the suggestion by
Fougner et al. [7] and use the mean values within a processing
window as features.

1) Root Mean Square: Perhaps the most commonly used
feature representation for sEMG is the Root Mean Square
(RMS) of the signal. A compelling argument for this feature
type is that (under ideal conditions) there is a quasi- or
curvilinear relationship between the RMS value and the force
exerted by a muscle [19]. Furthermore, the RMS of a signal
is easily implemented in digital as well as analog systems.

2) sEMG Histogram: The second feature type is the sEMG
Histogram (HIST) [20], which computes a histogram within
the analysis window given a predefined number of bins.
The HIST feature has demonstrated excellent performance
for sEMG-based movement classification [20, 18]. Instead of
fixing the lower and upper thresholds based on the extrema
of the signal, we exploited the fact that the signals were stan-
dardized and set the thresholds to three standard deviations. In
addition, extremal bins captured the outliers on each side, so
that the effective bin edges were [−∞,−3, . . . ,+3,∞]. The
total number of bins was fixed at 20.

3) marginal Discrete Wavelet Transform: A more advanced
representation that has recently gained popularity is the Dis-
crete Wavelet Transform (DWT). This transformation decom-
poses the signal in terms of a basis function (i.e., the wavelet)
at different levels of resolution, resulting in a high-dimensional
frequency-time representation. Lucas et al. [21], have demon-
strated that it is sufficient for sEMG-based classification to
preserve only the marginals at each level of the decomposition,
thereby drastically reducing the dimensionality of the feature
representation. Henceforth, this variant will be referred to as
marginal Discrete Wavelet Transform (mDWT). Although a
variety of wavelet functions have been used in the context of
sEMG [22], preliminary experiments on our data revealed that
the 7th order Daubechies wavelet performed slightly better than
others in a small pool of candidate functions. The marginal
coefficients up to the third level obtained with this wavelet
function have thus been used in the experimental validation.

4) mean value: Following related work [7, 8], the mean
value (MEAN) within the processing window after interpo-
lation is used as feature for the ACC modality. The dense
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Fig. 3. The (a) correlation matrix of the 12× 3 accelerometry channels (at
original 148Hz sampling rate) and for reference the (b) orientation of the
axes in the electrodes (figure taken from the Delsys Trigno Wireless System
manual). This image is best viewed in color.

placement and regular orientation of the electrodes causes
many of the ACC channels to be highly correlated (see
Figure 3). However, this redundancy was not found to affect
overall performance and all 36 channels (12 electrodes × 3
axes) have thus been used.

C. Learning Method

As learning method we employed the Kernel Regularized
Least Squares (KRLS) algorithm [23]. This kernel method is
similar to the well-known Support Vector Machine [24] in
terms of formulation as well as practical performance [23, 25],
but it offers multiple advantages in the context of our study.
First, it can be applied in near identical form for both re-
gression1 as well as classification tasks. Furthermore, training
KRLS consists of solving a linear system of equations, allow-
ing multiple output dimensions to be learned simultaneously
at negligible additional cost. This results in a considerable
reduction of computational requirements, since our regression
problem involves estimating forces for 6 DOF, while the
multiclass classification problem is reduced to 41 binary
classification problems (i.e., 40 movements and rest) using the
well-known one-versus-all reduction.

1) Kernels: KRLS (and many other algorithms) can be
used on non-linear problems by employing so-called kernel
functions, which implicitly map the data into a high or
even infinite dimensional feature space. The de-facto standard
kernel function is the Radial Basis Function (RBF)

k(x,y) = exp
(
−γ ‖x− y‖2

)
for γ > 0 ,

which has demonstrated excellent performance in a large
variety of application domains. Nonetheless, some studies
suggest that the exp-χ2 kernel

k(x,y) = exp

(
−γ

n∑
i=1

(xi − yi)2

xi + yi

)
for γ > 0 ,

may be more appropriate for histogram-like feature represen-
tations. This is of interest in our setting, since all considered

1The algorithm is also known as Kernel Ridge Regression [25].

sEMG features produce non-negative representations. Finally,
we also include the canonical linear kernel k(x,y) = 〈x,y〉
to establish whether non-linearity is in fact required.

2) Combining Multiple Cues: Combination of multiple
cues (i.e., either features or modalities) can be implemented by
concatenating the individual feature vectors or by integrating
the predictions of an ensemble of cue-specific classifiers.
In kernel-based methods, however, it is more appropriate to
combine cue-specific kernel functions, since this corresponds
to concatenation in the implicit feature spaces induced by the
respective kernels. Here we consider a linear combination of
C cue-specific kernels

k(x,y) = w1k1(x1,y1) + . . .+ wCkC(xC ,yC) ,

where wc for 1 ≤ c ≤ C weights the contribution of each
kernel.

3) Hyperparameter Optimization: The KRLS algorithm
requires setting a regularization parameter λ, which balances
the tradeoff between under- and overfitting. This parameter
was tuned together with the kernel parameter γ and the cue
weights wc (when applicable) using 4-fold cross validation,
where each of the folds corresponds to one of the four training
repetitions. This particular splitting of the folds ensures that
the distributional differences among repetitions were taken into
account when optimizing the hyperparameters. To increase
the likelihood of finding a (nearly) optimal configuration,
parameters were selected using a dense grid search with
λ ∈

{
2−16, 2−15, . . . , 23

}
, γ ∈

{
2−20, 2−19, . . . , 23

}
,

and wc ∈ {0.0, 0.1, . . . , 1.0} such that
∑C

c=1 wc = 1.

D. Movement Error Rate

A problem with the window-based accuracy is that it
does not distinguish between “true” mistakes (e.g., confusion
between movements) and errors due to prediction delays. To
address this shortcoming, we propose the MER as an alterna-
tive error measure. This error rate is motivated by and similarly
defined as the so-called Word or Phoneme Error Rates in the
field of speech recognition (e.g., [13]). Algorithm 1 describes
the procedure to compute the MER. The first step is to erase
adjacent duplicates in both the sequence of true labels as well
as the predictions. Subsequently, the difference between the
true and predicted sequence of movements is measured using
the normalized Levenshtein distance [26], which counts the
minimum number of insertions, deletions, and substitutions to
change one sequence into the other. Removing the adjacent
duplicates has the effect that movements rather than windows
become the atoms, and that movement start and duration
become irrelevant. This allows prediction delays (i.e., the first
correct prediction after a label change) to be used as an
orthogonal (non-redundant) performance measure.

IV. BENCHMARK

In this section, we establish benchmark results for both
the force regression as well as movement classification tasks,
to determine the feasibility of the tasks and to guide future
experiments on the NinaPro dataset. Specifically, it is of
interest to compare performance of the feature representations
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Algorithm 1 Movement Error Rate
Require: true labels y = [y1, . . . , ym], predictions ŷ =

[ŷ1, . . . , ŷm]
1: z ← ERASEADJACENTDUPLICATES(y)
2: ẑ ← ERASEADJACENTDUPLICATES(ŷ)
3: MER← LEVENSHTEIN(z, ẑ)/LENGTH(z)
4: return MER
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Fig. 4. The coefficient of determination R2 for different types of sEMG
features and kernels, averaged over the 6 DOFs and the 40 subjects. The
error bars indicate unit standard deviation.

and kernel functions. We also quantify the performance gain
when including the accelerometer modality in a multimodal
classifier, as compared to an sEMG-only classification strat-
egy. This section is concluded with a characterization of the
classification results in terms of MER and prediction delay.

A. Force Regression

The accuracy on the force regression task, measured in
terms of coefficient of determination R2, is presented in
Figure 4. For each combination of kernel and feature type
we report the average performance over all 40 subjects and
the standard deviation. All non-linear regressors achieve an
acceptable performance irrespective of the feature type, which
exceeds 90% for both HIST and mDWT feature types. A sign
test comparing the individual R2 scores of the mDWT/exp-
χ2 regressor with those of the other combinations reveals
that its improvement is statistically significant (p ≤ 7h),
although the absolute differences among the four best per-
forming combinations are relatively small. A more intuitive
understanding of the performance is provided in Figure 5,
which shows an extract of the true and predicted forces for
one repetition of all nine patterns. The forces are generally
predicted rather well, though the residuals seem dependent on
the magnitude of the force. Interestingly, the regressor even
learned the involuntary negative forces most likely caused by
synergistic or compensatory mechanisms [27].

The low performance of the linear kernel indicates that
the capacity of linear models is not sufficient to capture the
relationship between sEMG signals and forces at the fingertips.
The lack of capacity seems confirmed by the fact that the
HIST feature demonstrates higher performance than the other
features, since the higher feature dimensionality of the former
effectively increases the capacity of the linear regressor (e.g.,
in terms of VC dimensionality [28]). Regardless, the much

higher capacity provided by the non-linear kernels seems a
necessity to obtain acceptable performance.

To investigate the relative difficulty of the nine force patterns
from Table II, we report the individual performance per pattern
for the two best performing feature-kernel combinations in
Figure 6. Patterns involving the individuated activation of
the four fingers (patterns 1-4) are all characterized by high
performance, while patterns involving the thumb or simulta-
neous activation of multiple digits show considerably worse
performance. This difficulty of predicting thumb activations
was observed as well by Kõiva et al. [29]. A likely explanation
for this phenomenon is that in our acquisition no sEMG
activity is recorded from the majority of thumb muscles. These
muscles are located either in the hand proper or in the distal
part of the forearm and they would therefore not be available
in most amputees.

B. Movement Classification

Results on the 41-class (40 movements and the rest posture)
classification problem are shown in Figure 7, which reports the
average accuracy over the 40 subjects. Concentrating on the in-
dividual sEMG features (the three leftmost groups in Figure 7),
we observe that also on this task the linear kernel performs
significantly worse than the non-linear kernels (p� 1h). The
higher dimensional HIST representation performs again better
than mDWT features with the linear kernel, confirming that
linear classifiers lack the capacity to learn the relation between
sEMG and movement classes as well as finger forces. Among
the two non-linear kernels, we note a performance increase of
around 1.5% for the exp-χ2 kernel, regardless of the feature
type. Thanks to the large number of subjects in our study,
this difference can be shown to be statistically significant
(p � 1h). This confirms earlier indications that the exp-
χ2 kernel performs particularly well with non-negative feature
representations, and that blindly choosing the “standard” RBF
kernel can lead to suboptimal performance.

A common strategy to further increase performance is to
combine several feature types in a multi-cue classifier (see
Section III-C2). Contrary to the results reported by Gijsberts
and Caputo [8], we observe a small increase in accuracy when
combining the three sEMG features with exp-χ2 kernels (see
Figure 7). This is because the contributions of each cue (i.e.,
the weights wc) were tuned during hyperparameter optimiza-
tion, while Gijsberts and Caputo [8] kept these weights fixed
at C−1. Though the increase in performance is significant
(p ≤ 2.3h), it is arguable whether an advantage of less than
0.5% justifies the increased computational cost.

1) Including Accelerometry: Interestingly, the accuracy of
the MEAN features over the accelerometry modality with RBF
kernel is almost 81% and thus significantly higher than any
of the considered sEMG features (p � 1h). This confirms
earlier observations that accelerometry is highly informative
for hand movement classification. Furthermore, the rightmost
bar in Figure 7 shows that integrating the best performing
individual sEMG and ACC feature-kernel combinations in
a multi-modal classifier achieves a significant improvement
of almost 2% over the ACC-only classifier (p � 1h) and
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more than 5% over the sEMG-only classifier (p � 1h).
This proves empirically that the ACC and sEMG modalities
are to be considered complementary, as has been suggested
previously [7, 8].

C. Movement Error Rate versus Delay

A limitation of the window-based accuracy is that it does
not distinguish between different types of mistakes made by
the classifier. Consider for instance the extract in Figure 8,
where the subject was instructed to perform wrist radial and

Rest
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Thumb opp. base of little

Wrist supination

Wrist radial deviation

Wrist ulnar deviation delay
errors

Rest

Ext. of index and middle

Thumb opp. base of little
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True Prediction

Fig. 8. Extract of the true labels and predictions taken from the first subject
containing a repetition of a wrist radial deviation and a wrist ulnar deviation.
The predictions were produced by the multimodal sEMG+ACC classifier.

ulnar deviations alternated with the rest posture. The onsets
of both movements are characterized by different problems:
in the first case, the classifier suffers a loss due to a prolonged
prediction of the rest posture after the start of the wrist radial
deviation (i.e., a delay); in contrast, in the second case the
classifier mistakes the wrist ulnar deviation for a variety of
other movements (i.e., errors). The window-based accuracy
fails to differentiate between both cases, as it assigns equal
loss to delays and “real” mistakes.

Both types of mistakes can be quantified independently
using respectively the MER and prediction delay. Furthermore,
note that many of the errors in the example in Figure 8 could
have been avoided by temporal smoothing of the predictions
during postprocessing. Figure 9a shows the effect of varying
the window size k of a sliding majority vote on both the
MER as well as the prediction delay. Increasing the amount
of smoothing lowers the MER at the cost of larger prediction
delay, and vice versa. It follows that the MER and prediction
delay are competing characteristics that can be regulated
using the smoothing parameter k. The standard window-based
accuracy cannot capture this tradeoff, since a reduction of
errors due to temporal smoothing would be offset by the
increasing loss due to prediction delay.

Figure 9a also gives a more complete insight into the syn-
ergy between the sEMG and accelerometry modalities. For a
given delay, the multimodal classifier attains a lower MER than
either unimodal classifier and, similarly, for a given MER it
has a lower prediction delay. Particularly interesting is that the
multimodal classifier achieves a considerably lower minimal
prediction delay (i.e., below 300ms) than either unimodal
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variant, demonstrating that the integration of modalities is
instrumental in reducing errors as well as prediction delays.

In Section III-A, we mentioned selecting a relatively large
window length of 400ms based on the accuracy obtained in
preliminary experiments. Figure 9b shows the effect of varying
the window length in terms of the MER and prediction delay.
Without temporal smoothing (i.e., k = 1), we observe that a
larger window length decreases the MER at the cost of higher
prediction delay. When predictions are smoothed, however, the
curves for different window lengths become nearly identical.
This is not surprising, since the total length of historical data
increases linearly with k, eventually dominating the length
of the analysis window. Choosing the correct amount of
smoothing seems therefore more crucial at attaining an optimal
tradeoff between delay and prediction errors than varying the
window length of the features.

V. DISCUSSION

A. Benefit of Accelerometry

The high performance of the ACC-only and sEMG+ACC
classifiers in Figure 9a confirms that accelerometry is useful
for movement classification. Earlier studies have shown that
mechanomyography (MMG) measured using accelerometers
can indeed be used for prosthetic control (e.g., [30]). In
our setting, however, the performance cannot be attributed
solely to measuring muscle activations with MMG. The power
spectral density (PSD) in Figure 10 reveals that the accelerom-
eters captured primarily the gravitational field (near 0Hz)
and upper limb movement (approximately 0 to 6Hz [31]),
and to lesser extent MMG (around 10Hz [32]). Although the
“motion-artefacts” caused by upper limb movements are often
regarded as undesirable in the context of MMG [32], our
results confirm earlier findings that these signals are instead
useful for prosthetic control [7, 8]. Furthermore, Fougner et al.
[7] have shown that measuring the gravitational field allows
counteracting the so-called “limb position effect”, which refers
to deterioration of myoelectric control performance depending
on the position or orientation of the arm.
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Fig. 10. Power spectral density of the accelerometer channels (at original
148Hz sampling rate) estimated using Welch’s method and grouped by
Cartesian axis.

B. Balancing Error Rate and Delay

It is evident from Figure 9 that the tradeoff between MER
and prediction delay can be adjusted by temporal smoothing or
by varying the analysis window length. An important question
that follows is which tradeoff results in optimal controllability,
and whether this tradeoff is subject or task specific. Hargrove
et al. [10] have suggested that false activations of the limb
are more costly than those that can cause a pause in motion,
implying that it would be preferable to reduce MER while
maintaining delays within an acceptable range. Estimates for
acceptable levels of delay (i.e., before controllability degrades
drastically) range from 50ms [33] to 300ms [3].

The delays we found in our evaluation seem comparatively
high with respect to these suggestions. One of the reasons
is that we measured prediction delay as the first correct
prediction after a label change, which is likely to be larger
than pure controller delay in the presence of mistakes. This
definition is identical to the Motion-Selection Time used by
Li et al. [34], who in their experiments found this time
to be around 200ms in amputated as well as intact arms.
Furthermore, prediction delays are strongly dependent on the
correctness of the (desired) movement boundaries. In our
acquisition procedure, functional and grasp movements were
performed on real objects and required an initial reaching
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movement. These reaching movements cause sEMG activity
and were thus included as part of the movement, although the
correct label during these transitory movements is obviously
ambiguous. It is therefore plausible that the prediction delays
in Figure 9 are overestimated.

C. Practical Use of the Movement Error Rate

There has been a recent shift from offline evaluation of
myoelectric control systems to real-time closed-loop evalu-
ation (e.g., [35]). Though undeniably preferable, real-time
evaluation is often not practically feasible when comparing
large number of approaches. The motivation for joint char-
acterization of the MER and prediction delay is to allow an
offline evaluation that has been demonstrated to be correlated
with online controllability [12]. Consider for instance the
curves for the sEMG-only and the multimodal sEMG+ACC
classifiers in Figure 9; the multimodal classifier demonstrates
lower MER as well as lower prediction delays. This is a
strong indicator that this classifier would also perform better
in terms of controllability. There may be potential use for the
MER in online scenarios as well. An advantage over window-
based accuracy is that it does not require knowledge of the
exact start and end time of the desired movements. Instead, a
mere ordered sequence of desired movements is sufficient to
compute the MER.

D. Future Directions

The planned future work will concentrate on two distinct
directions. First, the benchmark evaluation will be confirmed
on data from actual amputees. This would allow to quantify to
which degree results on intact subjects translate to amputees.
Integration of accelerometry seems particularly useful, since
lower arm dynamics may be less affected by the amputation
than myoelectric signals. Second, the proposed analysis in
terms of MER and prediction delays depends strongly on the
correlation of related quantities (i.e., classification accuracy
and controller delay) with online controllability [12]. Online
control experiments are necessary to further establish this
correlation, ideally in a user-centric scenario in which an
amputee performs daily-life tasks using a real prosthesis.

Most results discussed in this paper focus on a movement
classification setting, as opposed to the regression setting na-
tive to the proportional control approach. Also for proportional
control there are indications that offline performance is at
most weakly correlated with online control performance [36].
However, that work investigated whether the R2 measure
was correlated with a number of online performance indices.
Whether there are other offline performance measures (e.g.,
correlation coefficient, prediction delay) that give reliable es-
timates of online proportional control performance is therefore
still an open question.

VI. CONCLUSIONS

This paper presented a benchmark evaluation on the second
revision of the publicly available NinaPro database. The evalu-
ation involved two distinct approaches to myoelectric control,

namely predicting forces at the four fingers and two axes of
the thumb, as well as movement classification of 40 different
hand movements in 40 intact subjects. The benchmark results
indicate that a non-linear kernel method can reach acceptable
levels of performance on either problem. The exp-χ2 kernel,
which has not been commonly used in the present context,
demonstrates higher classification accuracy than the popular
RBF kernel for all considered (non-negative) feature represen-
tations in the regression as well classification settings. With
respect to movement classification, accelerometry and sEMG
were found to be complementary modalities and significant
gains were achieved when both are combined in a multimodal
classifier.

Recent studies have found that the commonly used window-
based accuracy is only weakly related to online controllability,
partially because it cannot distinguish between confusion be-
tween movement classes and prediction delays. We addressed
this shortcoming by proposing the Movement Error Rate,
which measures the similarity of the actual and the predicted
sequence of movements instead of windows. This metric is
insensitive to prediction delays and therefore allows errors
and delays to be quantified as two independent and competing
characteristics. The balance between the error rate and delays
can be regulated by means of temporal smoothing or by
altering the analysis window length. Furthermore, this form
of analysis confirmed the benefit of integrating accelerometry,
as the multimodal classifier reduced both errors as well as
prediction delay as compared to the sEMG-only classifier.
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[29] R. Kõiva, B. Hilsenbeck, and C. Castellini, “Evaluating subsampling
strategies for semg-based prediction of voluntary muscle contractions,”
in Proceedings of the International Conference on Rehabilitation
Robotics (ICORR), 2013.

[30] J. Silva, W. Heim, and T. Chau, “MMG-based classification of muscle
activity for prosthesis control,” in 26th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (IEMBS),
vol. 1, 2004, pp. 968–971.

[31] S. B. Thies, P. Tresadern, L. Kenney, D. Howard, J. Y. Goulermas,
C. Smith, and J. Rigby, “Comparison of linear accelerations from three

measurement systems during “reach & grasp”,” Medical Engineering
and Physics, vol. 29, no. 9, pp. 967–972, 11 2007.

[32] A. O. Posatskiy and T.-H. Chau, “The effects of motion artifact on
mechanomyography: A comparative study of microphones and ac-
celerometers,” Journal of Electromyography and Kinesiology, vol. 22,
no. 2, pp. 320–324, 2012.

[33] D. S. Childress and R. F. Weir, “Control of limb prostheses,” Atlas of
Limb Prosthetics, vol. 2, pp. 175–198, 2004.

[34] G. Li, A. E. Schultz, and T. A. Kuiken, “Quantifying pattern recognition-
based myoelectric control of multifunctional transradial prostheses,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 18, no. 2, pp. 185–192, 2010.

[35] A. M. Simon, L. J. Hargrove, B. A. Lock, and T. A. Kuiken, “Target
Achievement Control Test: evaluating real-time myoelectric pattern-
recognition control of multifunctional upper-limb prostheses,” Journal
of Rehabilitation Research & Development, vol. 48, no. 6, pp. 619–627,
2011.

[36] N. Jiang, I. Vujaklija, H. Rehbaum, B. Graimann, and D. Farina, “Is
accurate mapping of EMG signals on kinematics needed for precise
online myoelectric control?” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. PP, no. 99, pp. 1–1, 2013.


	Introduction
	Database
	Acquisition Setup and Protocol
	Exercise 1 and 2: Discrete Movements
	Exercise 3: Finger Forces
	Subjects
	Postprocessing

	Experimental Setup
	Preprocessing, Windowing, and Data Split
	Features
	Root Mean Square
	sEMG Histogram
	marginal Discrete Wavelet Transform
	mean value

	Learning Method
	Kernels
	Combining Multiple Cues
	Hyperparameter Optimization

	Movement Error Rate

	Benchmark
	Force Regression
	Movement Classification
	Including Accelerometry

	Movement Error Rate versus Delay

	Discussion
	Benefit of Accelerometry
	Balancing Error Rate and Delay
	Practical Use of the Movement Error Rate
	Future Directions

	Conclusions

