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A B S T R A C T

Convolutional neural networks (CNNs) are state-of-the-art computer vision techniques
for various tasks, particularly for image classification. However, there are domains
where the training of classification models that generalize on several datasets is still an
open challenge because of the highly heterogeneous data and the lack of large datasets
with local annotations of the regions of interest, such as histopathology image analy-
sis. Histopathology concerns the microscopic analysis of tissue specimens processed in
glass slides to identify diseases such as cancer.

Digital pathology concerns the acquisition, management and automatic analysis of
digitized histopathology images that are large, having in the order of 100′0002 pix-
els per image. Digital histopathology images are highly heterogeneous due to the
variability of the image acquisition procedures. Creating locally labeled regions (re-
quired for the training) is time-consuming and often expensive in the medical field,
as physicians usually have to annotate the data. Despite the advances in deep learn-
ing, leveraging strongly and weakly annotated datasets to train classification models is
still an unsolved problem, mainly when data are very heterogeneous. Large amounts
of data are needed to create models that generalize well. This paper presents a novel
approach to train CNNs that generalize to heterogeneous datasets originating from var-
ious sources and without local annotations. The data analysis pipeline targets Glea-
son grading on prostate images and includes two models in sequence, following a
teacher/student training paradigm. The teacher model (a high-capacity neural network)
automatically annotates a set of pseudo-labeled patches used to train the student model
(a smaller network). The two models are trained with two different teacher/student
approaches: semi-supervised learning and semi-weekly supervised learning. For each
of the two approaches, three student training variants are presented. The baseline is
provided by training the student model only with the strongly annotated data. Classifi-
cation performance is evaluated on the student model at the patch level (using the local
annotations of the Tissue Micro-Arrays Zurich dataset) and at the global level (using
the TCGA-PRAD, The Cancer Genome Atlas-PRostate ADenocarcinoma, whole slide
image Gleason score). The teacher/student paradigm allows the models to better gener-
alize on both datasets, despite the inter-dataset heterogeneity and the small number of
local annotations used. The classification performance is improved both at the patch-
level (up to κ = 0.6127 ± 0.0133 from κ = 0.5667 ± 0.0285), at the TMA core-level
(Gleason score) (up to κ = 0.7645 ± 0.0231 from κ = 0.7186 ± 0.0306) and at the
WSI-level (Gleason score) (up to κ = 0.4529 ± 0.0512 from κ = 0.2293 ± 0.1350). The
results show that with the teacher/student paradigm, it is possible to train models that
generalize on datasets from entirely different sources, despite the inter-dataset hetero-
geneity and the lack of large datasets with local annotations.

c© 2021 Elsevier B. V. All rights reserved.
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1. Introduction

One of the current challenges in medical imaging and par-
ticularly in computational pathology is the management of the
highly-heterogeneous data available to train robust deep learn-
ing models Cheplygina et al. (2019) and to overcome the lack
of locally-annotated (strongly-annotated) datasets.

This lack of data persists despite the increasing amount
of publicly available datasets, such as TCGA (The Cancer
Genome Atlas) (Tomczak et al., 2015) or TCIA (The Can-
cer Imaging Archive) (Prior et al., 2013). Deep Convolu-
tional Neural Network (CNN) models are currently the back-
bone of the state-of-the-art methods to analyze Whole Slide
Images (WSIs) (Jimenez-del Toro et al., 2017; Litjens et al.,
2017). Convolutional neural networks often need large locally-
annotated datasets to train models that generalize to unseen new
data (Komura and Ishikawa, 2018). Local annotations (strong
labels) are pixel-wise annotations, made by a pathologist. This
type of annotation is expensive and time-consuming to be pro-
duced. On the other hand, global annotations (weak labels) are
less expensive to be collected. They usually involve the im-
age diagnosis (or staging/grading), that refers to the whole im-
age, without any information about the region of interest that
leads to the diagnosis. Creating large sets of annotated images
is a challenge for researchers in computational pathology since
performing very domain-specific annotations is essential. For
instance, Campanella et al. (2019) used 24’859 whole slide im-
ages (not publicly available) with global annotations and Arvan-
iti and Claassen (2018) used 886 tissue micro-arrays (publicly
available) with local annotations. However, large locally anno-
tated datasets are scarce and only a few are publicly available,
such as the Camelyon dataset (Litjens et al., 2018). The scarcity
is a consequence of the annotation process: it is expensive,
time-consuming and usually requires experts (sometimes a con-
sensus), so highly trained pathologists. The Prostate cANcer
graDe Assessment (PANDA) Challenge dataset1 is to the best
of our knowledge the largest available prostate image dataset
with local annotations. The dataset was released as part of a
prostate cancer grading challenge in digitized images, proposed
during the MICCAI 2020 conference. The training set includes
11’000 digitized whole slide images, eight times larger than the
dataset proposed in the CAMELYON challenge. The images
originate from two medical centers (Radboud and Karolinska)
and are annotated at the pixel-level by uro-pathologists. As of
early 2021, this dataset can not be used for publications, as it is
under embargo until the paper describing the data is published.

One of the most prominent challenges in digital pathology
is handling data heterogeneity, especially in data from various
sources. The heterogeneity of digital pathology images is a con-
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TCGA-PRAD (images of 100'000x100'000 pixels) 

TMAZ (images of 3100x3100 pixels)

Fig. 1. Example slides from The Cancer Genome Atlas-PRostate ADe-
nocarcinoma dataset (TCGA-PRAD, above) and the Tissue Micro Array
Zurich cores, (TMAZ, below). The slides from the TCGA-PRAD dataset
are in the order of 100′0002 pixels, while the slides from TMAZ dataset are
images of 3′1002 pixels

sequence of the sample acquisition procedures. The acquisi-
tion procedure concerns the devices and the staining (Schulte,
1991) applied to the tissue before creating the actual image.
The tissue samples are often stained with hematoxylin and eosin
(H&E), considered the gold standard for staining in many situa-
tions (Fischer et al., 2008; Titford, 2005). However, the staining
procedure is not fully standardized. The lack of standardization
can easily lead to inter-dataset heterogeneity. This heterogene-
ity makes it difficult for the models to generalize on external
datasets. Models trained on a dataset often show a decrease in
the performance when tested on data originating from a differ-
ent source (Ström et al., 2019; Tellez et al., 2019; Otálora et al.,
2019). An example of data heterogeneity is shown in Figure 1
with samples from two publicly available datasets. While there
is an increasing amount of available digital pathology data, it
is still challenging to find reliable annotations accompanying
these data. Valuable public datasets do exist: for instance, the
Camelyon dataset for breast cancer (Litjens et al., 2018) and
The Cancer Genome Atlas TCGA2 includes several datasets
containing up to 500 whole slide images for individual organs,
such as prostate3. The challenges in digital pathology are well
represented in the TCGA datasets: images are usually without

2https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga

3https://portal.gdc.cancer.gov/projects/TCGA-PRAD. Retrieved 1st of Jan-
uary, 2020



Niccolò Marini, Sebastian Otálora et al. / Medical Image Analysis (2021) 3

local annotations and are highly heterogeneous.
Despite the lack of annotations and the highly heterogeneous

data, recently proposed methods have shown partial success in
medical image analysis when trained with small sets of annota-
tions (Bulten et al., 2020; Madabhushi et al., 2020; Shaw et al.,
2020; Cheplygina et al., 2019; Campanella et al., 2019; Otálora
et al., 2017; Tajbakhsh et al., 2016; Litjens et al., 2017; Arvan-
iti et al., 2018), using techniques such as semi-supervised learn-
ing, even though the generalization of models on heterogeneous
datasets is still an open challenge. Semi-supervised learn-
ing algorithms have recently shown their potential, leveraging
large weakly-annotated and unlabeled datasets to create new
annotated data, given the small amount of locally-annotated
data. Semi-supervised learning algorithms reach sometimes
better performance than state-of-the-art supervised models on
the large ImageNet dataset (Yalniz et al., 2019).

This paper is a novel approach in computational pathology,
focusing on prostate cancer, as it trains classification models
that generalize on datasets collected from several sources de-
spite the highly heterogeneous data and the lack of locally
annotated data. This paper describes two semi-supervised
teacher/student learning approaches applied to the digital
pathology task of prostate cancer classification, partly pre-
sented in Otálora et al. (2020a); Marini et al. (2020). Two het-
erogeneous prostate cancer datasets (the Tissue Micro-Arrays
Zurich, TMAZ and The Cancer Genome Archive-PRostate
ADenocarcinoma, TCGA-PRAD) are used. The TCGA-PRAD
dataset (without local annotations) includes an equivalent num-
ber of pixels to the 588 images of the TMAZ dataset (locally-
annotated).

Prostate cancer is one of the most common cancers world-
wide4 and the gold standard adopted for its diagnosis is the
Gleason score Pierorazio et al. (2013). Prostate cancer is the
fourth most common cancer and in 2018 there were 1.28 mil-
lion new diagnoses worldwide5. Prostate cancer is a highly het-
erogeneous disease displaying several tumour features in glands
and having high inter-rater variability among pathologists Berg
et al. (2011); Arvaniti et al. (2018); Tolkach et al. (2020); Nag-
pal et al. (2019). The Gleason score is used in clinical prac-
tice as a standard protocol when assessing prostate adenocar-
cinoma. It is required for deciding on the treatment and for
predicting the patient’s prognosis. The Gleason scoring sys-
tem describes the abnormality of cancer cells and the defor-
mation of glands within a prostate needle biopsy or a biopsy
after radical prostatectomy. Pathologists evaluate it based on
the tissue structures observed on microscopic or digital images
of biopsies. The Gleason score is based on two steps: recog-
nizing the relevant Gleason patterns and evaluating the Gleason
score, that is computed from the two most prominent patterns.
The Gleason patterns aims to quantify the tumour aggressive-
ness and disease prognosis to plan the treatment. The tissue
structures, the cell abnormality and the gland deformation al-

4https://www.cancer.net/cancer-types/prostate-cancer/statistics. Retrieved
24th of July, 2020

5https://www.who.int/en/news-room/fact-sheets/detail/cancer. Retrieved
16th of March, 2020

low distinguishing between Gleason patterns. The Gleason pat-
terns vary from 1 to 5 (Chen and Zhou, 2016). Lower patterns
are related to a more favourable condition, where the cells and
the glands are better differentiated. Higher patterns are related
to poor conditions, where the cells and the glands are poorly-
differentiated. Gleason patterns 1 and 2 are rarely identified
within a core biopsy, as in these cases biopsies are rarely taken.
Gleason pattern 1 presents well-differentiated small glands and
small regions of stroma between the glands. Gleason pattern
2 presents larger glands and more stroma that is present be-
tween the glands. Gleason pattern 3 presents distinct glands of
variable sizes and cells that start to infiltrate the surrounding
tissue. Gleason pattern 4 presents poorly-differentiated glands
and cells that invade the surrounding tissue. Gleason pattern 5
presents no recognizable glands and layers of cells within the
surrounding tissue. The Gleason score is calculated by sum-
ming up the two most prominent Gleason patterns (GP) ob-
served in the tissue slide. The Union for International Cancer
Control6 and the World Health Organization/International So-
ciety of Urological Pathology7 describe the guidelines for the
Gleason pattern evaluation (Montironi et al., 2005). In malig-
nant prostate cancer, the Gleason score generally varies from 6
to 10 (Epstein et al., 2016).

The classification procedure described in this article is
based on the semi–supervised classification approach presented
in Yalniz et al. (2019). The approach is based on two mod-
els in sequence: the teacher model and the student model. The
teacher is a large model that generates pseudo-labeled examples
from unlabeled regions in the TCGA-PRAD dataset. It uses a
high-capacity ResNext model pre-trained with a dataset of one
billion natural images retrieved from Instagram and fine-tuned
with both weakly annotated images (from TCGA) and strongly-
annotated tissue micro-array images. The student is a smaller
model that is subsequently trained with the pseudo-labeled ex-
amples provided by the teacher and then fine-tuned with the
available local annotations from a separate dataset. The strat-
egy is compared against a fully-supervised approach as well as
other variants of semi-supervised training.

1.1. Related work
Data heterogeneity and lack of large annotated datasets are

still open challenges in computational pathology. In addition to
fully supervised approaches, several methods can help to tackle
these challenges, such as active learning, weakly-supervised
learning, transfer learning and semi-supervised learning. Ta-
ble 1 summarizes the state-of-the-art methods used for prostate
cancer classification tasks.

Fully-supervised learning: Fully supervised learning in-
cludes methods to train machine learning models using datasets
where each of the samples is locally labeled. Classification
tasks require pixel-level labels. The lack of large datasets
with local annotations is common in the medical domain and
not limited to computational pathology. A few large, locally-
annotated datasets exist for computational pathology and these

6https://www.uicc.org/topics/prostate. Retrieved 13th of July, 2020
7https://isupweb.org/isup/. Retrieved 13th of July, 2020
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Table 1. State of the art approaches regarding deep learning models for Gleason grading and Gleason scoring. For each of the reference articles, we present
the task evaluated, the training, validation and testing partition used to evaluate the models, the results reached and the annotations used in the training
are reported. The tasks are: tumour detection (benign vs. malignant tissue), Gleason grading (Benign, GP 3, GP4, GP5), Gleason scoring (GS6, GS7, GS8,
GS9, GS10), ISUP Gleason scoring (GS6, GS7=3+4, GS7=4+3, GS8, GS9-10), low vs. high scoring (GS6,GS7 vs GS8,GS9,GS10).

Reference Task Train dataset Test dataset Results Annotations
Nagpal et al. (2019) Tumour detection 912 WSIs 752 WSIs ACC = 0.94 Strong
Tolkach et al. (2020) Tumour detection 389 WSIs 279 WSIs ACC = 0.97 Strong, Weak
Campanella et al. (2019) Tumour detection 24’859 WSIs 1’784 WSIs AUC = 0.986 Weak
Ström et al. (2019) Tumour detection 6’682 WSIs 1’631 WSIs AUC = 0.997 Strong
Arvaniti et al. (2018) Gleason grading 641 TMAs 245 TMAs κ = 0.55 Strong
Ström et al. (2019) Gleason grading 6’682 WSIs 1’631 WSIs κ = 0.67 Strong
Otálora et al. (2021) Gleason grading 641 TMAs, 255 WSIs 245 TMAs κ = 0.55 Strong, Weak
This work Gleason grading 641 TMAs, 255 WSIs 245 TMAs κ = 0.61 Strong, Weak
Arvaniti and Claassen (2018) Low vs High Scoring 641 TMAs, 447 WSIs 245 TMAs AUC = 0.882 Strong, Weak
del Toro et al. (2017) Low vs High Scoring 235 WSIs 46 WSIs ACC = 0.78 Weak
Nagpal et al. (2019) Low vs High Scoring 580 498 WSIs ACC = 0.97 Strong
Arvaniti et al. (2018) Gleason scoring 641 TMAs 245 TMAs κ = 0.75 Strong
Bulten et al. (2020) Gleason scoring 1’143 WSIs 245 TMAs κ = 0.71 Strong, Weak
Nagpal et al. (2019) Gleason scoring 580 498 WSIs ACC = 0.71 Strong
Otálora et al. (2021) Gleason scoring 641 TMAs, 255 WSIs 245 TMAs κ = 0.69 Strong, Weak
This work Gleason scoring 641 TMAs, 255 WSIs 245 TMAs κ = 0.76 Strong, Weak
Otálora et al. (2020b) ISUP Gleason scoring 290 WSIs 51 WSI κ = 0.44 Weak
Bulten et al. (2020) ISUP Gleason scoring 1’143 WSIs 100 WSIs κ = 0.91 Strong, Weak
This work ISUP Gleason scoring 641 TMAs, 255 WSIs 46 WSIs κ = 0.45 Strong, Weak

were used in fully supervised approaches (Arvaniti et al., 2018;
Ström et al., 2019; Nagpal et al., 2019). The work of Arvaniti
et al. (2018) presents a CNN trained using the publicly avail-
able Tissue-Micro Array Zurich dataset that was pixel-wise an-
notated by two pathologists. The CNN is trained to predict
Gleason patterns, reaching κ=0.55 as best result (κ=0.67 is the
agreement reached by the pathologists, where κ=0 would mean
to only have by chance agreement). The predictions reported
within a core are aggregated summing them up, in order to ob-
tain the corresponding Gleason scores (GS6, GS7, GS8, GS9,
GS10), reaching κ=0.75 as best result (κ=0.71 is the agree-
ment reached by the pathologists). The work of Ström et al.
(2019) presents an ensemble of deep CNNs, trained using a co-
hort of the private Stockholm 3 (STHLM3) dataset (Grönberg
et al., 2015), including 6’682 WSIs in the training partition and
1’631 WSIs in the test partition, pixel-wise annotated by 23
expert pathologists. The ensemble of networks is trained to
classify benign and tumour tissue, reaching an AUC = 0.99.
The ensemble of networks is also trained to predict Gleason
patterns at the patch level (Benign, GP3, G4, G5) and to ag-
gregate them to evaluate the Gleason score (groups stated by
the International Society of Urological Pathology (ISUP): GS6,
GS7=3+4, GS7=4+3, GS8,GS9-GS10), reaching κ=0.83. The
work of Nagpal et al. (2019) presents a CNN, trained using pri-
vate datasets from four medical centers, pixel-wise annotated
by 19 expert pathologists.The CNN is trained to classify benign
and tumour tissue, reaching an accuracy = 0.94. The CNN is
also trained to predict Gleason patterns at the patch level (Be-
nign, GP3, G4, G5), reaching an accuracy = 0.71. The Gleason
score is assigned providing the percentage for each of the Glea-
son patterns. The performance is evaluated considering [GS6-

GS7] vs. [GS-8,9,10] as the task, reaching an accuracy = 0.92.
Active learning: The research area that aims to reduce the

labeling effort by introducing a human (or oracle) in the loop of
training machine learning models is called active learning (Set-
tles, 2009, 2011). A typical goal for an active learning system is
to select the most relevant patches or images for training, there-
fore, avoiding unnecessary labeling costs. Usually, the learning
algorithm is provided with a pool of unlabeled samples from
which a model selects the samples to be annotated. The labels
can be provided by a human expert and subsequently requested
to be annotated and then used for training the models. The
samples are ranked according to informative measures (Settles,
2009), such as entropy, or to query strategies, aiming to discard
uninformative patches. Applications of active learning in med-
ical imaging have focused on optimally selecting the patches
that are annotated for the training of CNNs (Otálora et al.,
2017), reducing user interactions for image segmentation Veer-
araghavan and Miller (2011) and incremental fine-tuning of the
CNN models (Zhou et al., 2017).

Weakly-supervised learning: The line of research that in-
vestigates how to best use image-level diagnostic labels and
other less expensive annotations, known in machine learning
literature as weakly supervised learning, has recently shown
promising results in computational pathology (del Toro et al.,
2017; Arvaniti and Claassen, 2018; Li et al., 2019; Otálora
et al., 2020b; Campanella et al., 2019; Katharopoulos and
Fleuret, 2019; van der Laak et al., 2019). Weak labels are of-
ten readily available in digital pathology via the pathology re-
ports but are less specific than local region annotations. Usually,
weak labels only summarize the pathologist’s main findings
when analyzing the tissue slide or WSI, i.e., without any spe-



Niccolò Marini, Sebastian Otálora et al. / Medical Image Analysis (2021) 5

cific location or delineation of the regions used for the diagno-
sis. Weak labels usually refer to general categories such as can-
cer slide, benign tumour slide, or a score in a grading system for
a specific organ, e.g. the Gleason grade in prostate cancer (del
Toro et al., 2017). Detailed spatial specificity is often lacking
in pathology reports since the relevant areas’ exact location is
usually not given. The work of del Toro et al. (2017) presents
a CNN, trained using a cohort of the publicly available TCGA-
PRAD dataset, labeled with global annotations. The CNN is
trained to classify [GS6-7] vs [GS8-9-10], assigning global la-
bels to the relevant patches, selected using the blue ratio within
the WSI. The CNN reaches an accuracy = 0.78 for this binary
problem. The work of Otálora et al. (2020b) compares several
weakly supervised strategies for the fine-grained task of Glea-
son grading, reporting that the use of class-wise data augmenta-
tion and a DenseNet architecture using transfer learning lead to
a κ = 0.44 in a set of 341 WSIs from the TCGA-PRAD dataset.
The work of Arvaniti and Claassen (2018) presents a CNN ar-
chitecture that combines weak and strong supervision for the
task of low (GS6,7) vs. high (GS8,9,10) Gleason score classi-
fication. Two publicly available datasets are used: TMAZ (Ar-
vaniti et al., 2018) and a cohort of TCGA-PRAD dataset. The
model penalizes the weak supervision predictions, by weighing
them using the predicted probability and the weak label. There-
fore, the patches classified with a Gleason score that do not
correspond with the weak label contribute less to the model’s
gradient updates. The results showed an accuracy of 0.848 for
the binary cancer detection task using 447 WSIs. In the work
of Campanella et al. (2019), the authors use transfer learning
and a massive dataset of more than 44’000 WSIs (from breast,
prostate and skin) with report-level labels to train weakly super-
vised binary CNN classifiers to distinguish between cancer and
non-cancer slides. The ImageNet pre-trained classifiers were
trained using a multiple instance learning paradigm, using bags
in which the assigned label referred only to a non-empty sub-
set of elements in the bag, accounting for the inherent label
noise. Even though their results are a starting point for building
screening tools that help the pathologist to discard non-cancer
slides, their generalization to clinical scenarios (where data are
highly-heterogeneous and Gleason score classification is eval-
uated instead of the binary tumour detection presented in the
paper) has not been confirmed, yet.

Transfer learning: Transfer learning includes a set of tech-
niques adopted to apply models on a task (or dataset), even
if they were previously trained on another task (or dataset).
Two main reasons motivate the adoption of transfer learning
approaches. The first reason is that the generic features, previ-
ously learnt, can be re-used for different tasks or datasets (Ben-
gio, 2012; Otálora et al., 2021). The second reason is the accel-
erated learning process since the models converge faster. Two
approaches are mainly used in medical image analysis (Lit-
jens et al., 2017; Mormont et al., 2018; Otálora et al., 2021).
In the first approach, a model pre-trained on a dataset is used
as the initialization for another model and then fine-tuned on
a new task or on a new dataset. The approach is usually
adopted in digital pathology, where models trained on natural
image datasets (often ImageNet) are fine-tuned. In the work

of Otálora et al. (2021), the authors use transfer learning to com-
bine strongly-annotated and weakly-annotated data from het-
erogeneous datasets to classify between prostate Gleason grad-
ing, reaching performance comparable to the pathologists. In
the second approach, the models previously trained are used for
extracting feature vectors from the data and a classifier is built
and trained on the top of this vector. In computational pathol-
ogy the first approach often shows better results than the second
one (Mormont et al., 2018).

Semi-supervised learning: Semi-supervised learning can be
defined as being in between unsupervised learning (training
with datasets that do not have any label) and fully-supervised
learning (training with datasets in which each example has a
label associated). Recent work found that unlabeled data can
significantly improve generalization performance when used in
conjunction with a small amount of labeled data. Obtaining
unlabeled datasets in the medical image analysis field is rea-
sonable task, since hospitals generate them routinely and there
are also many public data sources without annotations. For
such tasks, semi-supervised learning can be of great practical
value (Foucart et al., 2019). In the work of Yalniz et al. (2019),
the authors train a large ResNet model with 1 billion natural im-
ages from Instagram. The trained model achieved state-of-the-
art performance in classification of the ImageNet dataset. In
the work of Bulten et al. (2020), the authors train a CNN with a
semi-supervised strategy for Gleason score classification. The
CNN is trained using a private dataset including 1243 WSIs.
A tumour detection CNN and a tumour segmentation CNN are
used to generate cancer masks in pure Gleason pattern images
(i.e. images where the primary and the secondary Gleason pat-
tern are the same). The regions detected within masks are la-
beled with the Gleason pattern from the corresponding report.
The CNN is evaluated for Gleason scoring using an internal
and an external test partition (the external test partition pro-
posed by Arvaniti et al. (2018)). On the internal test set, the
CNN reaches κ=0.91. On the external test set, the CNN reaches
κ=0.71.

In Tolkach et al. (2020), the authors train a CNN with a semi-
supervised strategy for Gleason pattern classification. The CNN
is trained using a private dataset including 389 WSIs as training
partition, pixel-wise annotated by three pathologists and several
cohorts from private datasets as test set. The CNN is trained
for two tasks: tumour detection (benign vs. tumour) and Glea-
son grading. The CNN training for Gleason grading is semi-
supervised. The model is first trained with strongly-annotated
patches that originate from pure-GP WSIs and then it is used to
annotate regions within WSIs where the primary Gleason pat-
tern differs from the secondary Gleason pattern (considered as
complex images by the authors). The regions annotated are then
used to fine-tune the CNN. The CNN reaches κ = 0.96 in tumour
detection and κ = 0.74 in Gleason grading.

In the recent work of Shaw et al. (2020), the authors use a
chain of teacher-student models based on the approach of Yal-
niz et al. (2019) to annotate patches of colorectal cancer. The
authors show that by using only a small fraction of the anno-
tated data the model could automatically use the trained stu-
dents to annotate the unlabeled patches. Their model achieves
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a comparable performance to the fully-supervised learning ap-
proach. Nevertheless, their approach is tested using a homoge-
neous dataset only, leaving the question to the generalization of
teacher-student models to unseen centres open.

In a concurrent work Cheng et al. (2020), the authors pro-
pose a teacher-student model for segmentation of breast cancer
lesions in the Camelyon dataset. Their teacher model learns
from embeddings of spatially similar patches. Their model does
not use the pseudo-labels generated from their teacher-student
paradigm as ground truth for unlabeled samples but rather to
counteract noisy labels in the ground-truth. The differences be-
tween the mentioned approaches and the one described in this
article is presented in the Discussion section.

1.2. Contribution
As discussed in the above paragraphs, active, weakly and

semi-supervised CNN models show feasible solutions to tackle
classification tasks in computational pathology, particularly
with the help of transfer learning approaches. The question that
we address in this paper is: how can weakly annotated sam-
ples help to create strong region annotations? Semi-supervised
and weakly-supervised learning are areas of active research in
computational pathology with promising results (Bulten et al.,
2020). This study aims to provide novel strategies to train
models that generalize on heterogeneous datasets, using CNNs
trained with pseudo-labeled data. Specifically, our contribu-
tions in this paper are the following

• We improve performance of fully–supervised models
on the dataset proposed by Arvaniti et al. (2018), us-
ing pseudo–labeled examples from a weakly-annotated
dataset, i.e. without requiring additional manual annota-
tions on unseen heterogeneous data.

• We improve the generalization of CNN models on hetero-
geneous datasets in a context of few annotations.

• We study the overfitting in transfer learning when using
several data sources for the supervision of the CNN mod-
els.

• We propose and evaluate three training variants of deep
CNN models using both strongly and weakly-annotated
datasets for the task of Gleason grading.

The rest of the paper is organized as follows: In Section 2, the
teacher-student model is presented and the datasets used in the
experimental evaluation are described in detail. In Section 3,
the experimental results of the strategies are shown, as well as
the evaluation varying the number of pseudo-labeled data in-
cluded in the training of the student models. In Section 4 we
discuss the results and in Section 5 concluding remarks finish
the paper.

2. Methods

2.1. Datasets
Two openly accessible datasets are used for evaluating the

teacher/student approaches. The datasets are highly heteroge-
neous, so they are more similar to a real scenario, as shown in

Figure 1. The datasets are the Tissue MicroArray dataset Zurich
(TMAZ) (Arvaniti et al., 2018) and a subset of the TCGA-
PRAD dataset8. Among all the articles shown in Table 1, these
two datasets are the only ones that are publicly available, even
though only TMAZ is already split in partitions. The TMAZ
dataset (Arvaniti et al., 2018) is composed of 886 prostate TMA
cores that were scanned at the University Hospital of Zurich
(NanoZoomer-XR Digital slide scanner, Hamamatsu). Each
core is 31002 pixels, scanned at magnification 40x (0.23 mi-
crons per pixel). The dataset includes pixel-wise local anno-
tations of pathologists. It is partitioned into a training partition
with 508 TMA cores, a validation partition with 133 cores and a
testing partition of 245 cores. The composition of the dataset is
shown in Table 3. The partitions are the ones presented in Ar-
vaniti et al. (2018): the training partition includes cores from
three different TMA arrays (ZT111, ZT199, ZT204), while the
validation partition and the test set include both only one array
(respectively ZT76 and ZT80). This small amount of arrays im-
plies a visual homogeneity between the TMAZ cores, mostly
regarding the stain colour and tissue structures, as shown in
Figure 1. TCGA-PRAD includes 449 WSIs (Formalin-Fixed
Paraffin-Embedded, FFPE), scanned from several centers. The
WSIs are scanned at magnification 40x and they can easily be
in the order of 100′0002 pixels per image. WSIs are provided
with the corresponding pathologist reports, but without any an-
notation. A subset of 301 WSIs was manually labelled, as the
label extraction process is time-consuming. The labels, the pri-
mary and the secondary Gleason patterns, are used as weak la-
bels. The subset is split into a training partition (171 WSIs)
representing 145 patients from 19 medical centres, a valida-
tion partition (84 WSIs), representing 70 patients from 21 med-
ical centres, and a test partition (46 WSIs), representing 38 pa-
tients from 12 medical centres. The composition of the dataset
is shown in Table 5. The number of medical centres implies
that the visual appearance of the WSIs is highly heterogeneous,
mostly regarding the stain colour and tissue structures, as shown
in Figure 1.

2.2. Data analysis pipeline

2.2.1. Teacher/student paradigm
The training schema is based on the teacher/student

paradigm, previously used by Lee (2013); Hady and Schwenker
(2013); Yalniz et al. (2019). The paradigm involves two con-
volutional neural networks, named the teacher and the student
model. An overview of the training schema is illustrated in Fig-
ure 2.

The teacher model is a high-capacity neural network, trained
to annotate pseudo-labeled samples within weakly-annotated or
unlabeled data. The pseudo-labels are created in the follow-
ing way. For each of the samples without local annotations the
teacher model computes a probability array. It labels the sample
as the class with the highest probability. The pseudo-labels are
used as if a human expert had performed the annotation (Lee,

8https://portal.gdc.cancer.gov/projects/TCGA-PRAD. Retrieved 20th of
March, 2020
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pseudo-labeled data and fine-

tuning it with strongly-
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Fig. 2. Scheme for the training of the teacher (top) and the student (bottom) models. Two approaches of the paradigm are shown: the semi-supervised
learning (solid line), the semi-weakly supervised learning (dotted line). They influence the training of the teacher model. For each of the two approaches,
three student training variants are presented. The different colours represent the three student training variants described. They are compared with a
fully-supervised learning approach of the student model (dashed grey line).

2013). A subset of the pseudo-labels includes labels where the
ground truth matches the real class (relevant labels), while the
other subset includes labels where the ground truth does not
match the real class (noisy labels) (Yalniz et al., 2019; Han
et al., 2018). The latter labels influence the learning process
negatively (Natarajan et al., 2013; Karimi et al., 2019). With
high-capacity models, it is possible to better separate relevant
labels from the noisy ones (Han et al., 2018). High-capacity
models can be trained from large image datasets with weak la-
bels, such as hashtags from vast social media datasets. Yalniz
et al. (2019) et al. show how very large capacity CNN models
trained with a large amount of data outperform the low-capacity
CNN models trained with standard datasets. The student model
is a small neural network in terms of number of parameters
(compared to the teacher) and it is trained using pseudo–labeled
and/or strongly-annotated data depending on the student train-
ing variant. The student model is designed to be efficient (fast
in the evaluation of the inputs (Chen et al., 2019)) at testing
time, with a performance comparable to that of the teacher (Guo
et al., 2019).

2.2.2. Teacher/student approaches

Two approaches for the teacher/student paradigm are pre-
sented (see Figure 2): the semi-supervised learning and the
semi-weakly supervised learning. The difference between the
approaches concerns how the teacher model is trained. In the
semi-supervised learning approach, the teacher model is trained
only with strongly-annotated data (solid lines in Figure 2).
In the semi-weakly supervised learning approach, the teacher
model is pre-trained with weakly-annotated data (dotted line in
Figure 2) and then it is fine-tuned with strongly-annotated data
(dashed line in Figure 2).

2.2.3. Student training variants
Each teacher/student approach is evaluated using three vari-

ants to train the student model (Figure 2). The student train-
ing variants concern how the pseudo-labeled and strongly-
annotated data are combined for training the student model. A
fully-supervised learning approach is also evaluated as the base-
line for the methods.

Student training variant I. In the student training variant I (blue
line in Figure 2), the student model is trained using only the
pseudo-labeled data.

Student training variant II. In the student training variant II
(green line in Figure 2), the student model is pre-trained us-
ing the pseudo-labeled data and then it is fine-tuned using the
strongly-annotated data.

Student training variant III. In the student training variant III
(magenta line in Figure 2), the student model is trained using
both the pseudo-labeled data and the strongly-annotated data in
the same training phase.

Fully-supervised training approach. In the fully-supervised
learning approach of the student training (grey dashed line in
Figure 2), the student model is trained using only the strongly-
annotated data. This approach provides a baseline to evaluate
the student training variants.

2.3. Experimental setup
2.3.1. Image Preprocessing

The images of both datasets are pre-processed with the same
strategy: they are tiled into patches, the background regions are
removed and finally the patches are extracted and selected.

Tiling is required since modern GPU hardware cannot han-
dle a very large image size due to limited memory. The images
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are initially split into patches of 750x750 pixels at 40x magni-
fication. They are then down-sampled to 224x224 pixels as it
is the required size for using the pre-trained networks, follow-
ing an approach similar to the one proposed by Arvaniti and
Claassen (2018). Several patch size configurations were tested:
224x224, 250x250, 500x500, 750x750 and 1’000x1’000 pix-
els. A size of 750x750 pixels was chosen by visual inspection
as it provides enough context to capture the morphology of the
glands while also keeping details of the cancer cells. The ap-
proach is applied to both datasets. The patches are tiled at 40x
magnification because this is the only magnification available
for the images from the TMAZ data. Patches corresponding
to the background regions are not considered in the analysis
since they are not informative. In the TMAZ images, the back-
ground is removed according to the pathologist annotations. In
the TCGA-PRAD images, the background is removed using tis-
sue masks generated with the HistoQC tool (Janowczyk et al.,
2019). On TCGA images, HistoQC is also used to curate the
WSIs, by detecting and removing pen-markings manually made
by the pathologists. The patch extraction and selection pro-
cesses are different, as the datasets have different characteris-
tics in terms of image size, resolution and type of annotations.
In the TMAZ dataset, 30 patches (with possible overlapping)
are randomly extracted from each TMA core. The patches are
selected so they contain at least 60% tissue. The number of
patches extracted is chosen considering the size of the patches
(750x750), the overlapping between them and the size of the
cores (3100x3100). In the TCGA-PRAD dataset, the WSIs
are divided into grid cells (without overlapping) and then the
patches are densely extracted. The number of patches extracted
varies between 400 and 12’000 per WSI, depending on the size
of the WSIs and the amount of background. Two sets of TCGA-
PRAD patches are used for training the models: the first set is
used for training the teacher model, while the second set is used
during the training of the student model. The first set is com-
posed of patches used as weakly-annotated data that are used
to pre-train the teacher in the semi-weakly supervised learning
approach. The TCGA-PRAD dataset has no pixel-wise local
annotations and therefore it is not possible to distinguish be-
tween healthy and cancer tissue. In this case, the patches are
labeled with the primary Gleason pattern of the corresponding
WSI. In order to reduce the noise due to the use of weak la-
bels, only a subset of the patches is selected to train the teacher
model. The subset of the patches is selected using the Blue-
Ratio (BR) technique (Chang et al., 2012). BR ranks patches
starting with dense nuclei regions first, avoiding patch extrac-
tion from areas without nuclei, such as those containing fat or
connective tissue. The patches are sorted in decreasing order
by their BR and only the ones with the highest and the lowest
values are selected for each WSI. The second set is composed
of patches used as unlabeled data and the teacher automatically
annotates all of them. In order to reduce noise in the labeling,
only the top-ranked samples are selected for training the student
model. A probability array is created with the softmax proba-
bility of each sample. For each class, the probability array is
sorted in descending order by the class probability and the first
K top-ranked samples are selected. K denotes the number of

patches from each class selected by the teacher model.

Table 2. Number of patches for each Gleason pattern in the TMAZ dataset.
Class/Set Training Validation Test

Benign 2’010 1’350 127
GP3 5’992 1’352 1’602
GP4 4’472 831 2’121
GP5 2’766 457 387
Total 15’240 3’990 4’237

Table 3. Number of TMA cores for each Gleason score in the TMAZ
dataset.

Class/Set Training Validation Test
Benign 61 42 12

GS6 158 35 79
GS7 (3+4) 47 14 28
GS7 (4+3) 18 11 23

GS8 119 15 84
GS9 - 10 105 16 19

Total 508 133 245

Table 4. Number of patches for each Gleason pattern selected in the TCGA-
PRAD dataset (used only for pre-training the teacher model).

Class/Set Training Validation Test
Benign 1710 840 460

GP3 28’919 15’443 4’000
GP4 48’398 22’500 13’633
GP5 8’000 4’000 3’000
Total 87’027 42’783 23’093

2.3.2. Dataset composition
TMAZ patches. The patches selected from the TMAZ dataset
are used as strongly-annotated data for training and testing both
models. The dataset includes four classes: benign, Gleason pat-
tern 3, Gleason pattern 4 and Gleason pattern 5. The detailed
number of patches (divided per class) is reported in Table 2.

TCGA-PRAD patches. TCGA-PRAD patches are used to train
the teacher model, to train the student model and to test the
student model at the WSI-level, as shown in Figure 3. The
patches used to train the teacher model include the 500 top-
ranked and the 100 bottom-ranked patches per WSI regarding
BR. These patches are used as weakly-annotated data. The la-
bel assigned to each patch is the corresponding primary Glea-
son pattern included in the medical report. However, TCGA-
PRAD does not include WSIs with benign as primary Gleason
score. Only Gleason pattern 3, Gleason pattern 4 and Glea-
son pattern 5 are represented, as prostatectomies are not per-
formed for lower Gleason patterns. Several numbers of patches
(100, 250, 500, 750, 1’000) selected with the BR were tested.
Visual inspections allowed to verify that 500 is the number
that guarantees patches with nuclei, avoiding the selection of
patches with stroma. For each of the WSIs, 100 patches with
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Fig. 3. Scheme for the selection of the patches from TCGA-PRAD WSIs. Patches from TCGA-PRAD are ranked according to the Blue Ratio (left part of
the Figure) and according to the predictions made by the teacher model (right part of the Figure). For each WSI, the 500 top-ranked patches (brown line)
and the 100 bottom-ranked patches (purple line) according to Blue Ratio are included in the training partition of the teacher model. The 500 top-ranked
patches are used to test the performance of the student model at the WSI-level. The teacher model makes predictions on the patches from TCGA-PRAD.
The patches with the highest predictions (grey line) are labeled as pseudo-labels, to train the student model, as described in 2.2.1.

Table 5. Number of WSIs for each Gleason score in the TCGA-PRAD
dataset.

Class/Set Training Validation Test
GS6 13 20 5

GS7 (3+4) 42 10 6
GS7 (4+3) 30 14 11

GS8 37 12 13
GS9 - 10 49 28 11

Total 171 84 46

very low BR were selected and labeled with the benign class so
that the model could be trained with samples labeled in four
classes, similar to the strongly-annotated data. The detailed
number of patches (divided per class) is reported in Table 4.
The patches used to train the student model include the patches
annotated with the highest predictions by the teacher model.
These patches are used as pseudo-labeled data. The set includes
four classes: benign, Gleason pattern 3, Gleason pattern 4 and
Gleason pattern 5. The training partition of the pseudo-labeled
data includes different subsets, each one with a different num-
ber of samples for each class (K). The subsets are incrementally
added to the partition. Different K values are tested in the paper.
The first subset includes the top K-ranked samples, for each of
the classes. Each of the following subsets added to the parti-
tions includes the next top K-ranked samples per class. The K
values tested vary between 1’000 and 10’000 pseudo-annotated
patches for each class. The difference between two consecutive

K values is 1’000, i.e. the first subset has 1’000 patches per
class and the second one 2’000 patches per class etc.. The high-
est K value tested is 10’000, then the biggest subset has 10’000
samples pseudo-labeled for each class. The validation partition
of the pseudo-labeled data includes 8’000 patches (2’000 for
each class). The testing partition of the pseudo-labeled data in-
cludes 8’000 patches (2’000 for each class). The patches used
to test the student model include the the 500 top-ranked patches
per WSI regarding BR. The patches are used as unlabeled data.
The student model predicts Gleason patterns for each patch and
aggregates the predictions in order to have primary and sec-
ondary Gleason patterns for the WSI. TCGA-PRAD does not
include benign images, therefore the analysis of the top-ranked
patches allows to exclude patches including stroma or healthy
tissue.

2.3.3. Data analysis implementation
The teacher and the student are implemented according to the

teacher/student paradigm, with the same software and hardware
solutions and trained with the same strategy.

The paradigm includes the architecture size of the
CNN adopted as model. The teacher model is a
Resnext50 32x4d (Xie et al., 2017) implemented by Yalniz
et al. (2019). The choice of the teacher model is made
considering the paradigm constraints (the teacher must be a
high-capacity model) and the classification performance of the
model. Therefore, the teacher model has up to 22 million
parameters and it guarantees high-level classification perfor-
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mance. The network is initialized with weights of the model
pre-trained with the YFCC100M dataset (Thomee et al., 2015)
using 1 billion Instagram images and their corresponding hash-
tags. The choice of using pre-trained networks is made to
speed up the model convergence during the training. The stu-
dent model is a DenseNet121 (Huang et al., 2016) implemented
within the PyTorch framework9. The choice of the student
model is made considering the paradigm constraints (i.e. to
have a model smaller than the teacher and fast in the evaluation
of the inputs). The student model has up to 7 million parameters
and it guarantees classification performance comparable with
the one of the teacher. The network is initialized with weights
of the model pre-trained with ImageNet (Deng et al., 2009) us-
ing 1 million natural images. Both architectures are modified
using a classifier different from the original one. The original
networks were pre-trained with datasets including samples from
1’000 classes. Therefore they had 1’000 nodes in the last dense
layer (1’000 is the number of classes in the dataset). The new
classifier used in both models has only four output nodes in the
last layer, equal to the number of Gleason patterns.

The teacher and the student models are implemented using
the PyTorch framework 10 and using the Cartesius cluster as
infrastructure, provided by the SURFsara High Performance
Computing centre (HPC)11. PyTorch is a framework developed
for deep learning research. The version adopted is 1.1.0. Py-
torch is used to write our experiments in a high-level language
that uses the computational power of the graphics processing
unit (GPU) and its application programming interface. The
Cartesius cluster contains more than 130 nodes, each equipped
with two Tesla K40m GPUs. The models are trained using two
GPUs for each CNN.

The strategy adopted for training the teacher and the student
models concerns the hyperparameters of the networks and the
solution adopted for facing the non-deterministic condition of
the training.

The hyperparameters adopted are selected considering the
convergence of the models (evaluated on the validation parti-
tion). The batch size is chosen considering the samples in the
training partition. If the partition includes a large number of
samples (i.e. more than 60’000 samples), a batch size of 128
samples is selected. If the partition includes a smaller number
of samples (fewer than 60’000 samples), a batch size of 32 sam-
ples is chosen, in order to reduce the effort in terms of time to
train the models. The number of epochs is chosen considering
the performance on the validation partition. When the model
is tested with a large dataset (e.g. weakly-annotated dataset),
it is empirically observed that the model converges within 10
epochs and that it reaches the minimum value in the loss func-
tion. When the model is tested with a smaller dataset, it is em-
pirically observed that the model converges within 15 epochs
and reaches the minimum value in the loss function. A grid

9https://pytorch.org/hub/pytorch vision densenet. Retrieved 20th of March,
2020

10hhttps://pytorch.org/. Retrieved 20th of March, 2020
11https://userinfo.surfsara.nl/systems/hpc-cloud. Retrieved 7th of February,

2020

search algorithm (Chicco, 2017) allows to identify the optimal
values (i.e. the values that allow the CNN to minimize the
loss function on the validation partition) for the hyperparam-
eters (i.e. optimizer algorithm, the learning rate and the decay
rate). The optimizer selected is Adam (Adam and SGD were
tested). The learning rate selected is 10−3 (10−2, 10−3, 10−4,
10−5 were tested). The decay weight selected is 0 (10−3, 10−4,
10−5, 10−6, 10−7, 10−8, 0 were tested).

The teacher can be trained with weakly-annotated or with
strongly-annotated data. In the first case (pre-training of the
teacher model), the model is trained for ten epochs, with a batch
size of 128 samples (the partition includes more than 87’000
samples). In the second case, the model is trained for fifteen
epochs, with a batch size of 32 samples. The student is trained
for fifteen epochs for each of the training variants with a batch
size of 32 samples. The loss function in each epoch minimizes
the cross-entropy loss function between the predicted class and
the ground truth label. At the end of each epoch, the loss
function is evaluated on the validation partition of the corre-
sponding dataset. The model weights are saved only when the
loss function is lower than the loss function in previous epochs.
When the teacher model is trained with weakly-annotated data,
the validation partition includes the validation partition of the
TCGA-PRAD dataset presented for the teacher model (Para-
graph 2.3.2). When the teacher model is trained with strongly-
annotated data, the validation partition includes the validation
partition of the TMAZ dataset (Paragraph 2.3.2). In all the
student training variants presented (Section 2.2.3), the valida-
tion partition includes the validation partition of the strongly-
annotated dataset (i.e. TMAZ) (Paragraph 2.3.2) and the val-
idation partition of the pseudo-labeled data (Paragraph 2.3.2).
The validation partitions are evaluated separately. The choice
of using both datasets during the evaluation is made to avoid
that the model overfits on one of the two datasets. In this case,
the model weights are saved only when the loss function is the
lowest one for both partitions within an epoch, compared with
the loss functions of the other epochs.

The training of the models is not deterministic because of the
stochastic gradient descent optimizer (Adam optimizer) used to
train the models and also partially because of the probabilis-
tic rate applied to the data augmentation (presented in Sec-
tion 2.3.4). In order to limit the non-deterministic effects in-
troduced in the training, both models are trained ten times in
each step of the pipeline, except for the training of the teacher
model in the semi-weakly supervised learning approach (see
Section 2.2.2). In the semi weakly-supervised learning ap-
proach, the teacher model is pre-trained with weakly-annotated
data only once because of the large number of patches within
the dataset. Considering the training and the validation par-
titions, the pre-training is made with up to 130’000 patches,
while in the other steps of the pipeline, fewer than half of the
patches are used for training the models. In both teacher/student
approaches (Section 2.2.2), the teacher model selected to anno-
tate the unlabeled data among the ten repetitions is the one that
shows the best performance in κ, both in the TMAZ validation
partition (Paragraph 2.3.2) and in TCGA-PRAD validation par-
tition (Paragraph 2.3.2). This criterion is selected considering
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the inter-dataset heterogeneity so that the model can general-
ize on both datasets, avoiding a model overfitting on one of
them. In TMAZ, the two approaches are tested at the patch
level, while in TCGA-PRAD, they are tested at the WSI level,
as described in Paragraph 2.3.5. In the student training variant II
(Section 2.2.3), the student model selected to be fine-tuned with
strongly-annotated data is the one that shows the best perfor-
mance in κ, in the TMAZ validation partition (Paragraph 2.3.2).

2.3.4. Data augmentation
Class-wise data augmentation (CWDA) is applied during the

training of the CNN models. The class-wise data augmen-
tation is composed of three kinds of operations and it is ap-
plied for avoiding overfitting. The three operations are rota-
tion, flipping and colour augmentation. Rotation augmentation
is applied with randomly rigid rotations (90,180,270 degrees).
Flipping augmentation is applied flipping the image vertically
and/or horizontally. Colour augmentation is applied shifting the
hue, saturation and brightness values of the original image. The
colour augmentation parameters are selected according to the
parameters suggested by Janowczyk12. The parameters for the
colour augmentation are: the hue shift is limited to be between
-9 and 9, the saturation shift is limited to be between -25 and
25 and the brightness shift is limited to be between -10 and 10.
Each of these operations is applied to the training images, with
a probability of 0.5. The pipeline is implemented using the Al-
bumentations open-source library (Buslaev et al., 2020).

Overfitting can be caused by the unbalanced distribution
of the class distribution within the datasets and by the small
amount of data available (Tables 2, 3, 4, 5), particularly for the
TMAZ dataset. Class-wise data augmentation (CWDA) is also
used to solve this problem, by augmenting classes that are less
frequently represented in a stronger way. The implementation
is based on the open access repository of Ufoyn13.

2.3.5. Evaluation
The models are evaluated on the classification of the Glea-

son score and the Gleason patterns of histopathological im-
ages given the image patches. The quadratic weighted Cohen
Kappa score (κ) is used for assessing the model performance.
The optimal Kappa is 1 and a random distribution would be
0, as kappa is normalized by agreement by chance. The aver-
age and the standard deviation of the κ of the models are re-
ported. The Gleason pattern classification task is evaluated at
the patch-level, while the Gleason score classification is eval-
uated at the core level (for TMAZ) and at the WSI level (for
TCGA-PRAD). The Gleason score is evaluated aggregating the
Gleason patterns classified at the patch level using a majority
voting system. The most frequently predicted class is selected
as primary Gleason score, while the second most frequently
predicted as secondary Gleason pattern. The majority voting

12http://www.andrewjanowczyk.com/employing-the-albumentation-library-
in-pytorch-workflows-bonus-helper-for-selecting-appropriate-values/. Re-
trieved 8th of January, 2020

13https://github.com/ufoym/imbalanced-dataset-sampler. Retrieved 6th of
February, 2020

has two main drawbacks. The first drawback regards the fact
that the majority voting does not work well for the TMAs or the
WSIs where the primary and the secondary Gleason patterns
coincide. In the TCGA-PRAD dataset, the drawback is handled
in the following way: if the predominant pattern is represented
in more than twice the amount of patches as the second pat-
tern, it is considered to be both the primary and the secondary
Gleason pattern. The second drawback regards noisy patches
that can influence the voting. Not all the patches include tis-
sue (e.g. stroma or healthy tissue) that belongs to one of the
four classes analyzed in this paper (benign, Gleason pattern 3,
Gleason pattern 4, Gleason pattern 5). The model is trained to
classify one of these classes and the predictions can thus in-
troduce noise. This drawback is limited selecting only patches
from un-healthy tissue (500 patches) for each WSI, using the
Blue-Ratio, as explained in Section 2.3.1. The majority voting
follows the revised grading system (Pierorazio et al., 2013) pro-
posed by the American Urology Association14. In the TMAZ
dataset, in order to make results comparable, the majority vot-
ing approach used is the one adopted by Arvaniti et al. (2018).

The κ measures the agreement between raters. The quadratic
weighted Cohen Kappa score is adopted because it penalizes
predicted values far from their actual class stronger:

κ = 1 −
∑

i, j wi, jOi, j∑
i, j wi, jEi, j

,wi, j =
(i − j)2

(N − 1)2

The same formula is applied to both Gleason patterns and Glea-
son scores. i, j are the ordered patterns, N = 4 is the total num-
ber of Gleason patterns (N = 5 is the total number of Gleason
scores). Oi, j, is the number of images that were classified with
a pattern (score) i by the first rater and j by the second. Ei, j de-
notes the expected number of images receiving rating i by the
first expert and rating j by the second. The quadratic term wi, j

penalizes the ratings that are not close to the right value. When
the predicted Gleason pattern (score) is far from the ground-
truth class, wi, j gets closer to 1. E.g. if the ground truth of a
patch is Gleason pattern 5 and it is predicted as Gleason pattern
4, it is penalized less than if the predicted class is benign.

Cohen’s κ is usually adopted in prostate classification to as-
sess the level of agreement in multiclass problems (Berg et al.,
2011; Arvaniti et al., 2018; Ström et al., 2019; del Toro et al.,
2017; Otálora et al., 2020b), as shown in Table 1. The inter-
pathologist agreement in prostate cancer classification can be
used as an overall reference or baseline for evaluating the mod-
els. In Arvaniti et al. (2018), two pathologists pixel-wise anno-
tated 245 tissue micro arrays. They reached κ = 0.67 in Glea-
son grading, while κ = 0.71 in Gleason scoring. In Tolkach
et al. (2020), three pathologists pixel-wise annotated 453 large
tumour images from a cohort of TCGA-PRAD dataset. They
reached κ = 0.70 in Gleason grading.

14https://www.auanet.org/education/auauniversity/education-products-
and-resources/pathology-for-urologists/prostate/adenocarcinoma/prostatic-
adenocarcinoma-gleason-grading-(modified-grading-by-isup. Retrieved 5th of
February, 2020
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Fig. 4. Results for the average performance of the student training, trained
with the semi-supervised learning approach (the teacher model is trained
with strongly-annotated data). They are measured by the κ as a function of
the amount of pseudo-labeled data used to train the student model. The
sub-figure A includes the performance evaluated in Gleason grading at
patch level using the TMAZ test data, the sub-figure B includes the per-
formance evaluated in Gleason scoring at TMA core level using the TMAZ
test data, the sub-figure C includes the performance evaluated in Gleason
scoring at the WSI level, using the TCGA-PRAD test data.

3. Results

The tested semi-supervised learning and semi-weakly super-
vised learning approaches improve the student model perfor-
mance both in Gleason grading and Gleason scoring compared
with the fully supervised learning approach. The improvement
is statistically significant, as the results are tested also using
the Wilcoxon Rank-Sum test (Wilcoxon, 1992). The Wilcoxon
Rank-Sum test is used for determining if two probabilistic pop-
ulations have the same distribution (null hypothesis). If the test
confirms the null hypothesis (p-value > 0.05), it means that the
populations have the same distribution. If it rejects the null hy-
pothesis (p-value < 0.05) the populations are assumed to have
different distributions.

In both classification tasks the best performance is reached
with the semi-supervised learning approach. Figures 4 and 5
show the performance of the training/student approaches pre-
sented. In each figure, the performance is presented for the
three student variants and the fully-supervised baseline de-
scribed in Section 2.2.3. The performance is measured as a
function of the amount of pseudo-labeled data used to train the
student model, as described in Section 2.3.5. Each figure in-
cludes three curves and a constant line. The curves represent
the student training variants, as presented in Section 2.2.3. The
blue curve represents the performance obtained with the stu-
dent training variant I (training the student only with pseudo-
labeled data). The green curve represents the performance ob-
tained with the student training variant II (pre-training the stu-
dent with pseudo-labeled data and fine-tuning it with strongly-
annotated data). The magenta curve represents the perfor-
mance obtained with the student training variant III (training the
student with both pseudo-labeled data and strongly-annotated
data). The constant line (grey dashed line) represents the fully-
supervised learning approach (training the student only with
strongly-annotated data).

Figure 4 and Table 6 shows the performance of the semi-
supervised learning approach. Figure 4 includes three sub-
figures: 4.A, 4.B and 4.C. In sub-figure 4.A, the models are
evaluated in Gleason grading on the TMAZ test partition, at
the patch level. Two student training variants exceed the base-
line: student training variant II and student training variant III.
In sub-figure 4.B, the models are evaluated for Gleason scoring
on the TMAZ test partition, at TMA core level. Two student
training variants exceed the baseline: student training variant
II and student training variant III. In sub-figure 4.C, the mod-
els are evaluated in Gleason scoring on the TCGA-PRAD test
partition, at WSI level. All the student training variants ex-
ceed the baseline. Table 6 summarizes the peak results for the
semi-supervised learning approach, highlighting the ones that
are statistically significant.

Figure 5 and Table 7 show the performance of the semi-
supervised learning approach. Figure 5 includes three sub-
figures: 5.A, 5.B and 5.C. In Figure 5.A, the models are eval-
uated for Gleason grading on the TMAZ test partition at the
patch level. Two student training variants exceed the baseline
in κ: student training variant II and student training variant III.
In Figure 5.B, the models are evaluated for Gleason scoring on
the TMAZ test partition, at TMA core level. Two student train-
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Semi-Weakly Supervised Learning
Gleason grading: TMAZ

Gleason scoring: TMAZ

Gleason scoring: TCGA-PRAD

A

B

C

Fig. 5. Results for the average performance of the student models with
the semi-weakly supervised learning approach (the teacher model is pre-
trained with weakly-annotated data and it is fine-tuned with strongly-
annotated data). They are measured by the κ as a function of the amount of
pseudo-labeled data used to train the student model. Sub-figure A includes
the performance evaluated in Gleason grading at the patch level using the
TMAZ test data, the sub-figure B includes the performance evaluated in
Gleason scoring at TMA core level using the TMAZ test data, sub-figure
C includes the performance evaluated in Gleason scoring at the WSI level,
using the TCGA-PRAD test data.

Table 6. Performance measured for the semi-supervised learning approach
evaluated in κ. For each of the student training variants, the peak value
and the corresponding number of pseudo-labeled patches per class are re-
ported. The results that are statistically significant (compared with the
baseline) are reported with an asterisk (*).

Training approach κ-score # pseudo-labels
Gleason grading: TMAZ dataset

Fully-supervised 0.5667 ± 0.0285 -
Training variant I 0.4643 ± 0.0385 9’000
Training variant II 0.6127 ± 0.0133* 10’000
Training variant III 0.6086 ± 0.0176* 3’000

Gleason scoring: TMAZ dataset
Fully-supervised 0.7186 ± 0.0306 -
Training variant I 0.6284 ± 0.0492 9’000
Training variant II 0.7645 ± 0.0231* 9’000
Training variant III 0.7562 ± 0.0293* 9’000

Gleason scoring: TCGA-PRAD dataset
Fully-supervised 0.2293 ± 0.1350 -
Training variant I 0.4529 ± 0.0512* 7’000
Training variant II 0.3981 ± 0.1085 1’000
Training variant III 0.4353 ± 0.0483* 8’000

ing variants exceed the baseline in κ: student training variant II
and student training variant III. In Figure 5.C, the models are
evaluated for Gleason scoring on the TCGA-PRAD test parti-
tion, at WSI level. All the student training variants exceed the
baseline. Table 7 summarizes and the peak results for the semi-
weakly supervised learning approach, highlighting the ones that
are statistically significant.

Figure 6 shows confusion matrices of the CNNs (among all
the repetitions) that reach the highest performance in Gleason
grading and Gleason scoring tasks. They are all obtained using
the semi-supervised learning approach. For each task, the ma-
trix with the raw values (on the left) and the normalized matrix
are shown (on the right). Figure 6.A shows confusion matrices
of the best CNN in Gleason grading, evaluated in TMAZ. Fig-
ure 6.B shows confusion matrices of the best CNN in Gleason
scoring, evaluated on TMAZ. Figure 6.C shows confusion ma-
trices of the best CNN in Gleason grading, evaluated on TCGA-
PRAD.

4. Discussion

Although deep learning is the state-of-the-art technique in
classification tasks, it is not easy to train models that general-
ize well on varying datasets, particularly when data are highly-
heterogeneous and few data with local annotations are avail-
able. The teacher/student approaches presented in this paper
allow training models that reach high performance in prostate
cancer classification, improving the performance of a CNN
(compared with a CNN trained only with strongly-annotated
data), generalize well on different heterogeneous datasets, fac-
ing the inter-dataset heterogeneity and overcoming the lack of
large datasets with local annotations.

Prostate cancer classification is still an open challenge in
digital pathology despite much work on the topic. The anal-
ysis usually involves two tasks: Gleason grading and Gleason
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Best CNN Gleason grading: TMAZ

Best CNN Gleason scoring: TMAZ

Best CNN Gleason scoring: TCGA-PRAD

A

B

C

Fig. 6. Confusion matrices of the CNN models that show the highest performance in the tasks proposed in the paper. Sub-figure (A) includes the best CNN
on Gleason grading in TMAZ, sub-figure (B) includes the best CNN on Gleason scoring in TMAZ, sub-figure (C) includes the best CNN on Gleason scoring
in TCGA-PRAD. For each sub-figure, two confusion matrices are shown: on the left, the confusion matrix with the raw predictions of the CNN, on the
right the confusion matrix with the normalized predictions.
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Table 7. Performance measured for the semi-weakly supervised learning
approach evaluated in κ. For each of the student training variants, the
peak value and the corresponding number of pseudo-labeled patches per
class are reported. The results that are statistically significant (compared
with the baseline) are reported with an asterisk (*).

Training approach κ-score # pseudo-labels
Gleason grading: TMAZ dataset

Fully-supervised 0.5667 ± 0.0285 -
Training variant I 0.5062 ± 0.0487 9’000
Training variant II 0.6067 ± 0.0152* 8’000
Training variant III 0.6104 ± 0.0158* 5’000

Gleason scoring: TMAZ dataset
Fully-supervised 0.7186 ± 0.0306 -
Training variant I 0.6517 ± 0.0437 9’000
Training variant II 0.7516 ± 0.0274* 7’000
Training variant III 0.7588 ± 0.0192* 7’000

Gleason scoring: TCGA-PRAD dataset
Fully-supervised 0.2293 ± 0.1350 -
Training variant I 0.3593 ± 0.0496* 8’000
Training variant II 0.4121 ± 0.0963* 5’000
Training variant III 0.4065 ± 0.0725* 9’000

scoring. Several approaches were developed: fully-supervised
learning approaches (Arvaniti et al., 2018; Ström et al., 2019;
Nagpal et al., 2019), weakly supervised (del Toro et al., 2017;
Arvaniti and Claassen, 2018; Otálora et al., 2020b; Campanella
et al., 2019) and semi-supervised approaches (Bulten et al.,
2020; Tolkach et al., 2020). Fully-supervised learning shows
that CNNs need large datasets with local annotations to be
trained and to guarantee high performance. Unfortunately, large
datasets usually come without local annotations, since produc-
ing them requires a large amount of work. Furthermore, it is
hard to collect locally-annotated heterogeneous data, as datasets
often originate from a single medical source (e.g. Arvaniti et al.
(2018); Ström et al. (2019); Nagpal et al. (2019)). Weakly-
supervised learning approaches aim to reduce the dependency
from local annotations, using global annotations as weak la-
bels. However, the weak labels introduce noise in training,
and therefore a large amount of data is needed to reach high
performance, as shown in Campanella et al. (2019). In del
Toro et al. (2017); Arvaniti and Claassen (2018); Otálora et al.
(2020b) the authors applied weakly-supervised learning using
subsets of a publicly available dataset (TCGA-PRAD). In or-
der to achieve comparable performance, the experiments re-
quired a number of pixels that are 500 times larger than the lo-
cally annotated dataset (TMAZ). Semi-supervised learning ap-
proaches aim to alleviate the lack of large datasets with local
annotations and train models that generalize better to hetero-
geneous datasets. The published literature that builds on top
of the semi-supervised techniques for histopathology (partic-
ularly in prostate cancer) using the teacher/student paradigm
shows an appreciable level of technical sophistication, such as
the work by Cheng et al. (2020); Shaw et al. (2020); Bulten et al.
(2020); Tolkach et al. (2020). There is literature that builds on
top of the semi-supervised techniques for histopathology us-
ing the teacher/student paradigm, namely the work of Cheng

et al. (2020); Shaw et al. (2020); Bulten et al. (2020); Tolkach
et al. (2020). Here, we want to discuss significant similari-
ties and missing points from these papers, as well as in our
proposed method. In Cheng et al. (2020), the authors train a
teacher/student model for a segmentation task, exploiting par-
tially labeled WSIs using spatially related patches to filter out
noisy model predictions. The authors show that their strategy
improves the fully-supervised baseline. The CNN is evalu-
ated on a homogeneous external prostate dataset, showing an
improvement in segmentation performance. A homogeneous
dataset does not account for the realistic spectra of variations
in clinical scenarios, where WSIs can be scanned with differ-
ent scanners and have heterogeneous visual appearance (as we
have previously shown on TCGA-PRAD). In the work of Shaw
et al. (2020) the authors train a chain of teacher-student mod-
els to annotate image regions of colorectal cancer. Their model
showed an impressive sample complexity by using only a small
fraction (less than 1%) of the annotated data to achieve com-
parable performance to the fully-supervised model with 100%
of the labels. Nevertheless, their experimental setup lacks val-
idation on unseen centers. An interesting possible validation
for future work is to perform teacher/student model training us-
ing only one center and comparing it with the reported inter-
center performance. In Bulten et al. (2020), the authors train a
U-net based network to generate and to pseudo-label prostate
cancer regions. They use pure Gleason Pattern WSIs (where
the primary and the secondary Gleason patterns coincide) to re-
duce the noisy labels and avoid annotations with the wrong pat-
terns. The model reaches very high performance in the internal
test set and pathologist level performance on the TMAZ dataset
(used as external test partition). However, this work suffers of
the same experimental problem shown in the other work, since
TMAZ originates from one single medical source: the model is
not validated on a heterogeneous external dataset. In Tolkach
et al. (2020), the authors train a model to classify Gleason pat-
terns using a large dataset with pixel-wise annotated patches.
The model is used to annotate unseen data from complex pat-
terns (where primary Gleason pattern differs from secondary
Gleason pattern) and to fine-tune the model. The model is tested
on both an internal test partition and on a TCGA-PRAD cohort.
Even though the model is tested on a heterogeneous external
dataset it does not exploit data heterogeneity during the train-
ing, since it is used to pseudo-annotate images from the same
medical center. Despite the noticeable differences in the indi-
vidual technical components of each presented teacher/student
approach, it is noteworthy that in Cheng et al. (2020), Shaw
et al. (2020)), the student models always outperform the fully-
supervised baseline. Furthermore, in the work of Shaw et al.
(2020), the authors show that when using 100% of the labeled
data, the student’s performance is inferior to the one obtained
with fewer labels. This result suggests that there can be a sub-
stantial amount of noise in the full dataset and that the student
can distil a right amount of labels to reduce its inclusion in the
model.

The semi-supervised and semi-weakly supervised ap-
proaches presented in this paper show better performance than
a fully-supervised learning approach and other published ap-
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Table 8. Comparison between Arvaniti et al. (2018), Bulten et al. (2020)
and this work on TMAZ dataset, for both Gleason grading and Gleason
scoring. The comparison involves the performance of best CNN trained
and the average of ten CNNs (if reported).

Work Best result Average result
Gleason grading: (inter-pathologist agreement κ = 0.67)
Arvaniti et al. (2018) κ = 0.55 not reported
This work κ = 0.6613 κ = 0.6127 ± 0.0133
Gleason scoring: (inter-pathologist agreement κ = 0.71)
Arvaniti et al. (2018) κ = 0.75 not reported
Bulten et al. (2020) κ = 0.72 not reported
This work κ = 0.8124 κ = 0.7645 ± 0.0231

proaches (Arvaniti et al., 2018; Bulten et al., 2020) tested on
the TMAZ dataset. In Gleason grading, the fully-supervised ap-
proach obtains κ= 0.5667 ± 0.0285, while the semi-supervised
approach obtains κ=0.6127 ± 0.0133 and the semi-weakly su-
pervised approach κ=0.6104 ± 0.0158. In the Gleason scoring
task, evaluated on TMAZ, the fully-supervised approach ob-
tains κ= 0.7186 ± 0.0306, while the semi-supervised approach
obtains κ=0.7645 ± 0.0231 and the semi-weakly supervised ap-
proach κ=0.7588 ± 0.0192. In the Gleason scoring task, evalu-
ated on the TCGA-PRAD, the fully-supervised approach ob-
tains κ= 0.2293 ± 0.1350 semi-supervised approach obtains
κ=0.4529 ± 0.0512 and the semi-weakly supervised approach
κ=0.4121 ± 0.0963.

The models trained with the semi-supervised learning ap-
proach outperform the models proposed by Arvaniti et al.
(2018) and Bulten et al. (2020) in both Gleason grading and
Gleason scoring, evaluated on the TMAZ test partition, as re-
ported in Table 8.

The performance obtained with the semi-supervised ap-
proach are slightly higher than the one of the semi-weakly
supervised approach, considering the peak values in Gleason
grading and scoring reported in Table 6 and 7. The difference
can be explained with the pseudo-labeled patches annotated by
the teacher model. In the semi-supervised learning approach,
the teacher model provides pseudo-labeled patches that are less
noisy than the patches of the other approach. This is particularly
true considering the performance of the models trained with
the training variant I (only pseudo-labeled patches) in Gleason
scoring, evaluated on TCGA-PRAD: in the semi-supervised ap-
proach, the models reach κ=0.4529 ± 0.0512 as peak value,
while in semi-weakly supervised approach, the models reach
κ=0.3593 ± 0.0496. The patches provided by the teacher are a
consequence of the training schema used. The teacher is trained
only with strongly-annotated data in the semi-supervised learn-
ing approach, while otherwise it is first pre-trained with weakly-
annotated data and then it is fine-tuned with strongly-annotated
data. Therefore, the weakly-annotated dataset used for pre-
training the teacher model in the semi-weakly supervised learn-
ing approach can lead to noisy patches. The classification per-
formance of the models depends on the amount of pseudo-
labeled data used for training. A trade-off between the two is
identified. As shown in Section 2.3.2, one of the most critical
parameters for the paradigm is the number of pseudo-labeled

patches (K parameter) used for training the student model. As
expected, including the pseudo-labeled data improves the per-
formance, since the dataset is larger and it includes data from
different sources. However, the performance is not monotoni-
cally increasing, considering the amount of pseudo-labeled data
used for training the student model. Since pseudo-labeled data
can be noisy, the more pseudo-labeled data are collected the
higher is the noise in the training data. When data are too noisy,
the performance can also decrease. This is the case for the work
presented: for each of the student variants tested a peak value
in κ is identified. For each of the models, the peak value cor-
responds to the subset of pseudo-labeled data where the noisy
labels are less represented than in the other subsets.

The teacher/student approaches allow alleviating the inter-
dataset heterogeneity, mitigating the overfitting and allowing
the models to generalize on datasets from several sources.
The inter-dataset heterogeneity leads to models that adapt their
weights on the data used for training them. The overfitting low-
ers the model performance when it is trained on a dataset and
is evaluated on another one (from a different source). It hap-
pens for both the TMAZ dataset (fully-supervised learning ap-
proach of the student) and the TCGA-PRAD dataset (student
training variant I). The overfitting influences less strongly the
student training variant II and it is limited adopting the student
training variant III. The student model trained only with TMAZ
patches (fully-supervised learning approach) obtains good re-
sults when it is tested on the test partition of the same dataset
(Figure 4.A,B and Figure 5.A,B, dashed line) but it fails to
generalize on the TCGA-PRAD dataset (Figure 4.C and Fig-
ure 5.C, dashed line). The student model trained only with
TMAZ patches and tested on the TCGA-PRAD dataset reaches
close to the lowest performance. The student model trained
only with pseudo-labeled data (student training variant I) ob-
tains excellent performance when it is tested on an internal test
partition (Figures 4.C and 5.C, blue curve) but it fails to gen-
eralize on the TMAZ dataset (Figures 4.A,B and 5.A,B, blue
curve). The same thing happens for both the teacher/student
paradigm approaches. The student model trained only with
pseudo-labeled patches and tested on the TMAZ dataset has
the lowest performance. The inter-dataset heterogeneity leads
to overfitting also for the student training variant II but in this
case it is less strong than the previous examples. In this stu-
dent training variant, the student model is trained in two steps.
First, it is pre-trained with pseudo-labeled data and then it is
fine-tuned with strongly-annotated data. The model first adapts
its weights on the pseudo-labeled data and then it adapts its
weights on strongly-annotated data. For the TMAZ dataset the
student training variant II obtains among the best performance
when it is tested on its test partition (Figures 4.A,B and 5.A,
green curve) but it fails to generalize well on the TCGA-PRAD
dataset (Figures 4.C, 5.C, green curve). Considering both ap-
proaches, the model trained with this student training variant
and tested on the TCGA-PRAD dataset has a better perfor-
mance than the fully-supervised learning approach. However,
in the semi-supervised learning approach, it is exceeded by
0.096 in κ, compared with the same model trained using the
student training variant I (only with pseudo-labeled data). The
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overfitting is limited using the student training variant III. In
this student training variant, the model is trained combining
both the pseudo-labeled and the strongly-annotated data. In
this case, the performance is good both for the Gleason score
and Gleason pattern classification (Figures 4.A,B,C, 5.A,B,C,
magenta curves). In Gleason pattern classification, this student
training variant reaches the best result in the semi-weakly su-
pervised learning approach (Figure 5.A, magenta curve) and a
performance similar to the best in the semi-supervised learning
approach (Figure 4.A, magenta curve). The same models gen-
eralize well in the TCGA-PRAD dataset (Figures 4.C and 5.C,
magenta curves). In both approaches, the results are similar to
the ones obtained with the student training variant II regard-
ing the evaluation at patch level, but much better regarding the
evaluation at the WSI level.

The teacher/student approaches allow overcoming the lack of
large datasets with locally-annotated data. Locally-annotated
data are needed to train CNNs but only small datasets with
local annotations are available. The approaches exploit large
amounts of unlabeled or weakly-annotated data that are pub-
licly available, automatically annotating them with pseudo-
labels. Figure 7 shows a set of pseudo-labeled patches from
the teacher model, trained with the semi-supervised learning
approach. For each class, the upper row includes some of the
top-ranked patches, while the bottom row includes a few of the
patches with the lowest probabilities. The top-ranked patches
match the corresponding tissue morphology.

The methods shown in the paper can be still improved, even
though they reach high performance and outperform models
from other approaches evaluated on the same datasets. Figure 6
shows the best CNN trained for Gleason grading and scoring
(both on TMAZ and TCGA-PRAD). The matrices show that the
models have poorer performance in distinguishing between be-
nign and Gleason pattern 3 when evaluated on TMAZ at patch
level (Figure 6.A), in distinguishing between benign and Glea-
son score 6 when evaluated in TMAZ at core level (Figure 6.B)
and in predicting high risk Gleason scores on TCGA-PRAD
(Figure 6.C). Figures 4 and Figure 5 show that the models
sometimes have large confidence intervals and unstable perfor-
mance, especially when evaluated in TCGA-PRAD. The large
confidence intervals can occur due to the aggregation method
used to evaluate the primary and the secondary Gleason pat-
terns and to the heterogeneous datasets used to train and test
the models. The aggregation is made with a majority voting
method and it involves patches that may include large portions
of stroma (since the patches are the top-ranked within a WSI
according BR). Despite stroma and healthy tissue represent-
ing most of the tissue within an image, they are not very im-
portant for the diagnosis process, since the diagnosis is made
considering cancer tissue that occupies only a smaller portion
of the images. Therefore, the aggregation algorithm consid-
ers also portions of stroma in the diagnosis that a pathologist
would discard. The models that show the largest confidence
intervals and most unstable performance are the ones trained
with data from a dataset and evaluated on another dataset. It
can be explained considering that the datasets used are het-
erogeneous and that the models tend to adapt their weights on

the training data. In Figure 4.A,B and Figure 5.A,B the mod-
els trained with variant I (only pseudo-labeled patches from
TCGA-PRAD) have the largest confidence interval, since they
are evaluated on TMAZ. The models trained with variant II and
III include patches from TMAZ in the training partitions, there-
fore the performance are more stable and have smaller confi-
dence intervals when the models are evaluated in TMAZ. In
Figure 4.C and Figure 5.C the models trained with variant II
(pre-training with pseudo-labeled patches from TCGA-PRAD
and fine-tuning with strongly-annotated patches from TMAZ)
have the largest confidence interval and unstable performance,
since they are evaluated on TCGA-PRAD.

5. Conclusion

Training classification models that generalize on several
datasets raises questions when data are highly-heterogeneous
and only limited amounts of locally-annotated data are avail-
able. In this paper, two teacher/student approaches (semi-
supervised learning and semi-weakly supervised learning) al-
low to train CNN models that generalize on datasets from
varied sources. The approach allows to improve the perfor-
mance of the CNN, to face inter-dataset heterogeneity and to
overcome the lack of large datasets with local annotations.
The approaches are evaluated for Gleason pattern and Glea-
son score classification. They are compared with a fully-
supervised learning approach and other approaches. In both
cases, the models trained with the teacher/student paradigm
improve their performance compared with a fully-supervised
learning used to train the models. In particular, the models
trained using the semi-supervised approach show the best per-
formance for both Gleason pattern and Gleason score clas-
sification. The teacher/student paradigm allows to face the
inter-dataset heterogeneity and to limit the overfitting during
the training of the models. The models trained with the ap-
proach generalize on both datasets used in this paper, the
TMAZ and the TCGA-PRAD. The approach allows to over-
come the lack of large locally-annotated datasets to train the
models, exploiting a large amount of unlabeled and/or weakly-
annotated data to automatically generate pseudo-labeled data.
In future work, the teacher/student paradigm will be applied
to different types of tissues and different K values will be
tested. K values, larger than the ones presented in this paper,
will be tested in the future to make it possible to learn with a
large amount of weakly-annotated or unlabeled data, building
more robust and more accurate CNNs. The code and all the
pre-trained models will be made publicly available on Github
(https://github.com/ilmaro8/Semi Supervised Learning) upon
paper publication. The pseudo-labeled data are available from
the corresponding author on request.

Acknowledgments

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 825292 (ExaMode, htttp://www.examode.
eu/). Infrastructure from the SURFsara HPC centre was used

htttp://www.examode.eu/
htttp://www.examode.eu/
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