
  
 

  

Abstract— During the past 60 years scientific research 
proposed many techniques to control robotic hand prostheses 
with surface electromyography (sEMG). Few of them have been 
implemented in commercial systems also due to limited 
robustness that may be improved with multimodal data. This 
paper presents the first acquisition setup, acquisition protocol 
and dataset including sEMG, eye tracking and computer vision 
to study robotic hand control. A data analysis on healthy 
controls gives a first idea of the capabilities and constraints of 
the acquisition procedure that will be applied to amputees in a 
next step. Different data sources are not fused together in the 
analysis. Nevertheless, the results support the use of the 
proposed multimodal data acquisition approach for prosthesis 
control. The sEMG movement classification results confirm that 
it is possible to classify several grasps with sEMG alone. sEMG 
can detect the grasp type and also small differences in the 
grasped object (accuracy: 95%). The simultaneous recording of 
eye tracking and scene camera data shows that these sensors 
allow performing object detection for grasp selection and that 
several neurocognitive parameters need to be taken into account 
for this. In conclusion, this work on intact subjects presents an 
innovative acquisition setup and protocol. The first results in 
terms of data analysis are promising and set the basis for future 
work on amputees, aiming to improve the robustness of 
prostheses with multimodal data. 
 

I. INTRODUCTION 

Scientific research has proposed several techniques to 
improve the control of hand prostheses. However, 
commercial systems include few of them, usually due to 
limited robustness. Multimodal data acquisition and fusion 
may contribute to improve robustness of robotic hand 
prostheses. This paper introduces the first multimodal data 
acquisitions including surface electromyography (sEMG), 
eye tracking and computer vision for the control of robotic 
hand prostheses. The data acquisitions and analyses are 
performed on intact subjects and show how the setup can 
provide useful information for prosthesis  control. 

As described in several review papers (e.g. [1], [2]), 
during the past 60 years scientific research proposed 
increasingly sophisticated approaches for the control of hand 
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prostheses via surface electromyography (sEMG). Most of 
the methods rely on the use of sEMG and pattern recognition 
or proportional control algorithms. Often, intact subjects are 
used in the analyses, since they represent a good proxy for 
amputees [3]. Despite the promising laboratory results, the 
academic systems usually offer a relatively small functional 
improvement in daily situations at the expense of a substantial 
reduction in robustness. Currently available sEMG prostheses 
are very advanced from a mechanical point of view but they 
do not correspond to the needs of the amputees: first they do 
not improve the capabilities in many standard activities; 
second, they often lead to limited acceptance. 

Activities of daily life (ADLs) include categories such as 
personal needs, eating or use of tools [4]. Several studies 
highlighted the difficulty that the amputees have in basic 
ADLs. Lacing shoes, removing a bottle top, using scissors and 
buttoning a shirt are mentioned as the hardest actions [5]. In 
general, sEMG prostheses do not strongly improve this 
situation and they are often not fully accepted by amputees. 
The main causes are non-intuitive control, limited 
functionality, absence of feedback, excessive weight and slow 
motion [6], [7]. Finally, the rehabilitation process is often 
problematic due to the difficulty to perform and reproduce 
complex movements. The contribution of all of these factors 
results in a preference for cosmetic rather than functional 
prostheses, particularly among unilateral amputees who can 
compensate the movement capability with the intact limb. 

sEMG, visual and gaze data fusion may contribute to 
improve prosthesis control when performing goal-directed 
grasps aimed at ADLs. Eye tracking has already been referred 
to in the literature as a strong point in HCI (Human Computer 
Interaction) and it was introduced in the control of manual 
prehension and object identification [8]–[10]. Dosen et al. 
showed that visual information can be employed efficiently to 
both select the grasp pre-shape and to adjust dimensions with 
visual servoing. The authors used a 3D camera and a depth 
sensor to perform grasp planning [11]. Eye tracking data are 
complex to analyze, since the users’ gaze might be affected 
by different unpredictable factors. Gaze alternates between 
fixation pointing (when the user stares at the object for a 
period of time that exceeds a given threshold), and saccades 
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(which are rapid movements of the eyes) [12]. Nevertheless, 
fixation points can guide object recognition and help to 
classify the object to be grasped.  

This work aims at improving the robustness of prostheses 
through the integration of sEMG, eye tracking and computer 
vision in the field of view. The paper introduces the first 
multimodal data acquisition setup (Section II), protocol 
(Section III) and data analysis (Section IV) aimed to 
simultaneously record and evaluate the mentioned techniques. 
This work confirms that sEMG, eye tracking and computer 
vision data can provide fundamental information for hand 
grasping tasks by mixing data regarding the environment with 
data related to the intentions of the subject. The results are 
promising for the field and set the basis for future work on 
data integration, object recognition and robotics and they will 
guide the future data acquisition and data fusion on amputees. 

 

II. ACQUISITION SETUP 

The acquisition setup was designed to record data from 
several sensors providing information of different nature: 
hand kinematics, gaze direction, and dynamics and muscular 
activity of the forearm. It can be subdivided into a hardware 
part (including the laptop and the sensors used to perform the 
data acquisitions, section II.A) and a software part (including 
the software to manage the simultaneous recording from the 
sensors (synchronization) and the user interface to guide the 
subjects during the data acquisitions, section II.B). 

A. Hardware 
The hardware acquisition setup extends the acquisition 

setup of [13]. It includes the laptop used to perform the data 
acquisitions, the eye tracking device with scene camera, the 
sEMG sensors and a CyberGlove.  

The laptop used for the data acquisitions is a DELL 
Latitude E5520. The laptop was used to record the data from 
the devices while also guiding the subject through the 
acquisition protocol. The gaze was recorded using the Tobii 
Pro Glasses II (Tobii AB1), a wearable eye tracking system. 
The device is composed of a lightweight head unit with 
eyeglass design and a recording unit (to record and save data 
to an SD card). The device was connected to the acquisition 
laptop via a wireless connection. This device is capable to 
estimate where the subject is looking in its field of view. The 
eyes of the subjects are recorded with four infrared cameras 
embedded in the frame of the glasses. The movement of the 
eyes is tracked by applying black pupil and corneal reflection 
methods. An embedded full HD camera allows to record the 
scene in front of the subject in first person perspective [14]. 
The reported accuracy of the gaze direction estimation is 0.5 
degrees with a root mean square (RMS) precision of 0.3 
degrees. The eye tracking data are sampled at 100 Hz while 
the scene camera video is recorded at 25 fps (frames per 
second). The parallax and slippage are automatically 
compensated for by the device. A Software Development Kit 
(SDK) with Application Programming Interfaces (APIs) is 
provided with the device.  
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The muscular forearm activity was measured using 14 
Delsys Trigno double differential sEMG Wireless electrodes 
(Delsys, Inc.2) that include 3-axes accelerometers. The 
electrodes were connected via a proprietary wireless protocol 
to their base station. The base station was connected to the 
acquisition laptop via USB. sEMG data are sampled at 2 kHz 
and the 3-axes accelerometer data at 148 Hz. The electrodes 
are placed equally spaced around the forearm with a dense 
sampling approach. Eight electrodes are placed in proximal 
position, with the first electrode at the height of the radio-
humeral joint. The remaining six are placed just below the first 
set in a more distal position. The electrodes were attached to 
the forearm using a specific adhesive tape. A latex-free band 
was placed around them to reduce movement artifacts and to 
keep good contact between the electrodes and the skin (Figure 
1). 

Hand kinematics was measured using a 22-sensor 
CyberGlove II dataglove (CyberGlove Systems LLC3). 
Thanks to a proprietary resistive bend-sensing technology, the 
CyberGlove can accurately measure the joint angles of the 
hand and fingers. The CyberGlove was connected via 
Bluetooth to the acquisition laptop and sampled at 25 Hz. 

B. Software 
The software acquisition setup is subdivided into two parts 

that cooperate in order to accomplish the data acquisitions: the 
first part consists of the software that manages the 
simultaneous data recording from all the sensors; the second 
part is the user interface to guide the subjects during the data 
acquisitions. 

The software that manages the simultaneous data recording 
from all the sensors is a custom-made acquisition software 
based on the producer-consumer pattern implemented by 
Pizzolato et al. [15]. The software was written in C++ using 
the Boost 1.60.0 libraries. It consists of a multithreaded 
application, in which each producer and consumer runs in an 
individual thread. The producers acquire the data from the 
connected devices and the data are queued in dedicated 
queues. The queued data are extracted by consumers and 
stored on the hard drive of the laptop. As soon as the data are 
acquired, a high resolution time stamp (Windows High 
Performance Counter, resolution < 1 µs) is assigned to them. 

3  http://www.cyberglovesystems.com/ 

 

Figure 1. Acquisition setup. In particular, acquisition of the lateral grasp. 



  
 

This time stamp is used to synchronize the data recorded from 
the different devices.  

The user interface that guides the subjects during the data 
acquisitions was developed to correspond to the acquisition 
protocol. In the initial phase the signals provided by the 
acquisition devices are recorded but not stored. Afterwards, 
the signals were stored in the stimulus file with a timestamp, 
the grasp label and the object label. During the entire 
acquisition procedure, automated vocal instructions are 
employed in order to guide the user to perform the movements. 
In particular, one command informed the user when to begin 
the movement, while a second one triggered the return to the 
rest position. The audio instructions are available in four 
languages (French, German, English, Italian), depending on 
the native language of the subjects involved. 

 

III. ACQUISITION PROTOCOL 

The acquisition protocol consists of the repetition of 15 
grasps performed on a set of 30 objects while the subject sits 
with the forearm comfortably leaning on a desk (Figure 1). 
The subject was asked to watch two videos on the screen of a 
laptop showing how to reproduce each set of grasps from two 
different points of view (in third person and in first person 
respectively). The user had the possibility to try the grasps on 
the objects while the videos were playing in order to get 
confident with them. Afterwards, the subject performed the 
grasps while a fixed image of the grasp was shown. The image 
can provide a level of distraction for the subject. However, 
preliminary experiments showed that it was a helpful 
reminder for the subjects, as otherwise they may forget the 
grasp to be performed. Vocal commands guided the user 
throughout the acquisition. Each grasp was repeated on 
several objects. The items were presented to the subject in a 
specific sequence leaning on wooden boards, which were 

interchanged by an assistant. The 15 considered grasps are 
reported in Table 1 together with the objects used to perform 
them. The majority of the objects were considered in the 
repetition of more than one grasp. Both the movements and 
the objects were selected according to the needs of amputees. 
In particular, the objects and the movements were chosen to 
correspond to ADLs that the scientific literature mentions as 
most complex and useful for the amputees [4], [5]. Each grasp 
was repeated 12 times. The repetitions were equally 
distributed among the objects used for the grasp. In other 
words, the number of repetitions for each object was chosen 
in such a way that the total number of repetitions for each 
grasp was 12. For example, the large diameter grasp was 
repeated 3 times on 4 different objects (namely a bottle, a can, 
a mug and a glass), for a total of 12 repetitions. The variable 
number of iterations for each object allowed to include the 
most important ADL movements into the acquisition 
protocol, including the most difficult actions for amputees 
(such as lacing shoes, removing a bottle top, using scissors 
and buttoning a shirt) [5]. In every repetition, the movement 
lasted for approximately 8 seconds, including 4 seconds of 
grasping and 4 seconds of rest.  

IV. DATA ACQUISITION & ANALYSIS 

The acquisition setup and protocol were tested on 7 
subjects (5 males, 2 females, average age 27 ± 5, all right 
handed). The number of subjects is chosen in order to provide 
a sufficient test-set to validate the acquisition protocol and 
setup (that will be applied to amputees) and not to infer more 
general results. This section describes the results of sEMG 
(IV.A) and eye tracking analysis (IV.B) for movement 
classification and object detection. 

A. Hand movement recognitions based on sEMG 
The data analysis shows that hand grasp classification and 

grasped object classification (using the same grasp) can be 

TABLE I. GRASPS AND OBJECTS INCLUDED IN THE ACQUISITION PROTOCOL 
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both performed with the recorded sEMG data after pre-
processing and feature extraction.  

Pre-processing includes synchronization, filtering and 
relabeling. First, the number of repetitions for each grasp is 
computed. Second, the accelerometers and the Tobii camera 
data are super-sampled to the highest sampling frequency (2 
kHz) and synchronized with the sEMG signals through the 
interpolation of the timestamps. Third, the sEMG data are 
filtered using a low-pass Hampel filter at 50Hz. Fourth, the 
sEMG data are relabeled following the Hodges approach and 
the Lidierth rule [16], [17]. All the blocks of rest are used as 
reference for the rest value, while in the Lidierth rule the 
parameters t1 and t2 are set respectively to 2200 and 1000.  

The feature extraction and classification procedure is the 
same as the one used in previous acquisitions [13], following 
Englehart et al. [18]. Each movement repetition ss subdivided 
in time windows of 200 ms (400 samples), overlapping for 10 
ms (20 samples). The RMS and the time domain statistics 
described by Hudgins et al. [19] (TD) are computed for each 
time window. These features were applied successfully to 
myoelectric signals in previous work [7], [13], [19]. 30% of 
the repetitions of each grasp is used for the test dataset 
(repetitions 2, 5, 8, 11), while the remaining repetitions were 
used to create the training set. Finally, classification was 
performed using Random Forests [20] (number of trees = 100). 
In particular, the classification accuracy was computed before 
and after relabeling (Table II). 

The sEMG data analysis confirms that the data can be used 
for the classification of hand movements. The average 
accuracy is approximately 75% for the relabeled data and 63% 
for the original data with both features. Thus, the relabeling 
step appears to significantly increase the overall outcome. The 
analysis highlights lower accuracy for the datasets recorded 
from the female subjects (subjects 1 and 5), for whom the 
classification performance is always below 60% before the 
relabeling. However, the accuracy is always above 50% and it 
reaches 81.18 % in one subject after relabeling. The majority 
of the datasets provides an accuracy that is rarely lower than 
70%, and even slightly exceeding 80% in one case. The 
novelty of the acquisition protocol is one of the possible 
reasons for the difference in classification accuracy from 
previous work. The confusion matrix of the movement 
classification (Figure 2) shows that movement 2, 3 and 4 are 
often misclassified. This can be explained by the similarity of 
the grasps (Table I). Visualizing the signal shapes for each 
grasp, it was possible to notice common patterns among the 
repetitions of the same grasp on the same objects. Thus, the 
successive part of the analysis was aimed to examine the 
sEMG classification of specific objects for a set specific 
movements (3, 4, 5, 6, 7) using the RMS feature extraction and 
classification pipeline previously described in this paragraph. 
The average classification accuracy results are also in this case 
high (Table III), highlighting the fact that it is possible to 
classify different objects grasped with the same movement 
with an accuracy of up to 95.49%. This contributes to motivate 
the grasp classification accuracy reported in Table II and it 
suggests that object recognition methods can help to improve 
the accuracy over different grasps and objects. 

In conclusion, the analysis to perform hand movement 
recognition based on sEMG data shows that both hand grasp 

and grasped object classification can be performed. Both tasks 
are fulfilled with accuracy much higher than the chance level 
for the considered number of movements and grasp 
classification seems to be strongly influenced by movement 
similarity and by the object used to perform the grasp. 

TABLE  II. GRASP CLASSIFICATION ACCURACY RESULTS 

SUBJECT ACCURACY 

 
RMS Time Domain 

Non 
relabeled 

Relabele
d 

Non 
relabeled 

Relabele
d 

1 55,08 % 80,75 % 55,54 % 81,18 % 
2 73,90 % 69,65 % 72,66 % 71,5 % 
3 69,10 % 72,90 % 69,17 % 73,51 % 
4 68,38 % 73,48 % 68,6 % 73,97 % 
5 50,93 % 73,99 % 51,69 % 75,09 % 
6 63,00 % 77,90 % 59,59 % 78,17 % 
7 62,13 % 72,65 % 64,15 % 74,18 % 

Average 63,22 % 74,47 % 63,20 % 75,37 % 
Standard Deviation 8,10 3,69 7,87 3,25 

 

TABLE  III. OBJECT CLASSIFICATION ACCURACY RESULTS 

Movement 3 4 5 6 7 
Accuracy (%) 78.74 69.34 73.22 78.43 95.49 

Standard Deviation 10.42 20.06 24.78 14.38 1.26 

B. Object detection based on gaze tracking 
Most of our daily actions do not require high levels of 

conscious involvement. However, Land et al. [8] pointed out 
that also in routine activities every step is monitored by the 
eyes. This section describes the first set of analyses to estimate 
if gaze tracking and computer vision can be used to improve 
the robustness of robotic hand prostheses.  

Multi-sensor integration of the sEMG signals with 
methods based on computer vision can effectively be used for 
prosthetics control [11], [21]. However, many objects may 
appear in the human field of view. Thus, detection of the object 
(and of the part of the object) to be grasped is fundamental 
before object recognition is useful. According to the scientific 
literature, many neurocognitive parameters influence gaze 
direction, with different timings and dynamics [22]. The 
visualization of the gaze direction according to neurocognitive 
parameters allows to verify that the data can effectively be 
used to improve the robustness of sEMG hand prostheses with 
object detection and recognition algorithms in future work. 

Eye-hand coordination during grasping is related to several 
neurocognitive parameters that have been analyzed, but not yet 
integrated into robotic devices. It was shown that humans look 

                    
Figure 2. Movement classification confusion matrix. 



  
 

at an object 40-100 ms before initiating a movement towards 
it. The fixation points are related to where the subject aims to 
grasp the object (for example, where they place their index 
finger during a precision grasp), to the shape of the object and 
to forthcoming actions (e.g. landing sites, and obstacles) [22]. 
Castellini et al. [23] showed that the fixations directed towards 
the object to grasp have a different duration for each user, 
ranging around [350-450] ms [24]. However, how fixations 
change throughout a reach-to-grasp movement and exactly 
what object properties are fixated has yet to be fully explored, 
as well as how to consider all the mentioned parameters to 
improve gaze-guided object detection for grasping. 

A useful way to evaluate gaze usability for prosthetic 
control is to localize the areas on the objects where the gaze 
has a fixation via heat maps [12]. The eye tracking device 
records gaze as raw data. Gaze coordinates can be directly 
projected on the video recording to have a simultaneous 
visualization. The direct dependency between the camera 
frame and the gaze data at a specific instant was removed by 
mapping an interval of gaze data on a single video snapshot.  
In order to automate the snapshot for the heat maps in such a 
way that all the objects (used for each grasp) were included in 
the frame, the psychophysical parameters related to gaze 
fixation in hand-eye coordination were considered. To 
automate the selection, the gaze allocation parameters in 
correspondence to grasping tasks were studied. As suggested 
by  Desanghere [22], eye movements typically precede hands 
in both pointing and object manipulation.  Thus, the snapshots 
were automatically captured after the start of the stimulus. The 
length of the gaze data time window to be plotted on the video 
snapshot is 200 ms or the length of the entire stimulus. This is 
in line with the expected fixation onset and duration according 
to the literature [24]. Moreover, this allows to avoid selecting 
too little information about the ongoing movement and useless 
information about the resting period. The procedure for the 
creation of the heat maps is divided in the following four main 
steps: synchronization, snapshot extraction, gaze mapping and 
heat map drawing. First, the eye tracking signal that is 
recorded at 100 Hz is synchronized with the video recording. 
Second, a video frame is captured as a reference snapshot. 
Depending on the subject, a delay between 0 and 150 ms is 
introduced to take into account different reactivity to the vocal 
stimulus. Third, for each 200 samples in the gaze time window, 
                                                             

4  https://pypi.python.org/pypi/heatmappy/ 

the corresponding frame is captured. Then, the 10 best  
matches between the two pictures are computed using ORB 
(Oriented FAST and Rotated BRIEF)  features [25]. 
Afterwards, the homography matrix is computed through 
random sample consensus (RANSAC) and the coordinate 
system is changed accordingly. Last, the heat maps for the the 
new set of coordinates are computed with the Python library 
Heatmappy4. 

The results (Figure 3) highlight the usefulness of gaze 
tracking for object detection and they show that several 
neurocognitive parameters are fundamental for the detection 
of the proper object (and the part of it) to be grasped.  First, the 
results on the 200ms time windows (determined via 
neurocognitive parameters, 3rd column) show that in most 
cases the gaze is focused on the object to be grasped, and in 
particular on the part of the object aimed to the specific 
movement. Gaze tracking is expected to be a useful parameter 
to improve the autonomy of prosthetic hands with object 
recognition. Second, the gaze time windows determined via 
neurocognitive parameters (3rd column) are more localized on 
the object to be grasped than the time windows covering the 
entire stimulus (2nd column). This highlights the importance 
of the gaze time window length as neurocognitive parameter 
for grasping. Third, it is possible to detect changes in the heat 
maps depending on the target object. For example, when the 
subjects were asked to grasp a mug or a bottle, the size and 
location of the red areas changed among subjects. Conversely, 
when they were asked to do a precision grasp (such as picking 
up the button, or the zip) the areas with the highest number of 
fixations (red areas) were always on the points where the 
subjects intended to put the fingers. Finally, gaze heat maps 
allow to extract the information concerning the areas in the 
environment that mostly captured the user attention during the 
ongoing grasp. 

V. CONCLUSION 

This article introduces a novel acquisition setup and 
acquisition protocol aimed at performing multimodal data 
recordings and fusion for robotic hand prosthesis control. A 
first set of data acquisitions is done and the data are analyzed. 
For testing such a setup it is better to use non-amputees, as for 
amputees there is an additional stress in doing such repetitive 

Figure 3. Heat maps for two grasps on different objects. The first column shows the snapshots automatically selected. The second shows heat maps 
computed on the entire stimulus (~4 s). The third shows heat maps computed on the first 200 samples after the specific reaction delay for each subject. 



  
 

movements and data from non-amputated persons is a good 
proxy for amputees, even though absolute results can differ. 

The results highlight the usefulness of the novel acquisition 
setup and protocol and they motivate future analysis to 
integrate the proposed multimodal sensors into prosthesis 
control. The results show that sEMG, eye tracking and 
computer vision data provide information regarding the 
environment and regarding the intentions of the subject, 
laying the foundations for multimodal prostheses involving 
the three techniques. 

sEMG movement classification confirms that it is possible 
to classify movements with sEMG data alone. sEMG object 
classification shows that not only the grasp type, but also 
small differences in the object to be grasped can be recognized 
via sEMG. This factor, together with the variety of items 
employed in the experiments and physiological factors, may 
influence the average classification accuracy in subjects. 
However, despite the low accuracy gained for a few of the 
subjects, the analyzed data are perfectly usable and the overall 
outcome is satisfactory.  

The integration of eye tracking and scene camera data 
suggests that these sources of information can result in a 
significant aid for improving the robustness of current 
prosthetic hands. Moreover, the results highlight that several 
neurocognitive parameters must be considered for a proper 
sensor integration and data fusion. 

In conclusion, the acquisition setup, protocol and analysis 
proposed in this paper are highly promising and encouraging 
for future work in order to improve the robustness of robotic 
hand prosthesis control. They will guide future data 
acquisition and data fusion on amputees.  
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