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Gaze, visual, myoelectric, and 
inertial data of grasps for intelligent 
prosthetics
Matteo Cognolato   1,2*, Arjan Gijsberts3, Valentina Gregori3,4, Gianluca Saetta   5,  
Katia Giacomino6, Anne-Gabrielle Mittaz Hager6, Andrea Gigli3, Diego Faccio7, 
Cesare Tiengo7, Franco Bassetto7, Barbara Caputo3,8, Peter Brugger5,9, Manfredo Atzori1* & 
Henning Müller   1,10*

A hand amputation is a highly disabling event, having severe physical and psychological repercussions 
on a person’s life. Despite extensive efforts devoted to restoring the missing functionality via dexterous 
myoelectric hand prostheses, natural and robust control usable in everyday life is still challenging. 
Novel techniques have been proposed to overcome the current limitations, among them the fusion 
of surface electromyography with other sources of contextual information. We present a dataset to 
investigate the inclusion of eye tracking and first person video to provide more stable intent recognition 
for prosthetic control. This multimodal dataset contains surface electromyography and accelerometry 
of the forearm, and gaze, first person video, and inertial measurements of the head recorded from 15 
transradial amputees and 30 able-bodied subjects performing grasping tasks. Besides the intended 
application for upper-limb prosthetics, we also foresee uses for this dataset to study eye-hand 
coordination in the context of psychophysics, neuroscience, and assistive robotics.

Background & Summary
The human hand has a fundamental role in many aspects of everyday life. Its morphological structure not only 
makes it one of the distinctive characteristics of the human species, but it also provides us with unique manipu-
lative abilities1,2. We use it to sense and interact with the environment and it has an essential role in social inter-
actions and communication. Losing a hand therefore has severe physical and psychological consequences on a 
person’s life. Myoelectric hand prostheses have enabled amputees to restore some of the missing functionality. In 
their conventional form, prostheses use surface electromyography (sEMG) from an antagonist pair of muscles 
to open and close a simple gripper. A large number of pattern recognition (PR) approaches have been developed 
over the years aiming to increase the functionality and control of more dexterous prostheses3–5. Despite these 
efforts, PR-based prostheses have not managed to deliver their full potential in practical clinical applications6,7. 
One of the primary causes is that they are sensitive to the variability of sEMG, limiting the robustness and relia-
bility in long-term practical applications4,8–14. This limitation is inherent in the use of sEMG as a control modality, 
since myoelectric signals are known to depend on factors such as electrode displacement, inconsistency of the 
skin-electrode interface, changes in arm position, and characteristics of the amputation.

Several techniques have been proposed to address this variability and thus improve the stability of the pros-
thetic control4,11,15,16. One approach relies on fusing sEMG with complementary sources of information, such as 
gaze and computer vision17–20. Studies on eye-hand coordination have in fact shown that gaze typically anticipates 
and guides grasping and manipulation21–23. In other words, humans will look at an object they intend to grasp 
before executing the movement itself. Gaze behavior therefore holds valuable information for recognizing not 
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only the intention to grasp an object, but also to identify which object the person intends to grasp. The set of likely 
grasps can then be estimated based on the size, shape, and affordances of this object. For large objects, this may be 
further refined by considering the exact part or side of the object on which the person fixates.

There are two compelling motivations for using gaze behavior in the context of upper limb prosthetics. The 
first is that gaze behavior is not necessarily affected by the amputation. Any information on muscular activation 
recorded from the residual limb, such as sEMG, is inherently degraded due to muscular reorganization after the 
amputation and subsequent atrophy due to reduced use. The second advantage is that integrating some level of 
autonomy in a prosthesis can lower the physical and psychological burden placed on its user. Fatigue is one of the 
causes of variability in sEMG data24–26, so reducing it can help to stabilize control.

This paper presents the MeganePro dataset 1 (MDS1) acquired during the MeganePro project, which was 
designed based on the experience gained during the NinaPro project27. The goals of the MeganePro project 
were to investigate the use of gaze and computer vision to improve the control of myoelectric hand prostheses 
for transradial amputees, and to better understand the neurocognitive effects of amputation. This dataset was 
acquired to explore the first goal: it contains multimodal data from 15 transradial amputees and 30 able-bodied 
subjects while involved in grasping and manipulating objects using 10 common grasps. Throughout the exercise, 
we acquired sEMG and accelerometry using twelve electrodes on the forearm. Gaze, first person video, and iner-
tial measurements of the head were recorded using eye tracking glasses.

In the following sections, we describe the experimental protocol, the processing procedures, and the resulting 
data records. Although prosthetic control was our motivation for acquiring this dataset, it is our belief that the 
data will find broader applications. For instance, scientists working in neuroscience, psychophysics, or rehabil-
itation robotics may use it to study gaze and manipulation independently as well as via their coordination. In 
particular, the data allow direct comparison of able-bodied subjects and transradial amputees in an identical 
experimental setting. As such, it may contribute not only to develop better prostheses but also a better under-
standing of human behavior and the implications of amputation.

Methods
The acquisition of the dataset consisted of defining an experimental protocol and determining the requirements 
in terms of devices and software. A general overview of the setup and protocol is shown in Fig. 1. Once the ethical 
approval was obtained, we proceeded with subject recruitment. In the following, all these phases are described 
in detail.

Ethical Requirements.  The experiment was designed and conducted in accordance with the principles 
expressed in the Declaration of Helsinki. Ethical approval for our study was requested to and approved by the 
Ethics Commission of the canton of Valais in Switzerland (CCVEM 010/11) and by the Ethics Commission of the 
Province of Padova in Italy (NRC AOP1010, CESC 4078/AO/17). Prior to the experiment, each subject was given 
a detailed written and oral explanation of the experimental setup and protocol. They were then required to give 
informed consent to participate in the research study.

Subject Recruitment.  A total of 15 transradial amputees and 30 able-bodied subjects were recruited 
for this study. The former group consists of 13 male and 2 female (13.3%) participants with an average age of 
(47.13 ± 14.16) years. As seen in Table 1, among them are diverse causes for amputation and different prefer-
ences with respect to prosthetic use. To remove possible confounding variables, we recruited a control group 
of able-bodied participants that matched the former group as much as possible in terms of age and gender. This 
group is composed of 27 male and 3 female (10.0%) subjects, with an average age of (46.63 ± 15.11) years.

Acquisition Setup.  We designed an acquisition setup that allowed us to perform eye tracking and to acquire 
sEMG from the forearm, while leaving the subjects as free as possible in their movements. Custom developed 

Fig. 1  Overall view of the acquisition setup.

https://doi.org/10.1038/s41597-020-0380-3


3Scientific Data | (2020)7:43 | https://doi.org/10.1038/s41597-020-0380-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

software interfaced with the acquisition devices and provided stimuli instructing the subjects when to grasp 
which object.

Sensors.  The electrical activity of the forearm muscles was recorded with a Delsys Trigno Wireless sEMG 
System (Delsys Inc., USA, http://www.delsys.com/). This system consists of sEMG electrodes with an inter-sensor 
latency lower than 500 μs and a signal baseline noise lower than 750 nV Root Mean Square (RMS). In addition, 
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101 52 M right IT right electrocution 2 cosmetic 60–80

102 39 M right IT right electrocution 4 cosmetic 60–80

103 63 M ambidextrous IT right trauma 3 myoelectric 60–80

104 49 M right IT right trauma 18 myoelectric 80–100

105 73 M right IT right trauma 6 body-powered 40–60

106 70 M left IT left trauma 5 body-powered 80–100

107 36 M right IT left trauma 7 body-powered 20–40

108 35 M right IT right trauma 9 myoelectric 0–20

109 65 M right IT left trauma 1 cosmetic 80–100

110 38 M right IT left trauma 14 myoelectric 20–40

111 38 M right IT right trauma 10 myoelectric 40–60

112 33 F right IT left oncological 13 cosmetic 60–80

113 28 M right IT left trauma 7 myoelectric 40–60

114 52 M right IT bilateral trauma 35 myoelectric n/a

115 36 F right IT left burn 8 cosmetic n/a
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10 27 M right EN

11 63 M right FR

12 49 M right FR

13 32 M left FR

14 67 M right DE

15 68 M right DE

16 38 M right FR

17 63 M ambidextrous FR

18 55 M right FR

19 29 M right FR

20 48 M left FR

21 62 M left FR

22 39 M right FR

23 53 M right FR

24 29 M right FR

26 45 M right FR

27 68 M right FR

28 62 M right FR

29 58 M right FR

30 66 M right FR

31 39 M right FR

32 34 M right EN

33 69 M right FR

34 57 M right DE

35 29 F ambidextrous EN

36 28 M right IT

37 31 M right EN

38 29 F right EN

39 33 F ambidextrous EN

40 29 M right FR

Table 1.  Participant characteristics. The table reports the ID of the subjects in the dataset, their age, gender, 
and handedness. Clinical parameters about the amputation(s) are also reported for the transradial amputees. 
The rightmost column indicates the relative length of the residual limb with respect to the contralateral limb. IT 
stands for Italian, EN for English, FR for French, DE for German, and n/a for “not applicable”.
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a three-axial accelerometer is embedded in each electrode. Up to 16 electrodes communicate wirelessly with the 
base station, which is connected through a USB 2.0 cable to the acquisition laptop. The sEMG data are sampled 
at 1926 Hz and the accelerometer at 148 Hz. The accelerometer range was set at ±1.5 g, for which the device doc-
umentation reports a noise of 0.007 g RMS. The corresponding offset error is ±0.201 g for the X and Y axes and 
(0.201 to −0.343) g for the Z axis28.

The gaze behavior and first person video were recorded with the Tobii Pro Glasses 2 (Tobii AB, Sweden, http://
www.tobiipro.com/). The head unit of this device is similar to regular eyeglasses and equipped with four eye cam-
eras recording the eye movement, a camera capturing the scene in front of the subject, an Inertial Measurement 
Unit (IMU), and a microphone. It weighs only 45 g and corrective lenses can be applied for subjects with visual 
deficit. The eyes are tracked using corneal reflection and dark pupil methods with automatic parallax and slippage 
compensation. These eye tracking data are sampled at 100 Hz with a theoretical accuracy and precision of 0.5° 
and 0.3° RMS29. Video with Full HD resolution (1920 px × 1080 px) is recorded at 25 fps by the scene camera 
with a horizontal and vertical field of view of approximately 82° and 52°. The head unit is connected via a cable to 
a portable recording unit that is responsible for transmitting the data wirelessly and storing them on a memory 
card. A rechargeable and replaceable battery powers both head and recording units and provides a maximum 
recording time of approximately 120 min. The system can quickly and easily be calibrated with a single point 
calibration procedure.

Acquisition Software.  The role of the acquisition software is to simultaneously acquire and store the data from all 
sensor devices, and to guide the subject through the exercises. To ensure high performance and low latency, the 
application was developed in C++ and based on the multithreaded producer-consumer pattern, as implemented 
in CEINMS30. More specifically, for each data source there is a dedicated producer thread responsible for acquir-
ing its data, assigning a high-resolution timestamp, and then storing these in a queue. Per queue there is at least 
one consumer thread that stores available data to a file. The advantage of this architecture is that it uncouples the 
data acquisition from I/O latency when saving the data to a persistent storage.

A Graphical User Interface (GUI) developed in Qt5 (https://www.qt.io/) was added to the application to 
demonstrate using videos and images how to perform the exercises. In previous studies, such as NinaPro27, the 
subjects had to mimic a grasp movement that was shown in a video. This approach is not compatible with the 
present study, since it influences the subject’s gaze behavior. We therefore opted to avoid the need for visual atten-
tion and to instruct the subjects via vocal instructions during the real exercise. These instructions were automati-
cally synthesized by a text-to-speech engine, which allowed us to prepare instructions in English, Italian, French, 
and German. At the start of the exercise subjects could choose the language they were most comfortable with.

Grasp Types and Objects.  A total of ten grasp types were selected for our exercise from well-known hand taxon-
omies31–34 based on their relevance for Activities of Daily Living (ADLs)35. These grasp types were then matched 
with three household objects each that would regularly be manipulated using a given grasp. An overview of the 
ten grasp types and eighteen objects is given in Table 2. When possible, these pairings were chosen to obtain a 
many-to-many relationship between objects and grasp types; that is, a grasp could be used with multiple objects 
and vice versa. This requirement helped to limit the possibility that the mere presence of an object would be suf-
ficient to unequivocally determine the grasp type.

In the case that an object is not usually found on a table (e.g., a door handle or a door lock), a custom made 
support was created. To avoid complications during the exercise, the key, bulb, lid of the jar, and the screw 
used with the screwdriver were modified such that they could not be completely removed from the support. 
Furthermore, the pull tab of the can was bent to facilitate the execution of the grasp.

During the exercise, at least five objects were simultaneously placed in the scene with a predefined position. 
The presence of multiple objects in front of the subjects helped to simulate a real environment, while a standard-
ized object arrangement minimized the possibility of an error during the placement of the objects. In addition, 
these objects were spread throughout the subject’s reachable workspace so that grasps had to be performed while 
reaching in various directions.

Acquisition Protocol.  After the ethical requirements were fulfilled, the subject’s data, such as age, gender, 
height, weight, and handedness were collected. The amputees were asked additional information regarding the 
amputation, such as cause, type, years since amputation, and prosthesis use. A summary of this information is 
reported in Table 1.

The subjects were asked to sit with the forearm comfortably leaning on a desk and, for amputees, to remove 
the prosthesis. The skin was cleaned with isopropyl alcohol and twelve sEMG electrodes were placed in two 
arrays around the right forearm or residual limb. An array of eight electrodes was placed equidistantly around 
the forearm, starting at the radio-humeral joint and moving in the direction of pronation. A second array was 
located approximately 45 mm more distally and aligned with the gaps between electrodes one and two, three 
and four, and so on (see Fig. 1). In addition to the Trigno-specific adhesive strips, a latex-free elastic band was 
wrapped around the electrodes to assure a good and reliable interface with the skin. As widely done in the field of 
PR myoelectric control, the sEMG electrodes were placed around the proximal part of the forearm, where most of 
the extrinsic muscles of the hand lie, following an untargeted approach5. This approach consists of several equidis-
tantly placed electrodes, recording the forearm (intact or residual) musculature’s electrical activity from multiple 
sEMG sites, without targeting any specific muscles or muscle parts36.

The subject was then asked to wear the Tobii Pro glasses, where we made sure to choose the nose pad that 
aligned the eye tracking cameras’ appropriately. Once the subject felt ready, the Tobii Pro glasses were calibrated 
using the built-in one point target calibration procedure and, in case of success, the subject was asked to perform 
a calibration assessment. This assessment consisted in asking the subject to fixate a black cross against a green 
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background that was displayed on a monitor at a distance of about 1.3 m. This cross remained fixed for 3 s in the 
same location before alternating to another one out of five positions in total.

The actual exercise consisted of repeatedly executing the grasps on the set of corresponding objects, as 
described in Table 2. In the first part, which we refer to as static, subjects were requested to grasp the objects 
without actually moving or lifting them. Prior to executing a grasp, videos in first and third person perspectives 
demonstrated the grasp and the three corresponding objects. The subjects were however instructed to execute 
the movements spontaneously, rather than trying to mimic the exact kinematics of the demonstration videos. 
Amputees were asked to attempt executing the movements as naturally as possible, as they would intuitively per-
form the grasp with the missing hand. During these videos, the subject was free to decide whether to perform or 
not the grasps to get confident about the exercise. Once the grasp and objects had been shown, the subject had to 
repeat each combination four times while seated and then another four times while standing. This change in posi-
tion was intended to include variability in the limb position in the data. The duration of the movement and rest 
periods depends on the selected language for the vocal instructions. A grasp interval lasted approximately 5.2 s, 
5.7 s, 5.9 s, and 6.0 s for English, Italian, French, and German. A rest period followed for about 4.1 s, 4.7 s, 4.7 s, 
and 4.7 s for English, Italian, French, and German. The exact order of the objects within each repetition was rand-
omized to avoid learning and habituation effects. A vocal command guided the subject through the exercise, indi-
cating which object to grasp, when to return to the rest position, and when to stand up or sit. These instructions 
were accompanied by a static image of the current grasp type, which was intended as an undistracting reminder 
of the stimulus. When finishing a grasp series, an experimenter changed the object scene when necessary before 
resuming with the next grasp.

The static part of the exercise was followed by a dynamic one. This second part followed the same structure as 
the first, but in this case the grasp had to be used to perform a functional task with an object. The motivation for 
this variation was again to introduce variability into the data but this time by means of a dynamic, goal-oriented 

Grasp Object Object Part Vocal Instruction

1 medium wrap

1 bottle 1 bottle take the bottle

2 can 2 can can

3 door handle 3 door handle door handle

2 lateral

4 mug 23 handle mug

5 key 5 key key

24 pencil case 6 zip zip

3 parallel extension

7 plate 7 plate plate

8 book 8 book book

9 drawer 9 drawer drawer

4 tripod grasp

1 bottle 10 cap cap of the bottle

4 mug 4 mug mug

9 drawer 11 knob knob of the drawer

5 power sphere

12 ball 12 ball ball

13 bulb 13 bulb light bulb

5 key 5 key keys

6 precision disk

15 jar 26 lid jar

13 bulb 13 bulb light bulb

12 ball 12 ball ball

7 prismatic pinch

16 clothespin 16 clothespin clothespin

5 key 27 keyring keys

2 can 25 pull tab can

8 index finger extension

21 remote 17 button point at a button of the remote

18 knife 18 knife take the knife

19 fork 19 fork fork

9 adducted thumb

20 screwdriver 20 screwdriver screwdriver

21 remote 21 remote remote

22 wrench 22 wrench wrench

10 prismatic four finger

18 knife 18 knife knife

19 fork 19 fork fork

22 wrench 22 wrench wrench

Table 2.  Overview of the grasp types and objects for the static condition of the exercise. The columns indicate 
the ID and name of the grasp as commonly reported literature31,34, the ID and name of the object, and in some 
cases a further refinement indicating the ID and name of the part of the object that was involved in the grasping. 
The fourth column reports the vocal command given to the subject.
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movement. As can be seen in Table 3, these functional movements reflect common activities with the combina-
tion of grasp type and object, such as drinking from a can held with a medium wrap. To limit the total duration 
of the exercise, the ten grasps were only combined with two objects each and executed either standing or seated. 
This position was chosen based on how the action would usually be performed in real life, for instance a door is 
more frequently opened while standing.

After the exercise finished the amputated subjects underwent three more exercises and a comprehensive ques-
tionnaire to investigate the neurocognitive effects of the amputation. The data and results of those exercises and 
the questionnaire will be published separately.

Post-Processing.  Several processing steps were applied to the raw data acquired with the protocol described 
above. The objective of these steps was to sanitize the data, synchronize all modalities, and remove identifying 
information from the videos. In the following, we describe all procedures in detail.

Timestamp Correction.  Due to an unfortunate implementation error, during a number of acquisitions the 
modalities were assigned timestamps from individual clocks. To unify all timestamps in a shared clock, the offset 
of all clocks was estimated and corrected with respect to the clock of the sEMG modality using statistics of their 
relative timing collected during trial acquisitions. Validations on the remaining unaffected acquisitions confirm 
that the maximum deviation of our estimate from the ground truth is less than 12 ms.

sEMG and Accelerometer Data.  For computational efficiency, the sEMG and accelerometer streams from the 
Delsys Trigno device were acquired and timestamped in batches. During post-processing, individual timestamps 
were assigned to each sample via piecewise linear interpolation. A new piece is created if the linear model results 
in a deviation of more than 100 ms, which may happen if the fit is skewed due to missing or delayed data.

For the sEMG data, we furthermore filtered outliers by replacing samples that exceeded 30 standard deviations 
from the mean within a sliding window of 1 s with the preceding sample. The signals were subsequently filtered 
for power-line interference at 50 Hz (and its harmonics) using a Hampel filter, which interpolates the spectrum in 
processing windows only when it detects a clear peak37. Contrary to the more common notch filter, this method 
does not affect the spectrum if there is no interference.

Gaze Data.  The data from the Tobii Pro glasses were acquired as individually timestamped JavaScript Object 
Notation (JSON) messages. During post-processing, these messages were decoded and separated based on their 
type. Messages that arrived out-of-order were filtered and the resulting set of messages was used to determine 
the skew and offset between the computer clock and the one of the Tobii Pro glasses. This routine removes the 
constant part of the transmission delay as much as possible, while avoiding the possibility to antedate any events. 
The messages that relate directly to gaze information, such as gaze points, pupil diameter and so on, were then 
grouped together based on their timestamps.

Grasp Object Object Part Vocal Instruction Position

1 medium wrap
2 can 2 can drink from the can

standing
3 door handle 3 door handle open and close the door handle

2 lateral
5 key 5 key turn the key in the lock

standing
24 pencil case 6 zip open and close the pencil case

3 parallel extension
7 plate 7 plate lift the plate

standing
8 book 8 book lift the book

4 tripod grasp
1 bottle 10 cap open and close the cap of the bottle

standing
9 drawer 11 knob open and close the drawer

5 power sphere
12 ball 12 ball move the ball to the right and back

standing
5 key 5 key move the keys forwards and backwards

6 precision disk
15 jar 26 lid open and close the lid of jar

seated
13 bulb 13 bulb screw and unscrew the light bulb

7 prismatic pinch
16 clothespin 16 clothespin squeeze the clothespin

seated
5 key 27 keyring move the keys forwards and backwards

8 index finger extension
21 remote 17 button press a button on the remote control

seated
18 knife 18 knife cut bread with the knife

9 adducted thumb
20 screwdriver 20 screwdriver turn the screwdriver

seated
22 wrench 22 wrench move the wrench to the right and back

10 prismatic four finger
18 knife 18 knife move the knife forwards and backwards

seated
19 fork 19 fork move the fork to the right and back

Table 3.  Overview of grasp types and objects for the dynamic condition of the exercise. The first four columns 
provide information as described in Table 2. The rightmost column indicates whether the movement was 
executed while seated or standing.
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Stimulus.  The text-to-speech engine that was used to give vocal instructions introduced noticeable delays in the 
corresponding changes of the stimulus. We measured these delays for all sentences and languages, and moved the 
stimulus changes forward by these amounts during post-processing. Furthermore, small refinements were made 
to the object column, whereas its more specific object-part counterpart was calculated based on a fixed mapping 
from the original stimulus information.

Synchronization.  For the standard data records (see the following section) all modalities were resampled at the 
original 1926 Hz sampling rate of the sEMG stream. For real-valued signals, this was done using a linear interpo-
lation, while for discrete signals we used a nearest-neighbor interpolation. The signals that indicate the time and 
index of the MP4 video were handled separately using a custom routine, since they require to identify the exact 
change-point where one video transitions to the next.

Concatenation.  The static and dynamic parts of the protocol were acquired independently and therefore pro-
duced separate sets of raw acquisition files. Furthermore, our acquisition protocol and software allowed to inter-
rupt and resume the acquisition, either at request of the subject or to handle technical problems. After applying 
the previous processing steps to the individual acquisition segments, they were concatenated to obtain the stand-
ard data record. During this merging, we incremented the timestamps and video counter to ensure that they are 
monotonically increasing. Furthermore, if part of the protocol was repeated when resuming the acquisition, we 
took care to insert the novel segment at exactly the right place to avoid duplicate data.

Relabeling.  The response of the subject and therefore the sEMG activation may not be aligned perfectly with the 
stimulus. As a consequence, the stimulus labels around the on- or offset of a grasp movement may be incorrect, 
resulting in an undue reduction in recognition performance. We addressed this shortcoming by realigning the 
stimulus boundaries with the procedure described by Kuzborskij et al.38. In short, this method optimizes the 
log-likelihood of a rest-grasp-rest sequence on the whitened sEMG data within a feasible window that spans from 
1 s before until 2 s after the original grasp stimulus. As opposed to the uniform prior used in the earlier method, 
we adopted a smoothed variant of the original stimulus label as prior. The advantage is that for trials without a 
clear difference in muscular activity during rest and the movement (i.e., the “evidence”), we recover the original 
label boundaries. Based on visual inspection of the updated movement boundaries, we assigned a certainty of 

= .p 0 6 to this prior and selected a Gaussian filter with σ = .0 5 s as smoothing operator. The recalculated stim-
ulus boundaries were saved in addition to the original ones.

Removing Identifying Information.  All videos were checked manually for identifying information of anyone 
other than the experimenters. The segments of video that were marked as privacy-sensitive were subsequently 
anonymized with a Gaussian blur. In this procedure, we took care to re-encode only the private segments and 
to preserve the exact number and timestamps of all frames. In addition, the audio stream was removed from all 
videos for privacy reasons.

Data Records
The data that were acquired and processed with the described methodology are stored in the Harvard 
Dataverse repository39. For each subject, this repository contains two data files in Matlab format (http://www.
mathworks.com) and a series of corresponding videos encoded with MPEG-4 AVC in an MP4 container. The 
dataset39 is provided with the DatasetContentCRC.sfv file, which contains a description of the dataset structure 
together with the Cyclic Redundancy Check (CRC) value for each file. This document can therefore be used to 
investigate how the dataset is structured as well as to verify the correctness of the downloaded data. The primary 
data file contains the concatenated sEMG data at their original sampling rate, to which all other modalities were 
resampled. An exhaustive listing of all the fields in these files together with a description is provided in Table 4. 
Further information regarding the content of the fields are described below:

•	 The fields (re)grasp, (re)object, and (re)objectpart contain the grasp, object, and objectpart IDs as described 
in Tables 2 and 3.

•	 The emg field typically (see the Usage Notes section) contains 12 columns: columns 1–8 refer to the signals 
of the electrodes forming the proximal array while columns 9–12 the signals of the electrodes forming the 
distal array.

•	 The same structure is maintained for the acceleration data in the acc field, in which groups of 3 columns are 
used to report the acceleration in the X, Y and Z axes for each electrode. In all the electrodes, the X axis is par-
allel to the forearm, the Z axis is orthogonal to the forearm surface, and the Y axis obeys the right-hand rule28.

•	 The gazepoint field contains the position of the gaze point relative to the video frame expressed in x y( , ) coor-
dinates, having the origin of the coordinate system in the top left corner40.

•	 The fields gazepoint3D, pupilcenterleft, pupilcenterright, gazedirectionleft, and gazedirectionright are expressed 
in x y z( , , ) coordinates relative to the scene camera reference system, which has origin in the center of the 
camera, X axis pointing to the subject’s left, Y axis pointing upwards, and the Z axis obeying the right-hand 
rule40. The gazedirectionleft and gazedirectionright fields are unit vectors, with the respective left and right 
pupil centers as origin.

•	 The angular velocity and the acceleration of the Tobii Glasses in the X, Y, and Z axes are contained in the 
tobiigyr and tobiiacc fields40.

Since resampling may not always be desirable due to its impact on the the signal spectrum, we also pro-
vide an auxiliary data file with all non-sEMG modalities at their original sampling rate. Each of these includes a 
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timestamp column, which can be used to synchronize them with each other or with the sEMG data in the primary 
data file. The fields and their detailed specification is shown in Table 5.

Technical Validation
Our intended purpose for the dataset is to investigate the fusion of sEMG with gaze behavior. In this section we 
therefore concentrate on validating these two modalities. Some of these analyses are low-level to ensure the qual-
ity of the recorded signals, while others are meant to verify that the data can in fact be used for the motivations 
and objectives for which they were created.

Gaze Data.  Error Validation.  The quality of gaze data primarily depends on the correctness of the initial 
calibration phase of the Tobii Pro glasses. Validating the effectiveness of this calibration consists of acquiring gaze 
data while the user is focused on a known target and subsequently comparing the measured gaze location with 
this ground truth41,42. We used the data recorded during the calibration assessment described in the Acquisition 
Protocol section to evaluate the effectiveness of the calibration as well as possible quality degradation. These data 

Field Columns Units Description

grasp 1 ID of the desired grasp

grasprepetition 1 repetition counter for the desired grasp

object 1 ID of the target object

objectpart 1 ID of the target object part

objectrepetition 1 repetition counter for the target object

position 1 seated (0) or standing (1) position indicator

dynamic 1 static (0) or dynamic (1) grasp indicator

regrasp 1 realigned ID of the desired grasp

regrasprepetition 1 realigned repetition counter for the desired grasp

reobject 1 realigned ID of the target object

reobjectpart 1 realigned ID of the target object part

reobjectrepetition 1 realigned repetition counter for the target object

reposition 1 realigned subject position indicator

redynamic 1 realigned dynamic grasp indicator

acc 36 g 3-axis acceleration of the 12 electrodes

emg 12 V myoelectric activity of the 12 electrodes

gazepoint 2 2D gaze point relative to the scene image

gazepoint_invalid 1 invalidity indicator for “gazepoint” (non-zero if invalid)

gazepoint3D 3 mm 3D gaze point in world coordinates

gazepoint3D_invalid 1 invalidity indicator for “gazepoint3D”

gazedirectionleft 3 3D gaze direction of the left eye

gazedirectionleft_invalid 1 invalidity indicator for “gazedirectionleft”

gazedirectionright 3 3D gaze direction of the right eye

gazedirectionright_invalid 1 invalidity indicator for “gazedirectionright”

pupilcenterleft 3 mm 3D position for the pupil center of the left eye

pupilcenterleft_invalid 1 invalidity indicator for “pupilcenterleft”

pupilcenterright 3 mm 3D position for the pupil center of the right eye

pupilcenterright_invalid 1 invalidity indicator for “pupilcenterright”

pupildiameterleft 1 mm pupil diameter of the left eye

pupildiameterleft_invalid 1 invalidity indicator for “pupildiameterleft”

pupildiameterright 1 mm pupil diameter of the right eye

pupildiameterright_invalid 1 invalidity indicator for “pupildiameterright”

tobiiacc 3 m s−2 3-axis acceleration of the Tobii

tobiiacc_invalid 1 invalidity indicator for “tobiiacc”

tobiigyr 3 ° s−1 3-axis angular velocity of the Tobii

tobiigyr_invalid 1 invalidity indicator for “tobiigyr”

tobiits 1 s timestamp in the Tobii clock

vts 1 s MP4 video timestamp

mp4videoidx 1 counter for the MP4 video

pts 1 s TS presentation timestamp

tspipelineidx 1 TS pipeline ID

tsvideoidx 1 counter for the TS video

ts 1 s timestamp in the computer clock

Table 4.  Fields contained in the standard data record.
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were typically collected at the beginning and end of an exercise. If the exercise was interrupted, the procedure was 
shown again before resuming it. We determined the ground truth by manually locating the cross position in pixels 
at intervals of 0.2 s using custom software. Since we also included calibration data for the other exercises done 
jointly as part the MeganePro project, a total of 498 acquisitions were processed in this manner.

The quality of eye tracking is often quantified in terms of accuracy and precision41,43. For each axis, the former 
measures the systematic error, that is, the mean offset between the actual and expected gaze locations. Precision, 
on the other hand, measures the dispersion around the gaze position and thus the random error of the gaze 
point. In Fig. 2 these values are visualized with respect to the location within the video frame. This separation 
is intentional, as the eye tracking appears to be more accurate and precise in the center of the frame, namely 

Field Columns Description

stimulus 1 timestamp in the computer clock

2 ID of the desired grasp

3 ID of the target object

4 repetition counter for the desired grasp

5 repetition counter for the target object

6 seated or standing position

7 ID of the target object part

8 static or dynamic grasp

acc 1 timestamp in the computer clock

2–37 3-axis acceleration of the 12 electrodes

gaze 1 timestamp in the computer clock

2 timestamp in the Tobii clock

3–4 2D gaze point relative to the scene image

5 Tobii latency estimate

6 invalidity indicator for 2D gaze point

7–9 3D gaze point in world coordinates

10 invalidity indicator for 3D gaze point

11 pupil diameter of the left eye

12 invalidity indicator for left pupil diameter

13 pupil diameter of the left eye

14 invalidity indicator for right pupil diameter

15–17 pupil center of the left eye

18 invalidity indicator for left pupil center

19–21 pupil center of the right eye

22 invalidity indicator for right pupil center

23–25 gaze direction of the left eye

26 invalidity indicator for left gaze direction

27–29 gaze direction of the right eye

30 invalidity indicator for right gaze direction

tobiiacc 1 timestamp in the computer clock

2 timestamp in the Tobii clock

3 invalidity indicator for accelerometer data

4–6 3-axis acceleration of the Tobii

tobiigyr 1 timestamp in the computer clock

2 timestamp in the Tobii clock

3 invalidity indicator for gyroscope data

4–6 3-axis angular velocity of the Tobii

vts 1 timestamp in the computer clock

2 timestamp in the Tobii clock

3 invalidity indicator for vts syncronization

4 MP4 video timestamp

5 counter for the MP4 video

pts 1 timestamp in the computer clock

2 timestamp in the Tobii clock

3 invalidity indicator for pts syncronization

4 TS presentation timestamp

5 TS pipeline ID

Table 5.  Fields contained in each acquisition segment of the auxiliary data record with original sampling.
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(−3.5 ± 19.4) px and (−1.5 ± 29.6) px on the x and y axes. Moving away from the center, the gaze results system-
atically shift towards the borders of the frame and its random error increases. We only visualize regions where we 
acquired at least 40 validation samples. Pooling all data, the overall accuracy and precision is (−0.8 ± 25.8) px and 
(−9.9 ± 33.6) px on the horizontal and vertical axes. At a typical manipulation distance of 0.8 m, this corresponds 
to a real-world precision and accuracy of approximately (−0.4 ± 11.5) mm and (−4.4 ± 14.9) mm. This is deemed 
sufficiently accurate considering the size of the household objects used in our experimental protocol.

To establish whether the calibration deteriorated over time, we compared the accuracy and precision collected 
at the beginning of an acquisition with those taken at the end. In total, we considered 210 uninterrupted acquisi-
tions in which there was a calibration validation routine both at the beginning and the end. We found no statisti-
cally significant difference in accuracy (sign test, = .p 0 95 and = .p 1 0 in the horizontal and vertical axes) or 
precision (sign test, = .p 0 24 and = .p 0 37) indicating that drift does not pose an issue for the gaze data.

Statistical Parameters.  To statistically describe a user’s gaze behavior during the exercises and validate it against 
related literature, we first identified fixations and saccades in our eye tracking data using the Identification 
Velocity Threshold (IVT) method44. To ensure that we could calculate the angular velocity of both eyes for a 
maximum number of samples, we linearly interpolated gaps of missing pupil data when shorter than 0.075 s45. 
We used a threshold of 70°/s to discriminate between fixations and saccades46. When the Tobii Pro glasses failed 
to produce a valid eye-gaze point, even after interpolating small gaps, the corresponding sample was marked 
as invalid. Excluding one subject who had strabismus, the percentage of such invalid samples ranged between 
(1.7 to 21.0)% and (4.3 to 30.7)% for able-bodied and amputated subjects. Sequences of events of the same type 
were then merged into segments identified by a time range and processed following the approach described by 
Komogortsev et al.46. First, to filter noise or other disturbances, fixations separated by a short saccadic period of 
less than 0.075 s and 0.5° amplitude are merged. Second, fixations shorter than 0.1 s are marked as invalid and are 
excluded from the analysis.

In the resulting sequence of gaze events, the majority of invalid data are located between two periods of sacca-
des, namely (92.2 ± 2.7)% and (92.6 ± 3.9)% for able-bodied and amputated subjects. This indicates that the Tobii 
Pro glasses fail predominantly to register high velocity data. Devices with sampling frequency lower than 250 Hz 
have indeed been categorized as “fixation pickers”47 and often do not provide reliable results for all saccades. For 
this reason, in the following analysis we concentrate on fixation events.

Figure 3 shows the distribution of the duration of fixations for both types of subjects. The characteristics of 
these distributions, summarized in Table 6, coincide with those described in analogous studies21,48,49. For instance, 
the mean values are similar to the mean duration of around 0.5 s reported by Hessels et al.50. Moreover, both the 
median duration and the range between the 25th and 75th percentile are comparable with the results of Johansson 
et al.21, who report 0.286 s as median duration and (0.197 to 0.536) s as range between the same percentiles. These 

Fig. 2  The accuracy and precision of the eye tracking with respect to the location within the video frame. For 
each patch, the shift of the ellipse center with respect to the cross indicates the accuracy in either axis of the gaze 
within that patch. The radii of the ellipse on the other hand indicate the precision.

Fig. 3  Distribution of the fixation length histogram for able-bodied (blue) and amputated (red) subjects. The 
shaded areas indicate the 10th and 90th percentiles, while the solid line represents the median.
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similarities confirm the quality of the eye tracking data and highlight that the subjects maintained a natural gaze 
behavior throughout the exercise.

Since one of the intended uses of these data is to investigate gaze behavior in anticipation of object manipu-
lation, we also verified that subjects indeed looked at the object when asked to manipulate it. With the help of an 
automated approach to detect objects, we determined for each grasp trial whether the distance between the gaze 
point and the boundary of the object of interest was at least once lower than 20 px. On average, this was the case 
in 95.9% of the subject’s trials. Manual examination of the remaining 4.1% indicated that the fixation exceeded 
the distance 20 px not because of lack of subject engagement, but due to a low accuracy calibration of the Tobii 
Pro glasses. Regardless of this, in the vast majority of the trials the subjects visually located and fixated the object 
prior to its manipulation. For purely illustrative purposes, an example of gaze behavior of an able-bodied subject 
while grasping a door handle and a bottle is given in Fig. 4.

Myoelectric signals.  Spectral Analysis.  To assure the soundness of the recorded sEMG, we first analyzed 
the spectral properties and compared these with known results from the literature. For each subject and for 
each channel, we calculated the power spectral density via Welch’s method with a Hann window of length 1024 
(approximately 530 ms) and 50% overlap. Figure 5a shows the distribution over these densities via its median and 
the range between the 10th and 90th percentiles. The first observation is that nearly all of the energy of the signals 
is contained within (0 to 400) Hz, as is typical for sEMG51. Furthermore, there is no sign of powerline interference 
at 50 Hz or its harmonics, confirming the efficacy of the filtering approach detailed in the previous section.

We do however observe a rather large variability of densities among subjects and electrodes. The reason is that 
the spectrum and amplitude of sEMG depend on the exact position of an electrode over a muscle24. In our proto-
col, none of the electrodes was positioned precisely on a muscle belly, thus causing a wide variety in the spectrum. 
In some cases, the signal may even be almost absent (e.g., an electrode over the radial bone).

The same variability is also noticeable in Fig. 5b, which reports the distribution of the median frequency over 
all subjects and electrodes throughout the entire exercise. The median frequencies we find are close to the approx-
imately (120 to 130) Hz typically reported for the flexor digitorum superficialis52,53, which is one of the muscles 
we primarily recorded from with our electrode positioning. Finally, we note that the distribution of the median 
frequency remains relatively stable over time, indicating that there are no persistent down- or upward shifts in 
the spectrum.

Grasp Classification.  As a more high-level validation of the sEMG signals, we verify that these can indeed be 
used to discriminate the grasp a subject was performing, which is one of the anticipated applications of this 
dataset. We employ the standard window-based classification approach described by Englehart and Hudgins54 
with a window length of 400 samples (approximately 208 ms) and 95% overlap between successive windows. As 
feature-classifier combinations we consider:

•	 a (balanced) Linear Discriminant Analysis (LDA) classifier used with the popular four time-domain 
features54;

•	 k-Nearest Neighbors (KNN) applied on RMS features55; and
•	 Kernel Regularized Least Squares (KRLS) with a nonlinear exponential χ2 kernel and marginal Discrete 

Wavelet Transform (mDWT) features55,56.

Fig. 4  Example of gaze points overlapped onto the scene camera video. Each circle represents a fixation, where 
the diameter indicates the duration of each fixation and the number the order of the fixations. In this case the 
subject was asked to grasp the door handle and the bottle.

Subjects Mean [s]

Percentiles [s]

25th 50th 75th

Able-bodied 0.429 0.170 0.260 0.470

Amputated 0.432 0.160 0.240 0.440

Table 6.  Statistical parameters of the duration of fixations for able-bodied and amputated subjects.
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As commonly done in the field, a within-subject classification was performed. In contrast to prior work where 
we employed a single train-test split55,56, the classification accuracy is defined here as the average accuracy of 
4-fold cross validation. In each of these folds, one of the four repetitions per grasp-object-position combination 
was used as held-out test data, while the remaining three repetitions formed the training data. Similarly, any 
hyperparameters were optimized via nested 3-fold cross validation on the train repetitions. For all methods, the 
training data were downsampled with a factor of 10 for computational reasons, while the data used for hyperpa-
rameter optimization were downsampled with an additional factor of 4.

The results in Fig. 6 show a median classification accuracy between 63 and 82% for either able-bodied or 
amputated subjects, depending on the classification method. This is significantly higher than the approximately 
50% accuracy a baseline classifier would achieve by simply predicting the most frequent rest class, confirming the 
discriminative power of the sEMG signals for the grasp type. Although a quantitative comparison with related 
work is of limited value due to discrepancies in experimental setup and protocol, the current results are a few 
percentage points higher than those presented by Atzori et al.55. The most likely explanation is the lower number 
of grasps (i.e., only 10 rather than 40), which inevitably boosts performance. For amputees, the fact that we are 
considering subjects with different clinical parameters from previous studies may contribute to influence the per-
formance difference, since it has been shown that remaining forearm length, phantom limb sensation intensity, 
and years passed since the amputation can influence the classification outcome57.

Usage Notes
Relabeling.  The data records come with both the original stimulus as well as a variant that has been aligned 
to actual sEMG activation (see the Post-Processing section). The latter variant is preferable when the stimulus is 
used as ground-truth of the grasp type, such as grasp recognition, since it reduces the number of incorrect labels 
due to response times. In other studies one may actually be interested in these response times, such as when inves-
tigating the psychophysical response to the vocal instruction. In these cases we advise users to use the original 
stimulus.

Trial Repetitions.  In the experimental protocol, each new grasp started with two videos in first and third 
person perspective per object to introduce the subject to the grasp and the objects. Although subjects were 
encouraged to practice the grasps during this phase, some of them did not do this and focused on the video on the 
computer screen. For this reason, the hand and gaze behavior are unreliable and users of the dataset are advised 
to remove movements where the (re)objectrepetition column has a value of −3 or −2.

sEMG & Accelerometer Data.  A problem with sEMG and accelerometer data concerned electrode number 
8 (the 8th column of the emg field and the 22nd, 23rd, and 24th columns of the acc field). Unfortunately, the data 
from this electrode seem unreliable. Myoelectric and accelerometer data recorded by this electrode sometimes 
have a substantially lower amplitude than the others, indicating a probable hardware issue. We therefore recom-
mend to carefully consider this aspect when using the data.

Accelerometer data are known to be affected by systematic errors and noise. Therefore, we applied the method 
described in Tedaldi et al.58 to estimate the calibration parameters for the accelerometers embedded in the Delsys 
Trigno electrodes as well as for the IMU of the Tobii glasses. The parameters and the original data are provided in 
the archive accelerometer_calibration.tgz.

S024.  Due to the difficulties reported in the previous subsection, no myoelectric data were received from 
electrode number 8 during this acquisition. Therefore, the sEMG and accelerometer data for this subject were 
recorded from eleven electrodes instead of twelve.

Fig. 5  The distribution of the power spectral densities and the median frequency throughout the duration of 
the exercise. The solid line indicates the median over all subjects and electrodes, while the shaded area indicates 
the 10th and 90th percentiles.
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S115 & S039.  The small circumference of these participants’ residual limb and forearm prevented the placement 
of 8 electrodes in the proximal array. For these two subjects only, the proximal array was composed of 7 electrodes 
and the distal one with the usual 4 electrodes. The corresponding emg field has therefore 11 columns instead of 12 
as well as the acc field, which is composed of 33 columns and not 36 as for the other subjects.

S108.  The high amputation level of S108 prevented the placement of the second array of electrodes. Therefore, 
only the first array consisting of eight electrodes was placed on the residual limb of this subject.

Gaze.  It is known that various factors, such as physical characteristics of the test participant, recording environ-
ment, eye tracker features, and quality of calibration affect the gaze data quality41. The experiment was intentionally 
relatively unconstrained (e.g., the head was not fixed and subjects could move their torso) to encourage natural 
behavior. In the following cases we have identified potential problems with gaze data that may require consideration.

S111.  A high percentage (~30%) of invalid gaze data were obtained for this subject. This is probably due to this 
participant’s specific eye physiology, which is known to influence the tracking performance42,59. The gaze data are 
included in the dataset for completeness.

S114.  For this subject, calibration could not be performed due to strabismus. In such cases, the Tobii Pro glasses 
use a built-in default calibration. This allowed us to continue the experiment, but the quality of eye tracking is 
significantly worse40. The difficulty in tracking the subject’s eye in this particular condition is highlighted by the 
high proportion of invalid gaze samples (~50%). Although included in the dataset, the use of the gaze data for this 
subject should be carefully evaluated.

S115.  A specific physical condition of this subject prevented a stable placement of the Tobii Pro glasses. The 
slippage compensation of the device may have helped to limit the consequences, as the proportion of invalid gaze 
samples (~10%) indicates a proper tracking of the eye. This condition should nonetheless be taken into account 
when analyzing the gaze and Tobii Pro glasses’ IMU data for this subject.

Video.  MPEG transport stream (MPEG-TS) videos were recorded wirelessly via the Tobii Pro glasses 
Application Programming Interface (API). The fields pts, tspipelineidx, and tsvideoidx of the data records serve 
to synchronize the data with these videos. We however release only the MP4 videos, this for two main reasons: 
to limit the size of the dataset and to ensure a high quality of the scene camera videos, since the MP4 videos were 
immune to packet loss problems.

Communication.  Being able to select among four languages allowed the subjects to choose the one they were 
most comfortable with and, in most cases, it corresponded to their native language. For S111 only, none of the 
languages available in the acquisition software were appropriate. We were however able to communicate in Italian 
and, in case of difficulties, communication was facilitated by a relative of the subject translating from Italian to 
the subject’s native language.

Code availability
The post-processing procedure described above was implemented in Matlab and executed in compiled form with 
Matlab 2016b. The relabeling procedure was implemented in Python and interpreted with Python 3.6. Censoring 
of the videos was done using a custom Bash script that interfaced with the FFmpeg 4.1.3 video manipulation tool. 
The GNU Parallel tool was used to run jobs in parallel60. A copy of the code that was used to create the data records 
from the raw recordings is publicly available in the megane_postprocess.tgz archive within the MDSScript61. This 
archive also contains a README file that lists and describes the main processing steps. Although the original data 
files cannot be released for privacy reasons, the code is made available to allow the user to thoroughly investigate 
and comprehend the procedure we used to process the data as well as to provide the community with a tool that 
can be re-used and re-adapted for similar tasks.
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Fig. 6  Classification accuracies for able-bodied and amputated subjects when predicting the grasp type with 
three different types of classifiers.
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