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Abstract

Digitizing pathology is a current trend that makes large amounts of visual data available for

automatic analysis. It allows to visualize and interpret pathologic cell and tissue samples

in high–resolution images and with the help of computer tools. This opens the possibil-

ity to develop image analysis methods that help pathologists and support their image de-

scriptions (i.e. staging, grading) with objective quantification of image features. Numerous

detection, classification and segmentation algorithms of the underlying tissue primitives in

histopathology images have been proposed in this respect. To better select the most suit-

able algorithms for histopathology tasks, biomedical image analysis challenges have evalu-

ated and compared both traditional feature extraction with machine learning and deep learn-

ing techniques. This chapter provides an overview of methods addressing the analysis of

histopathology images, as well as a brief description of the tasks they aim to solve. It is

focused on histopathology images containing textured areas of different types.

Keywords: Histopathology, Deep learning, Biomedical texture analysis, Digital pathology

1. Histopathology Imaging: a Challenge for Texture Analysis

Histopathology is the examination of a biopsy or surgical tissue specimen by a pathol-

ogist. The image analysis of histopathological samples is used to provide the final

detailed diagnosis of several diseases, including most cancers. Current histopathol-

ogy practice has several constraints, as it is highly time–consuming and often shows

low agreement between pathologists. In this context, Computer–Assisted Diagnosis

(CAD) of histopathology images is a novel challenging field for biomedical image

analysis. CAD of histopathology images can help to solve these constraints, because

histopathology images are characterized by repetitive patterns at several scales that

c© Elsevier Ltd.

All rights reserved. 1
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Figure 1.1 Example of a histopathology whole slide image, to the right, and a high power field

(image zoomed at a high resolution) to the left.

can be particularly suited for texture analysis and automated recognition. The fusion

of traditional diagnosis methods with computational data analysis represents an op-

portunity to reduce the workload of pathologists while also harmonizing performance.

The standard process of histopathology image preparation passes through several

phases that highlight specific structures in the images. First, the tissue is fixated and

put onto glass slides with chemicals or by freezing the sections. Then, the sections can

be stained with pigments (e.g. haematoxylin–eosin, H&E), using antibodies (immuno-

histochemistry, IHC) or with other methods (e.g. immuno–fluorescence labeling). Af-

terwards, the tissue slides are examined under a microscope by the pathologist.The

pathologist’s visual inspection of tissue samples is currently the standard method to

diagnose a considerable number of diseases and to grade/stage most types of can-

cer [52, 97]). When CAD is considered, there are two additional phases in the work

flow. First, the image is scanned (generally using whole slide imaging). Then, the dig-

ital images are processed and analyzed using computer–based methods such as visual

feature extraction and machine learning.

The clinical analysis of histopathology images can be laborious for pathologists

and prone to inconsistencies. The staging and grading of cancer is getting increas-

ingly complex due to cancer incidence and patient–specific treatment options. The

detailed analysis of a single case could require several slides with multiple stainings.

Moreover, quantitative parameters are increasingly required (such as mitoses count-

ing) [77]. Specific protocols were created to analyze biopsies or resected tissue spec-

imens for the most common cancer types (such as lung, breast or prostate). These

protocols have led to precise and widely accepted prognostic grading strategies, for

example the Gleason grading system for prostate cancer [47]. However, the diagnostic

practice is increasing the pressure for pathologists to handle large volumes of cases

while providing a larger amount of information in the pathology reports [44]. Pathol-
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ogists now spend much time on benign biopsies that represent approximately 80% of

all biopsies [52]. The inter–observer agreement of pathologists for grading the same

slide can be low with some cases reported between 0.52 and 0.73 and between 0.35

and 0.65 [40]. A second inspection of the same specimens can lead to 2.3% of major

disagreements [82]. This disagreement between pathologists can lead to substantial

changes in patient treatment [121, 82].

Digital pathology has its origins in the 1980s, but many factors prevented it from

being used in clinical practice including slow scanning speed, poor quality on screen,

high costs, required memory and limited network bandwidth. The first high–resolution,

automated, whole–slide imaging (WSI) system was developed in 1999 [55]. Since

then, the interest in WSI for pathology has continuously grown [120]. Whole slide

imaging has been a strong advance for pathology because it overcomes the limitations

of previous image acquisition methods, such as poor image quality and image nav-

igation [120]. After whole slide imaging, the shift to a fully digital environment is

currently expected for pathology, just as it previously happened for radiology. Dig-

ital pathology holds tremendous opportunities for histopathology practice: (1) it can

allow online consultations; (2) it can provide access to pathology services in remote

locations with limited pathology support; (3) it allows improving the productivity of

pathologists by easily accessing and searching digital image archives (an activity rep-

resenting up to 15% of the pathologists’ work) [108]. Nevertheless, the advantages

of digital pathology are not yet sufficient to overcome its limitations: WSI requires

considerably large storage volumes (each WSI can require 2-3 Gb) [59], scanning

is an additional step in the prediagnostic work flow (thus representing an increase in

the workload of pathologists or lab technicians) and the quality needs to be certified

and accepted by pathologists. The number of scientific researchers and companies

developing CAD algorithms for pathology has strongly increased in the last 10 years,

further indicating that pathology is becoming digital. Computer–assisted diagnosis of

WSI can help overcome the current limitations in digital pathology, promoting its use

while reducing the workload of pathologists and rater disagreement.

Texture is generally characterized by homogenous areas with properties related

to scale and regular patterns that can occur in 2D or 3D (see Chapter. CROSS-

REF Fundamentals of Texture Processing for Biomedical Image Analysis section Biomed-

ical texture processes) [31]. Biomedical tissue samples contain a complex mixture of

repetitive visual patterns at different scales, revealing that organ systems are composed

of a few groups of tissue types (e.g. connective, epithelial, muscle and nervous tissue)

built from specific cells. The acquisition process (cutting bidimensional sections out

of three dimensional structures), results in a partial representation of the organs and

systems. It allows the visualization of alterations in the morphology of the tissue ar-

chitecture that are associated with types and grades of disease. Several approaches

have been presented to provide CAD of histopathology images but the field still faces
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Figure 1.2 The traditional machine learning approach to histopathology CAD.

several challenges. CAD methods can be subdivided into traditional machine learn-

ing approaches (e.g. based on the detection of specific structures, texture analysis)

and deep learning approaches, as will be discussed in Section 2 and 3, respectively.

The current challenges are presented with concrete applications, such as the analysis

of specific pathologies, the detection of mitosis, the classification of regions or WSI

and the segmentation of specific structures, providing a description of the most recent

trends and achievements.

2. Traditional Machine Learning Approaches

Traditional machine learning approaches often include several phases to deal with

histopathology images, as represented in Figure 1.2. Each phase is described in the

following sections.

2.1. Pre–processing

Pre–processing can compensate for differences between images that are diverse in

color, illumination and other defects, such as noise or artifacts that are often due to the

scanning process.

2.1.1. Staining normalization

Digital pathology images can have strong color differences due to factors such as the

use of different scanners, different stains or staining procedures, section thickness and
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sample age. Despite standardization, a perfect color calibration among samples is hard

to achieve [79], thus requiring color normalization. Examples of color normalization

include histogram–based approaches and color deconvolution–based approaches [69,

80].

2.1.2. Illumination normalization

Shading correction uses empty images (recorded under each considered magnification

and illumination condition) to correct the images [83]. Gaussian smoothing can also

reveal the intrinsic illumination properties of the image [75]. Background estimation

can be performed directly on the specimen [91]. Finally, the image can be modelled

as a function of the excitation and emission patterns [16].

2.2. Detection and Segmentation of Structures

The presence as well as the number and the morphological characteristics of specific

structures (such as nuclei and glands) are fundamental parameters to evaluate the pres-

ence and severity of a pathology such as prostate [47], breast [71] and colorectal [118]

cancer.

2.2.1. Nuclei and cells

The nuclei are the central organelles of eukaryotic cells containing most of the cell

DNA. Nuclei analysis usually involves detection, segmentation and separation (i.e.

dividing overlaps). The identification of seed points in the nuclei is required by most

nuclei segmentation and counting methods [61]. Many approaches have been proposed

in the literature for nuclei detection, including methods based on Euclidean distance

map peaks [28], H–maxima transform [114, 67], Hough transform (detecting seed

points for circular–shaped structures, requiring heavy computation) [24], multiscale

Laplacian of Gaussian (LoG) filters [2], radial symmetry transform (RST) [109] and

(recently) deep learning based methods [5, 23].

Many approaches have also been proposed to perform precise nuclei segmentation.

Despite their simplicity, methods based on thresholding and morphological operations

can perform well on uniform backgrounds [90, 60] but they are not robust to size,

shape and texture changes. The watershed transform requires no tuning but the prior

detection of seed points [67, 114]. Active contour models can combine image proper-

ties with nuclei shape models [57, 24] but they rely on seed points. Other methods are

based on gradients in polar space (GiPS) [28] graph–cuts [105, 2] and machine learn-

ing approaches [113]. In H&E stained images, nuclei segmentation accuracy above

90% has been reported [113, 105, 24].
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2.2.2. Glands

Glands are organs formed by an ingrowth from an epithelial surface. They synthesize

and release substances (such as hormones or mucus) into the bloodstream (endocrine

glands) or onto an outer surface of the body, such as the skin or the gastrointestinal

tract (exocrine glands). Glands have been segmented automatically, although reliable

gland segmentation for diverse cancer grades is still a challenge. Methods based on

thresholding and region growing can identify the nuclei and the lumen that are used

to initialize seed points for region growing (e.g. [122]). Despite their simplicity, these

methods perform well in segmenting healthy and benign glands but they have shown

poor results in cancer cases where the gland morphology is deformed. Graph–based

methods have been proposed as well (e.g. [4]). Usually, tissue components (such as the

nuclei) are identified, represented as vertices and properties of a graph are used to seg-

ment the glands. Segmentation based on polar coordinates (the center inside the gland)

were proposed on benign and malign glands [43]. Approaches based on Bayesian in-

ference allow to take into account prior knowledge of the structural properties and of

the arrangement of glandular components (such as central lumen, surrounding cyto-

plasm and nuclear periphery) [103, 84].

2.3. Feature Extraction

Histopathology images have been analyzed using many descriptors based on the knowl-

edge of domain experts. Diagnosis criteria are mainly expressed with cytologic terms

representing objects (i.e. nuclei, cells, glands) and their presence in malign and be-

nign areas. Thus, several articles approached the problem at the object–level (using

segmented object features) and the object relationship level (using architectural fea-

tures). Multi–resolution global and window–based features have also being used.

2.3.1. Object–level features

Object–level features depend strongly on the considered objects (usually nuclei or

glands) and on the segmentation algorithms [52]. These features are relevant for any

resolution, but in most cases they are extracted from high–resolution images. Object–

level features are usually extracted for each color channel and can be grouped into

size and shape features (e.g. area, eccentricity, reflection symmetry), radiometric and

densitometric features (e.g. image bands, intensity, hue), texture features (e.g. co–

occurrence matrix, run–length and wavelet features) and chromatin–specific features

(mean and integrated optical density) [14].

2.3.2. Architectural features

Architectural features are mainly based on graphs (mathematical structures used to

model pairwise relations between objects). They are made up of vertices (also called

nodes or points) that are connected by edges (arcs or lines). Graphs are an effective
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method to represent architectural information using topological features in histopathol-

ogy images. Graph structures used in histopathology include: the Voronoi tessela-

tion, the Delaunay triangulation, minimum spanning trees, O’Callaghan Neighbor-

hood graphs, connected graphs, relative neighbor graphs, k–NN graphs [52]. Each of

these structures allows the computation of several descriptive features used for tissue

classification, such as number of nodes, number of edges, edge length, number of tri-

angles, area and eccentricity. A detailed description of graph structures and features

can be found in [14]. In the last decade graph–based features have been investigated

regularly as they are well suited to characterize tumor architecture. Different graphs

can be built, usually to represent the spatial organization of epithelial nuclei. Demir et

al. [29] performed a 3 class classification (healthy, malignant, inflammation) in brain

cancer biopsies using a complete weighted graph. In Altunbay et al. [4], Delaunay tri-

angulation (DT) graphs included colon tissue components (nuclei, stroma and lumen)

as nodes. Chekkoury et al. [18] combined morphologic, network and texton–based

features for breast cancer diagnosis. In a fundamental study, Doyle et al. [35] pre-

sented a 90% accuracy in distinguishing between cancer and benign tissue for prostate

cancer using a combination of features.

2.3.3. Global and window based features

These features can be related to color, texture (for example co–occurrence matrices,

run–length and wavelet features). Average object and architecture features can be

computed globally or in windows at multiple resolutions. At low resolution, color

and texture analysis are often used to indirectly measure the properties of local con-

stituents or of tissue architecture (e.g. density of nuclei and the overall pattern of

glands or stroma). General image statistics, histograms, gradients and many other fea-

tures can be extracted in order to perform measurements of the regions of interest and

filters can also be used to extract local features. For instance, prostate cancer has been

detected and graded with texture features such as Gabor filters [35, 36, 37], fractal

dimension [58], wavelets [62], and morphological operations [33].

2.3.4. Multi–resolution approaches

Multi–resolution approaches were proposed to deal with the multi–resolution charac-

teristics of histopathology images and to mimic the analytic approach from patholo-

gists. The Gaussian pyramid approach was used to represent the images in multiple

resolutions [15]. Features can be extracted separately for each level and combined to

classify image tiles. Color and texture features are commonly used at low resolutions.

Architectural arrangement of glands and nuclei are used at medium scales. Nucleus

and gland related features can be discriminatory at high resolutions [36].
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2.4. Feature Selection & Dimensionality Reduction

2.4.1. Feature selection

Feature selection is the process of selecting a subset of relevant features for model con-

struction thus reducing training times, simplifying the models (to make interpretation

easier) and improving the chances of generalization, avoiding overfitting. There are

three main feature selection strategies: filters (e.g. information gain), wrappers (e.g.

search guided by accuracy) and embedded methods (in which the features are added

or removed from the model depending on prediction errors). Well–known feature se-

lection algorithms are represented by the sequential forward selection and sequential

backward selection [92], sequential floating forward search — one of the one of most

frequently used methods in pathology image analysis [52] — and sequential floating

backward search [92]. Other available methods are genetic algorithms, simulated

annealing, boosting [42] and grafting [89].

2.4.2. Dimensionality reduction

Dimensionality reduction has the following aims: first, to reduce storage space and

computation time; second, to remove multi–collinearity (thus improving the perfor-

mance of machine learning models), third, to improve data visualization (reducing

to low dimensions such as 2D or 3D). The data transformation may be linear, as in

Principal Component Analysis (PCA), Independent Component Analysis (ICA) and

Linear Discriminant Analysis (LDA) [119, 9, 66]. Several non–linear dimensional-

ity reduction algorithms (such as manifold learning and non–linear embedding) were

developed and showed to be useful in histopathology image analysis [35].)

2.5. Classification

Classification methods aim at identifying the category of a new observation among

a set of categories on the basis of a labeled training set. Depending on the task,

anatomical structure, tissue preparation and features the classification accuracy varies.

Random forests with a set of 18 features (including, e.g. histogram related features,

autocorrelation, sum average, variance, entropy, contrast) obtained 83% median accu-

racy in the classification of prostate tissue into 7 classes (Gleason grade 3, 4 and 5;

benign stroma; benign hyperplasia; intraepithelial neoplasia and inflammation) [34].

k–Nearest Neighbors (k–NN) with a set of 14 features (intensity, morphological and

texture) from segmented nuclei was tested on the classification of hepatocellular carci-

noma [57]. Adaboost with a large set of features was used to segment nuclei with vari-

ous shapes [113] and to detect suspicious areas on digital prostate histopathology [37].

SVM with radial basis function kernel and grid search were used to classify mitotic

vs. non–mitotic regions [81], to distinguish between prostate tissue classes [35], to

classify colon adenocarcinoma histopathology images vs. benign images [94] and to
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classify four subtypes of meningioma [93]. Multiclassifier ensembles [45] represent

another solution to increase accuracy. Several classification methods can be integrated

to increase accuracy because a fusion of methods can improve results [32]. For in-

stance, in Huang et al. [57], an SVM–based decision graph classifier with feature

subset selection on each decision node improved the classification of hepatocellular

carcinoma.

The comparison of the methods is difficult, due to heterogeneity of data sets and

evaluation metrics. Several studies compared the performance of classification proce-

dures on prostate (e.g. [58].Alexandratou et al. [3] published a comparative study for

prostate cancer diagnosis, showing a good performance for cancer detection, 80.8%

accuracy for low-high Gleason grade discrimination, and 77.8% for cancer grading.

Despite the existence of these studies, there are still only few images available for

each pathology and obtaining good annotations of the images is expensive and time

consuming. Databases and challenges have been proposed in the past few years (see

Section 4).

3. Deep Learning Approaches

Deep learning (DL) methods are currently the most frequently studied and successful

type of machine learning algorithms (see Chapter CROSSREF Deep Learning in Tex-

ture Analysis and its Application to Tissue Image Classification). In the last decade,

DL outperformed classical machine learning algorithms with hand–crafted features in

diverse fields such as computer vision [72], speech recognition [30], natural language

processing [48] and also recently in biomedial fields (e.g. functional genomics) [88].

The adoption of DL techniques in the biomedical image analysis community had a

positive impact on several tasks, and automatic analysis of histopathology images is

no exception [50, 63]. Deep learning approaches in computer vision are based on

the composition (layers) of non–linear transformations over the raw input pixels (see

Chapter CROSSREF Deep Learning in Texture Analysis and its Application to Tissue

Image Classification Section CROSSREF Introduction to Convolutional Neural Net-

works). This composition builds increasingly abstract representations that are learned

in a hierarchical fashion [73, 49]. An architecture is the arrangement and the intercon-

nection of parameters learned by an optimization algorithm for a given DL approach.

An example of a commonly used architecture, the convolutional neural network, for

histopathology image analysis is depicted in Figure 1.3.

One of the main characteristics of most DL architectures is that the output of the

network is only based on the adjustable internal weights. These weights are learned

by the network through iterative forward/backward propagation of the training samples

and the errors respectively. This is known as the backpropagation algorithm for neural

networks [74]. The internal weights are updated using the error between the ground
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Figure 1.3 A framework for applying supervised deep learning (e.g. CNN) to the classification

of a WSI.

truth output of the samples (i.e. the labels in the supervised case and the original rep-

resentation in the unsupervised one) and the output of the network. This requires less

explicit coding of domain knowledge than the traditional machine learning. For a more

in depth review of the technical details of the deep learning methods we suggest to the

reader to go through the Chapter CROSSREF Deep Learning in Texture Analysis and

its Application to Tissue Image Classification.

There are multiple considerations to take into account when applying a deep learn-

ing algorithm to a given histopathology task because the success of the algorithms is

partially due to task–specic tuning. Histopathology images are large (i.e. 100.000 ×

100.000 pixels ). One of the main characteristics of histopathology images is that the

relevant patterns depend on the magnification level. The main considerations are then:

the localization of the regions in the image where relevant histopathology primitives

are located (e.g. a ROI selection step); the size of the input image (or patch) that is

fed to the network and the homogeneity of the staining applied to the WSI (in cases

with high variability, staining normalization is required). The architecture of the net-

work plays an important role, although a considerable amount of articles decide to stay

with predefined/pretrained network architectures (Figure 1.4). We highlight the main

characteristics and risks of DL approaches in histopathology, identifying trends in the
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Figure 1.4 Steps involved when applying deep learning to histopathology images.

biological problems and evaluation methods.

3.1. Supervised and Unsupervised Feature Learning Architectures

In machine learning and also in deep learning, there are two families of techniques that

differ in supervision. Unsupervised feature learning techniques (UFL) do not depend

on labeled samples to detect the inner structure of the data. UFL learns over–complete,

sparse or hierarchical unsupervised representations by reconstructing the original input

with several constraints (see Figure 1.5 for a basic UFL architecture).

On the other hand, we have supervised techniques that use the label information of

the input and guide the model to a desired output. The problem of transitioning be-

tween the supervised towards unsupervised learning techniques is one of the biggest

challenges for deep learning as discussed by [10, 99]. In unsupervised feature learn-

ing, the input data are passed through a compressor to obtain a more compact rep-

resentation. This is commonly used to subsequently feed a supervised model [10].

UFL representations have been successfully used in the pretraining of deep supervised

models [39]. The multiple methods in this family differ in what regularization term is
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Figure 1.5 A shallow UFL architecture with only one hidden layer that encodes the features to

represent a patch.

used.

In formal terms, let X be the original input (i.e. an RGB patch) then X ≈ f̂ (X) +

r(θ), where f̂ is the learned function that reconstructs the input. Usually f̂ = θTθ, θ

are the parameters of the model, and r is the regularization term that can ensure the

sparsity of the learned features or spatial relationships between them.

3.2. Deep Convolutional Neural Networks

CNN models are among the most successful supervised deep learning models for com-

puter vision. The medical imaging field is rapidly adapting these models to solve and

improve a large and diverse set of applications [50]. CNNs are a particular kind of a

supervised multi layer perceptrons inspired by the visual cortex. The CNN are able

to detect visual patterns with minimal pre–processing and are robust in presence of

distortion and variability of the pattern. CNNs can usually benefit from data augmen-

tation. Data augmentation consists of subtle transformations in the input data, aimed at

learning invariances. The architecture of the CNN is composed of convolutional, pool-

ing and fully connected layers. For a more detailed description of a CNN please refer

to Chapter CROSSREF Deep Learning in Texture Analysis and its Application to Tis-

sue Image Classification Section CROSSREF Introduction to Convolutional Neural

Networks.

3.3. DL Approaches to Histopathology Image Analysis

Most of the deep learning approaches for classification, segmentation and localization

in histopathology images are relatively new. The deep neural network methods are not

even mentioned in recent reviews of automatic histopathology image analysis, such
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as [29, 52, 7]. The first mention of the topic in a review is from Irshad et al. [61]. One

of the earliest successful attempts to use deep models in this scenario was from Cireşan

et al. [23] at the ICPR 2012 mitosis detection challenge [96]. This work as well as

other mitosis detection approaches are described in Section 5 of this Chapter. A more

detailed literature review and workflow for deep learning applications in breast cancer

is described in Section CROSSREF Deep Learning Techniques on Texture Analysis

of Chest and Breast Images.

The approach described by Cruz–Roa et al. [27] combined unsupervised (UFL) and

supervised learning. This method first learns an unsupervised representation via sparse

autoencoders and then a convolution and average pooling is performed over this rep-

resentation to encourage both a translation invariant feature detection and a compact

image representation. The proposed convolutional auto–encoder neural network ar-

chitecture is used for histopathology patch–based image representation learning. This

representation allows automatic cancer detection and visually interpretable prediction

results analogous to a digital stain. The method identifies image regions that are most

relevant for diagnostic decisions, using the probabilities of the final softmax classifier

layer of the model. The method was applied to 308 histopathology basal cell carci-

noma images at 10X magnification, taking patches of 300 × 300 pixels. Arevalo et

al. [8] computed a hybrid representation for basal–cell carcinoma patches using a to-

pographic unsupervised feature learning method and a bag of features representation.

Their approach improved the classification performance by 6% with respect to classi-

cal texture based descriptor DCT. In Malon et al. [81], a novel combination of features

is proposed. The authors build a feature set of basic statistical measures of the nu-

cleus and cytoplasm pixels and combine them with a CNN classifier. The presented

approach improves the performance in comparison with handcrafted features.

Currently, there is a diversification of architectures and applications of deep learn-

ing using WSIs. Nayak et al. [85], propose a variation of the unsupervised restricted

Boltzmann machine method for learning image signatures. This method classifies

patches of clear cell kidney carcinoma and glioblastoma multiforme images from the

cancer genome atlas; with this signature the final stage is made using a multi–class

regularized support vector classification. Xu et al. [126] developed a technique that

deals with few labeled samples. In this work a multiple instance learning framework

is introduced, where classification of colon histopathology images is performed. The

authors propose a fully supervised approach and a weakly labeled one with similar ac-

curacy (93.56% vs. 94.52%). In the work of Hou et al. [56] a similar idea is proposed.

The authors use multiple instance learning to classify between glioblastoma and low–

grade glioma images from the cancer genome atlas. The method uses three steps: first

it learns masks for discriminative areas using a CNN model with few selected dis-

criminative patches; second, it makes a patch–level prediction using CNNs; third, the

class count is performed. In Vanegas et al. [107] the authors do content–based image
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retrieval. The proposed technique is based on learning an unsupervised representa-

tion based on topographic reconstructed independent component analysis (TICA) and

using it as an input for a multimodal semantic indexing method. The authors show

that the MAP performance is greater when using the TICA representation in com-

parison with canonical texture descriptors such as DCT and Haar, showing that UFL

based representations also have a good performance in retrieval tasks. In Cruz–Roa

et al. [26], the authors propose a 3–layer CNN architecture to detect invasive ductal

carcinoma using patches from 113 whole slide images as a training set. This approach

obtains 10% higher balanced accuracy in comparison with Haralick and graph–based

handcrafted features.

The recent use of unsupervised architectures includes the work of Arevalo et al. [6].

In this work, the authors describe a novel stacked model that shows the best perfor-

mance when combining features from 2–layered TICA over patches for detecting basal

cell carcinoma. The authors also introduce a digital staining method based on the

weighting of the feature detectors by the classification probability to highlight the ar-

eas that are most related to the cancer. Their approach achieved ∼0.99 in AUC for a set

of 100,000 patches. The approach described by Hang et al. [17] is based on learning

a dictionary of 1024 features for classifying kidney clear cell carcinoma and glioblas-

toma multiforme. The authors used a curated version of the publicly available images

from the Cancer Genome Atlas. The dictionary was built with a stacked UFL method

called stacked predictive sparse decomposition, which is used in a spatial pyramid

matching framework (with the last stage being a linear support vector machine clas-

sifier). Noel et al. [86] used a set of 3000 patches extracted from WSIs of the ICPR

contests to go a step further in breast cancer detection, classifying each pixel using a

CNN into stroma, nuclei, lymphocytes, mitosis, and fat. 90% accuracy was achieved,

suggesting that a finer classification of the WSI primitives can help to improve the

classification performance.

Besides the public challenges and contests there have been some efforts to do sys-

tematic evaluations with the same data sets and experimental setups. Janowczyk and

Madabhushi [63] recently published a tutorial on deep learning for digital pathology

where they expose exemplar use cases of the technology on more than 1200 slides for

7 tasks including mitosis detection, nuclei segmentation, epithelium segmentation and

lymphoma classification. Good results on the studied cases are shown and the source

code is provided using the Caffe [64] deep learning framework. Interestingly, the au-

thors did not design a different network architecture for each of the cases but decided to

use Alexnet [72] for all of them. Questions such as the importance of manual annota-

tion for ground truth generation are discussed when applying deep learning techniques

and also some comparisons against pathologist annotators. It is shown that for some

cases the DL system is doing a more refined job on detailed pixel–level something a

pathologist can not really do.In Cruz–Roa et al. [25], the authors show an interesting
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comparison between unsupervised and supervised approaches for medulloblastoma

tumor classification because in this case the proposed CNN architecture is not com-

petitive against UFL methods such as TICA. A further improvement on this dataset

was made by Otálora et al. in [87]. The authors combine features from unsupervised

and supervised nature (the former from topographic independent component analysis

and the latter using Riesz wavelets for two types of medulloblastoma brain cancer im-

ages) improving the use of the topographic unsupervised approach. It shows that a

combination of a supervised texture representation and UFL contain complementary

information about this particular pattern.

Some recent work goes beyond H&E patch classification. A line of work that is

closer to the optical properties of the hardware involved in the tissue digitalization is

the one presented by Chen et al. [19]. The authors present a new method that aims at

detecting flowing colon cancer cells at high–throughput rates, extracting several bio-

physical features and then building a deep fully connected network. Han et al. [54]

present a novel deep UFL method for phenotypic characterization of glioblastoma

multiforme. They are able to differentiate two major phenotypic subtypes with differ-

ent survival curves using the extracted UFL features. Romo–Bucheli et al. [95] quan-

tify tubule nuclei by feeding a CNN model with candidate patches to measure their

tubule class membership probability, that was then associated with high–low risk cate-

gories determined by an Oncotype DX test. To our knowledge, the application of deep

learning stains different from H&E (such as immunohistochemistry) is still not well

explored. An exception is the work of Chen et al. [22], in which the authors propose

an immune cell detection with a 7–layer CNN model with patches of unmixed col-

ors from the original RGB channels, highlighting immune cell markers. The authors

compare their algorithm detection performance with the performance of pathologists

achieving up to a 0.99 correlation coefficient. This shows promising results with other

types of staining than H&E.

4. Histopathology Challenges

Open scientific challenges targeting tasks in the analysis of pathology images have

been proposed in recent years similar to other medical imaging domains1. An advan-

tage of having different methods tested on the same data and in the same tasks is the

objective comparison of the strengths and limitations of state–of–the–art approaches.

Particularly in the case of histopathology, the time–consuming and laborious tasks of

searching whole slide images for relevant small tissue primitives (e.g. mitosis, nuclei)

can be improved. Selecting the most suitable approach to support and speed–up the

visual interpretation of slides can help pathologists to focus on the most important

1http://grand-challenge.org/All_Challenges/, *
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Table 1.1 Biomedical image analysis challenges related to histopathology.

MD = Mitosis detection, IC = Image classification, SL = Structure localization (segmentation)
Acronym Challenge Anatomy Tasks

2012

MITOS12 [96] Mitosis detection in breast cancer histological images breast MD

2013

AMIDA13 [112] Assessment of mitosis detection algorithms breast MD

2014

MITOS–ATYPIA14 Mitotic count and nuclear pleomorphism breast MD,IC

OCCISC 2 Overlapping cervical cytology image segmentation cervix SL

2015

2OCCISC 3 2nd Overlapping cervical cytology image segmentation cervix SL

GlaS@MICCAI’2015 Gland segmentation challenge bowel SL

2016

SLATMD [53] Skin lesion analysis towards melanoma detection skin SL

CPM Computational Precision Medicine lung,neck,brain IC,SL

CAMELYON16 Cancer metastasis detection in lymph nodes lymph nodes IC,SL

TUPAC16 Tumor proliferation assessment challenge breast MD,IC

questions when diagnosing these studies. An overview of histopathology related chal-

lenges is displayed in Table 1.1. In this section the data sets and tasks from some of

these challenges are explained. The scope of this analysis includes only recent digi-

tal histopathology challenges, namely MITOS12, AMIDA13, MITOS–ATYPIA-144,

GlaS@MICCAI’20155, CPM6, CAMELYON167 and TUPAC168.

4.1. Data sets

The size of the data sets provided to participants for training and testing their algo-

rithms has increased significantly in the latest challenges. In the first challenges, the

algorithm’s performance was evaluated on regions or high power fields (HPF) from

a limited number of WSI (e.g. MITOS12, 50 HPF from 5 slides). However, recent

challenges such as CAMELYON16 and TUPAC16 provide a large number (> 500)

of WSIs, some of them with manual annotations by pathologists. This promotes

the robustness of the participant algorithms as they have to analyze multiple images,

sometimes from different scanners and in various disease stages. Table 1.2 shows an

overview of the data sets from the digital pathology challenges.

4https://mitos-atypia-14.grand-challenge.org/home/, *
5http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/glascontest/,

*
6http://miccai.cloudapp.net/competitions/45, *
7https://camelyon16.grand-challenge.org, *
8http://tupac.tue-image.nl, * as of 1 January 2017
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Table 1.2 Histopathology challenge data sets. NA = Non applicable NM = Not mentioned

Challenge Data Staining maxResol Quantity Scanners

MITOS12 High power fields H&E 40X 50 2

AMIDA13 High power fields H&E 40X 23 1

MITOS-ATYPIA14 High power fields H&E 40X 1136 2

GlaS@MICCAI’2015 High power fields H&E 20X 165 1

CPM High power fields H&E NP 32 NP

CAMELYON16 Whole slide images H&E 40X 400 NP

TUPAC16 Whole slide images H&E 40X 821 1

4.2. Tasks

The complexity of the tasks in the challenges has increased in the past few years. The

goals of the challenges can be grouped into three main tasks (Figure 1.6):

• Mitosis detection: Identify the mitosis present in high power fields. This has a

strong correlation to the aggressiveness of the cancer i.e. faster division of the cells

will manifest in more mitosis.

• Image classification: Learn the characteristic set of features for a particular tissue

class, potentially considering the underlying tissue primitives.

• Structure localization/segmentation: Localizing and delineating a boundary around

specific tissue structures such as cell nuclei or glands.

Although these tasks are divided into different groups for their description, they can be

combined or considered as an initial step for the other tasks, e.g. a whole slide cancer

grading algorithm can start by classifying an image as cancer tissue, then segment the

tumor and finally grade the WSI based on the mitosis counting inside a tumor region

of interest.

Mitosis detection Classification Segmentation

Grade 2 

Figure 1.6 Tasks in anatomical pathology challenges.
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4.3. Evaluation metrics

An important element of a challenge is the selection of the right evaluation metric. A

suitable metric should limit bias in the comparison of the algorithms. It is standard to

provide multiple metrics in the challenge results, nevertheless algorithms are generally

ranked according to a lead metric for each challenge task. The following metrics were

selected for the evaluation of the digital pathology challenges included in Table 1.2.

4.3.1. Mitosis detection

. In the evaluation of mitosis detection algorithms the mitotic events found by the

algorithms are counted. Two sets of evaluation metrics have been used in these type

of challenges: centroid–based, when each mitotic event is represented by a single

location, and region–based when the mitoses are segmented and evaluated as structures

with multiple pixels. Still, the centroid–based measures are more frequently used

when ranking the participant algorithms in a benchmark. All 4 challenges with a

mitosis detection task use the F1–score as the preferred metric to rank the participant

algorithms. The F1–score is defined as follows:

F1-score =
2 · Precision · Recall

Precision + Recall
(1.1)

where TP = true positives, FP = false positives, TN = true negatives, FN = false

negatives, Precision = TP/(TP + FP) and Recall = TP/(TP + FN). A threshold of

< 7.5 − 8 µm (around 30 pixels) was determined as the maximum Euclidean distance

from the centroid to consider a mitotic event as a true positive.

4.3.2. Image classification

. Unlike mitosis detection, image classification challenges have used different eval-

uation approaches for ranking the participant algorithms. The classification can be

binary, when the algorithms have to decide if an image contains a tumor/metastasis or

not (e.g. CAMELYON16). Otherwise, the classification can be multi–class when the

algorithms have to grade the pathologic stage of an image (e.g. TUPAC16). In some

cases, the referred challenges also request the probability with which the approaches

grade each case (e.g. CAMELYON16) or measure the agreement between the algo-

rithm classification and the pathologist–generated ground truth (e.g. TUPAC16). The

proposed evaluation strategies include:

– A points based scheme for nuclear atypia scoring (MITOS–ATYPIA–14).

– Area under a receiver operating characteristic (ROC) curve for the discrimination

of lymph node slides containing metastasis or not (CAMELYON16).

– Agreement with ground truth measured with quadratic weighted Cohen’s kappa or

Spearman’s correlation coefficient for breast cancer grading (TUPAC16).
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The quadratic weighted Cohen kappa is defined as:

Kw = 1 −

∑
i, j wi, j pi, j
∑

i, j wi, jei, j

(1.2)

where pi j: observed probabilities, ei j = pi jqi j: expected probabilities and wi j: weights

(with wi j = w ji).

4.3.3. Structure localization and/or segmentation

Different type of tissue structures have been targeted for structure segmentation in

histopathology challenges: cell nuclei (CPM), metastasis in lymph nodes (CAME-

LYON16) and colon and rectum glands (GlaS@MICCAI’2015). Three attributes of

the output segmentations can be measured: number of structures detected, full struc-

ture overlap with the ground truth and shape similarity. The favored segmentation

metric (GlaS@MICCAI’2015 and CPM) is the DICE coefficient. Given a ground

truth G and S as a set of segmented pixels, DICE is defined as follows:

DICE(G, S ) =
2|G ∩ S |

|G| + |S |
(1.3)

In the GlaS@MICCAI’2015 challenge both the DICE and Hausdorff distance are mea-

sured at object level, calculating the score over all the annotated objects included in

the test set.

5. Detecting Mitoses

Mitosis detection is an important problem in histopathology image analysis aiming at

the identification and annotation of mitotic figures in high power fields. The mitotic

figures can then be used as input for a grading system (e.g. the Bloom-Richardson

grading system for breast cancer [13]), to have an estimate of the patient’s prognosis

and to develop personalized treatments. Figure 1.7 shows some examples of mitoses

and highlights the difficulty to differentiate between mitotic and non–mitotic cells9.

Most of the false positive detections arise when apoptotic nuclei (the nuclei going

through the natural programmed cell death), are mistaken as mitoses because of their

similar appearance. This problem was traditionally addressed with texture descriptors

such as DCT, Haar or Haralick [110]. However, traditional techniques are currently

struggling to cope with the outstanding performance of deep learning algorithms [112,

86, 20, 100]. Several studies concluded that the performance of DL methods is close

to the performance and inter–observer agreement of expert pathologists [111, 22, 46].

9as of 1 January of 2017 there is an online tool to compare the performance in mitosis detection: http:

//mitosis-detection.herokuapp.com/



✐

✐

“bookBTA˙HistoPath” — 2017/2/10 — 14:36 — page 20 — #20
✐

✐

✐

✐

✐

✐

20 Biomedical Texture Analysis

Non - mitosis

Mitosis

Figure 1.7 Example of hard to differentiate mitotic (top) and non–mitotic (bottom) images.

There have been several challenges on the topic of mitosis detection (Table 1.1).

The very first challenge for mitosis detection was the 2012 ICPR Mitosis Detection in

Breast Cancer Histological Images challenge [96]. 17 teams submitted their results to

the contest. The winner was the Swiss IDSIA team [23]. The approach of the team

was based on a deep CNN with 13 sequential convolution–maxpooling layers trained

over 50 whole slide images with 50 high power fields. This approach was computa-

tionally intense because it computed pixel–wise probabilities for mitosis. This method

outperformed several classical machine learning classifiers trained with many features

describing size, shape, color and texture. Since then, several approaches focused on

more clinically usable methods by taking larger areas as input, taking into account

only the tumor regions in the WSI and building classifiers for difficult cases (ensemble

of architectures among the others) as seen in Figure 1.8.

In Veta et al. [112] the authors summarize the results of the AMIDA13 challenge.

The AMIDA13 dataset consisted of 12 training and 11 testing subjects, with more than

one thousand annotated mitotic figures by multiple observers. The accuracy of the best

method (again, the one by IDSIA) is comparable with the inter–observer variability.

IDSIA’s method is based on an efficient CNN without any candidate selection, but

classifying each of the high power fields pixels.

In 2014, ICPR launched a second challenge for detecting mitosis: the MITOS–

ATYPIA14 challenge. More data were made available and the tasks included also the

differentiation between high and low grade nuclear atypia. Another major improve-

ment from the first edition of the contest was that the annotations were provided by

two senior pathologists and three junior pathologists. The winner of the nuclear atypia

subtask was the team from University of Warwick, while the subtask of mitosis de-

tection had two winners: the team from the Chinese university of Hong Kong for the

Aperio scanner and the team from Institut Curie for the slides processed with Hama-

matsu scanner. The Warwick team did not use an approach based on deep learning,

but they used a generalized region covariance descriptor. The descriptor creates a

geodesic measure of the manifold that represents the pixel–level feature space [70].
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Whole Slide Image

    Preprocessing
* Tumor Localization

* ROI detection

* Staining Normalization

Mitosis Classi er
* CNN over regions

* CNN over patches

* Hybrid & Ensemble

         models

      Grading 

and Segmenting
* Mitosis counting

* Bloom–Richardson Score

* Prediction of gene 

         expression

* Tumor size and morph.

          measures

* UFL Approaches

Figure 1.8 Common modules involved when applying DL to the mitosis detection problem,

some of the elements overlap with those in figure 1.4. The main difference relies on the re-

gion of interest localization for patch extraction and the output of the DL classifiers.

The approach described by Chen et al. [20] is currently the method with the best per-

formance on the 2014 MITOS-ATYPIA dataset in the task of mitosis detection. This

approach is based on two steps: 1) Collecting mitosis candidates by means of a fully

convolutional neural network; 2) using transfer learning to classify the candidates. The

parameters of the off–the–shelf CaffeNet model were used to train three architectures

with a different number of neurons in three fully connected layers. The probability of

a patch being mitosis or not was computed via the average of the model decisions.

In the 2016 MICCAI Grand Challenge on Tumor Proliferation Assessment- TU-

PAC16 there were two subtasks involving mitosis detection. The first consisted of

predicting a proliferation score based on mitosis counting. The second consisted of

the mitosis detection of tumor regions. The results of this challenge are available on

its website10. The detailed descriptions of the tested methods have not been uploaded

yet.

Besides the challenges in mitosis detection, many researchers have been tackling

this problem using deep learning techniques [20, 112, 116, 46, 111, 124]. The types

of strategies can be differentiated into those involving ROI detection techniques and

those that do not. Staining normalization between different microscopes/laboratories

is a common pre–processing module. Further steps include tumor localization, data

augmentation and boosting classifiers with difficult cases. An approach of Xu et al.

is based on stacked autoencoders that create high level feature representations for

34 × 34 pixel patches [124]. They evaluate the approach on 37 H&E stained breast

10http://tupac.tue-image.nl/node/2 as of 1 January 2017
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histopathology images that were collected from a cohort of 17 patients. The result of

the evaluation shows superior performance when compared with texture and morpho-

logical features. An hybrid approach is described by Wang et al. [116]. The authors

propose a probabilistic fusion of two classifiers, one with handcrafted features as input

and another with CNN derived features. For the difficult cases, they fuse both features

to train and test a third classifier. The authors test their approach on the MITOS2012

and AMIDA13 challenge datasets showing that their method can obtain better perfor-

mance than the other deep learning methods presented at the challenges.

Giusti et al. [46] make a man machine comparison. The authors measure the perfor-

mance of human pathologists and algorithms presented in MITOS12 [96]. They show

that the most accurate pathologists were outperformed by deep learning algorithms,

specifically the CNN technique from IDSIA. More recently, Veta et al. [111] go one

step further in this direction and illustrate that the best measured agreement between

the pathologists and an automatic DL method is comparable to the worst measured

agreement among the pathologists. The authors also explain that the gap between the

experts and the DL algorithm should be reduced if the researchers take into account

the context of the regions in WSI and not only the patches centered at a given mitotic

location.

6. Frame and Whole Slide Image Classification

To confirm or discard a diagnostic hypothesis, pathologists visually inspect whole

slide images at multiple resolutions, selecting regions of interest (ROIs) and identify-

ing structures. Image classification and disease grading in clinical routine are based

on the architectural patterns in the histopathology tissue samples. In higher cancer

grading, cells are poorly differentiated and prognosis is adverse with a higher risk

of relapse. Pathologist grading can vary according to their personal experience and

inherent subjectivity [106]. Novel approaches using deep learning are now able to

classify a WSI or a region even without fully comprehending the relations between

the underlying histological structures [26, 63, 65].

Different pipelines can be used to perform image classification in digital pathology.

Some approaches first detect ROIs, then quantify histological primitives and finally de-

cide the image classification. Other methods skip the middle steps entirely and decide

the classification without targeting specific histological primitives. Depending on the

pipeline selected, one or multiple classifiers can be trained at different resolutions and

for separate histological structures. The sampling performed on the WSI can also vary

according to the objectives of the proposed algorithms. Figure 1.9 presents different

sampling techniques used for WSI classification.

Image classification tasks were included in medical image analysis challenges only

in recent years. In MITOS–ATYPIA–14, high power fields from breast cancer tissue
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Figure 1.9 Sampling techniques performed in WSI classification.

slides were analyzed to generate a score for nuclear atypia (i.e. nuclei shape variations

compared to normal nuclei). The slides were divided into three grades according to

six criteria related to nuclear pleomorphism (such as size of the nuclei, size of the

nucleoli and thickness of nuclear membrane). The winning approach for this task

was the one from Khan et al., both on the Aperio and Hamamatsu images [70]. This

approach includes an image–level descriptor (implemented as the geodesic mean of

region covariance descriptors) that enables a tractable geodesic–distance–based kNN

classification using efficient kernels. This approach outperformed standard region co-

variance descriptors and textural descriptors for nuclear atypia.

CPM was a challenge on the classification of whole slide tissue images using two

cohorts, one from patients with non small cell lung cancer and one for head and neck

squamous cell carcinoma. Participants were asked to classify patients from each co-

hort according to their molecular subtypes. No additional information regarding the

challenge results is currently available on their website11.

CAMELYON16 was the first challenge aimed at classifying whole slide images:

270 for training and 130 for testing. The participant algorithms were implemented

to discriminate between normal lymph node WSI and slides containing metastases.

The probability of metastases present per image was also requested. The method by

Wang et al. [115] obtained the highest score for both the WSI classification and tumor

localization task. Their method consisted of a patch–based classification stage and a

heatmap–based postprocessing. Positive and negative tumor samples were used for

retraining a supervised classification model with the GoogLeNet architecture [104].

The predictions were embedded in a heatmap image from which 28 geometrical and

morphological features were extracted to build a random forest classifier aimed at

discriminating WSIs with metastases and normal WSIs.

Following the current trend in digital pathology, TUPAC16 distributed an even

larger number of WSI to participants: 500 for training and 321 for testing. Unlike

11http://miccai.cloudapp.net/competitions/46, as of 1 January 2017
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the binary classification from CAMELYON16, TUPAC16’s main goals were to grade

breast cancer WSIs into 3 classes (according to the mitosis counting among other

components, i.e. Bloom & Richardson grading system) and to predict a proliferation

score based on molecular data. The method from Lunit Inc. Korea was the winner for

both grading tasks among the automatic methods. For the moment, there is no other

information available about the methods on the challenge website 12.

7. Structure Segmentation

Defining and measuring the boundaries of tissue primitives such as glands helps in dis-

entangling the visual variability in the WSI. This is useful to identify malignant tumors

arising from glandular epithelium, which is a routinely performed task in histopathol-

ogy. Structure segmentation in WSIs is a challenging task that is important for grad-

ing cancers like prostate and colon. The morphology of the glands has routinely been

used by pathologists to assess the degree of malignancy of several adenocarcinomas,

including prostate, breast, lung, and colon. The structure segmentation problem is

now commonly addressed with many deep learning techniques such as fully convolu-

tional neural networks (FCNN) [78], which helps to recover spatial information lost

during downsampling of the usual classification architectures. Custom CNN archi-

tectures [27] have also been tested with promising results compared to the classical

patch–based techniques [68].

In the 2015 MICCAI Gland Segmenting challenge (GlaS@MICCAI’2015, see

Section 5), various deep learning approaches were promising regarding this direc-

tion [101]. A remarkable approach is the one of the winning group: CUMedVi-

sion13 [21]. A modification of a fully convolutional neural network is used to segment

colon tissue with a DICE score of 0.897 and an F1–score of 0.912. The approach uses

multi–level contextual features that group features from several layers of the deep net-

work, taking into account the intensities and varying sizes of receptive fields using a

two–path FCNN.

An interesting approach for semantic segmentation in WSIs is proposed by Wang

et al. [117]. They identify and tackle two main problems: the lack of training data and

how to deal with the multiple sizes and shape patterns. They found that transfer learn-

ing is a reliable enhancer, both in training speed and segmentation performance. For

the second problem, several FCNs are fused, varying the input size in order to be able

to capture the different scales and shapes of the patterns. The approach outperforms

FCN with a considerable margin in an inflammatory bowel disease dataset of H&E

WSIs.

12as of 1 January 2017
13Department of Computer Science and Engineering, The Chinese University of Hong Kong
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Patch–based techniques are a commonly used strategy in which the idea is that

the structure to be segmented is fed in form of patches as input to the networks, for

subsequently densely running of the model over the WSI. This creates a probability

map for all pixels that can subsequently be used in the task of segmentation by setting

a threshold in the map.

In [41] various patch–based deep learning settings are tested for both classifica-

tion and segmentation of prostate cancer tissue showing promising results. Similarly,

in [51], a pixel–wise classification architecture is proposed to segment prostate tissue

reaching an error rate as low as 7.3% in patch classification. The problem of a better

attempt in delineating the fine details in class boundaries is discussed, concluding that

it is necessary to transfer these techniques to medical practice. This is an explicit trend

seen in many recent methods for H&E segmentation.

In the paper of Sirinukunwattana et al. [102] a spatially constrained CNN is in-

vestigated to perform nucleus detection in colon cancer WSI. An F1 score of 0.78 is

obtained classifying epithelial, inflammatory, fibroblast, and miscellaneous patches.

After the model is trained, a comprehensive segmentation of a WSI is obtained. This

is another example where the step of designing a particular segmentation architecture

is skipped.

In the work of Drozdzal [38], the importance of the skip connections in very deep

architectures for segmentation is investigated. Even though it is tested on electron mi-

croscopy images, the findings are also applicable to deep architectures that segment

histopathology images. In Akram et al. [1], a two stage CNN–based method is pro-

posed to accurately segment cells into three modalities: fluorescent imaging, phase

contrast imaging and H&E images. At the first stage, a CNN is build for detecting

bounding boxes. In the second stage, a CNN predicts a segmentation mask. An in-

teresting weight sharing scheme is used that puts the ROI information into the second

CNN. Xu et al. [125] present a similar approach using three CNN architectures. One

is used to remove the background, another for detecting the glands and a final network

to refine the edges of the mask. An object Dice score of 0.908 is achieved with respect

to a FCN baseline that achieves 0.742 on the same data set.

Wenqi et al. [76] propose a hybrid approach to segment colon histology images

using features from a CNN architecture and classical features like SIFT and multi–

resolution local patterns among others. The performance improvement with respect

to the CNN architecture alone was from 0.82 to 0.87 in Dice score. Xie et al. [123]

proposed two fully convolutional regression networks to count cells in H&E images.

A major component in the approach is that the training of the model is made over syn-

thetically generated data. Nevertheless, the performance is comparable when trained

on real data. Sadanandan et al. [98] also make use of data augmentation but in this

case with specialized feature maps like the eigenvalue of Hessian and wavelet filtered

images. Ben Taieb et al. [12] show how a CNN architecture can do joint segmen-
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tation and classification over colon glands, improving the usage of both approaches

separately.

The approach of Kainz et al. [68] for the GlaS15 challenge consisted of two CNN

architectures regularized by a total variation criteria. The first separated benign back-

ground, benign glands, malignant background and malignant glands. A second CNN

concentrated on separating very close gland objects. Tissue classification accuracies

of 98% and 94% are obtained on two test sets. Ben Taieb et al. [11] encode the re-

lationship between the different structures on the WSI with a topology aware FCNN

that allows to encode geometric and topological priors of containment and detachment.

This approach gained up to 10% in object–level Dice segmentation over the original

FCNN approach.

Among all the work reviewed, the use of FCNN–based architectures is ubiquitous,

showing good results in segmenting primitives like cells, glands and epithelium. A

current trend is to include additional channels for a finer segmentation and to encode

spatial, geometric and scale information in the loss functions of the models.

8. Discussion

Computer–assisted decision support of histopathology images is a challenging field

that will meet the requirements of clinical practice in the near future . The fusion

of traditional diagnosis with computational data analysis represents an opportunity to

improve image interpretation by reducing the workload of pathologists for the most

trivial tasks while also harmonizing agreement between pathologists. Since the advent

of digital scanners, private companies and scientific researchers have been develop-

ing tools using machine learning that assist pathologists [52, 97]. However, assisting

pathologists is not trivial due to the many technical and clinical factors that surround

histopathology images. Traditional machine learning approaches obtained good re-

sults for the detection, segmentation and classification of tissue structures in the last

10–20 years. However, several technical challenges need to be solved before computer

aided decision support can be applied to clinical practice. Deep learning obtained best

results in most tasks in recent years and it has interesting perspectives for the future.

A first challenge in the field of histopathology CAD is represented by the high vari-

ability of tasks due to clinical characteristics of the images. Current CAD methods can

obtain good results on highly specific tasks. The best performance is obtained when

task–specific tuning is involved [63]. Thus, current methods are strongly sensible to

the fine tuning made for a specific, limited problem. To our knowldege, there are

currently no models that are capable to analyze WSI of several pathologies together.

A second challenge in the field is the development of methods that are capable of

analyzing the many diverse parameters that are considered by a pathologist simultane-

ously. WSIs are now being used and distributed in challenges to develop algorithms
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that mimic the full workflow of a pathologist. However, the workflow of patholo-

gists often follows almost instinctive paths. While looking at an image, a pathologist

zooms to different areas, searching for properties that change depending on the image

and on the clinical parameters of the subject. This diagnostic workflow is partially

represented by the histopathology literature, but it has not been imitated in computer

science literature. The workflow involves specific challenging tasks, such as the detec-

tion of mitosis or basal cells, the recognition of glands and the classification or regions.

The development of methods that are capable to perform well in each of these specific

tasks are important. Combining such methods can then lead to clinical applicability.

A third challenge is represented by analysis robustness. Recent results on specific

tasks can be comparable to human performances. For instance, in the challenging

task of mitosis detection, the performance of deep learning based methods is now

approaching the inter–observer agreement of expert pathologists [111, 22, 46]. Sim-

ilarly, recent image analysis approaches can classify and grade WSI according to the

tissue patterns resulting from different cancer types [26, 63] with performances that

are comparable with the interpretation of pathologists on the same images. However

the results are usually obtained on data sets that were usually acquired using up to 2–3

scanners, while meta–analysis comparing the same methods on data sets character-

ized by high heterogeneity have not been performed yet. Thus, the challenge for the

performance of each algorithm is to make it robust on different whole slide images.

Structure segmentation in WSI is a challenging task that is important for grading

some cancers. The morphology of glands is routinely used by pathologists to assess

the degree of malignancy of several adenocarcinomas, including prostate, breast, lung,

and colon cancer. FCNN–based architectures are frequent and promising for cells,

glands and epithelium segmentation, while current trends include the use of additional

channels to benefit of spatial, geometric and scale information. However, also for this

task, robust and generalizable results must be obtained before translating them into

practice.

Future perspectives and trends for histopathology CAD systems include the capa-

bility to better interact with images from different scanners and across pathologies,

as well as the creation of methods that can learn from unlabelled or weakly labelled

data. During pre–processing, advanced normalization methods can increase image

similarity, thus making the CAD methods more reliable even on images acquired with

different scanners and with varying staining procedures. The creation of extended data

sets that include numerous pathologies may allow the creation of algorithms that rely

on a deep comprehension of the whole histopathology field, thus making CAD systems

capable of working in several anatomical structures reliably. Finally, the recent advent

and success of deep learning methods in digital pathology suggests that this quickly

improve the performance of CAD systems and accelerate their use, possible via the

development of unsupervised learning methods. Most of current learning algorithms
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require manually annotated training sets. This is particularly evident for deep learning

methods that usually require large amounts of data to work well. It is often difficult

to obtain large amount of manually annotated WSIs because the task is tedious, it re-

quires a medical background and pathologists are usually not very interested in doing

it. Unsupervised learning methods (as in [49]) can help to skip the data annotation

phase, thus allowing to exploit histopathology images automatically.
In conclusion, currently WSI and deep learning are revolutionizing histopathology

CAD, and they may soon help to decrease the work load of pathologists for the most
trivial tasks. This should allow pathologists to concentrate on the most difficult cases
and result in an even deeper understanding of the pathologic processes via the machine
learning approaches.
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26. Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., Shih, N.,
Tomaszewski, J., and Madabhushi, A. Automatic detection of invasive ductal carcinoma in whole
slide images with convolutional neural networks. In SPIE medical imaging (2014), International
Society for Optics and Photonics, pp. 904103–904103.

27. Cruz-Roa, A. A., Ovalle, J. E. A., Madabhushi, A., and Osorio, F. A. G. A deep learning archi-
tecture for image representation, visual interpretability and automated basal-cell carcinoma cancer
detection. In International Conference on Medical Image Computing and Computer-Assisted Inter-
vention (2013), Springer, pp. 403–410.

28. Dalle, J.-R., Li, H., Huang, C.-H., Leow, W. K., Racoceanu, D., and Putti, T. C. Nuclear pleomor-
phism scoring by selective cell nuclei detection. In WACV (2009).

29. Demir, C., and Yener, B. Automated cancer diagnosis based on histopathological images: a sys-
tematic survey. Rensselaer Polytechnic Institute, Tech. Rep (2005).

30. Deng, L., Hinton, G., and Kingsbury, B. New types of deep neural network learning for speech
recognition and related applications: An overview. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing (2013), IEEE, pp. 8599–8603.

31. Depeursinge, A., Foncubierta-Rodrı́guez, A., Van De Ville, D., andMüller, H. Three-dimensional
solid texture analysis and retrieval in biomedical imaging: review and opportunities. Medical Image
Analysis 18, 1 (2014), 176–196.

32. Depeursinge, A., and Müller, H. Fusion techniques for combining textual and visual information
retrieval. In ImageCLEF, H. Müller, P. Clough, T. Deselaers, and B. Caputo, Eds., vol. 32 of The
Springer International Series On Information Retrieval. Springer Berlin Heidelberg, 2010, pp. 95–
114.

33. Diamond, J., Anderson, N. H., Bartels, P. H., Montironi, R., and Hamilton, P. W. The use of mor-
phological characteristics and texture analysis in the identification of tissue composition in prostatic
neoplasia. Human Pathology 35, 9 (2004), 1121–1131.

34. DiFranco, M. D., O’Hurley, G., Kay, E. W., Watson, R. W. G., and Cunningham, P. Ensemble based
system for whole-slide prostate cancer probability mapping using color texture features. Computer-
ized medical imaging and graphics 35, 7 (2011), 629–645.

35. Doyle, S., Hwang, M., Shah, K., Madabhushi, A., Feldman, M., and Tomaszeweski, J. Automated
grading of prostate cancer using architectural and textural image features. In 2007 4th IEEE Inter-
national Symposium on Biomedical Imaging: From Nano to Macro (2007), IEEE, pp. 1284–1287.

36. Doyle, S., Madabhushi, A., Feldman, M., and Tomaszeweski, J. A boosting cascade for automated
detection of prostate cancer from digitized histology. In International Conference on Medical Image
Computing and Computer-Assisted Intervention (2006), Springer, pp. 504–511.

37. Doyle, S., Rodriguez, C., Madabhushi, A., Tomaszeweski, J., and Feldman, M. Detecting prostatic



✐

✐

“bookBTA˙HistoPath” — 2017/2/10 — 14:36 — page 31 — #31
✐

✐

✐

✐

✐

✐

Analysis of Histopathology Images 31

adenocarcinoma from digitized histology using a multi-scale hierarchical classification approach. In
Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Confer-
ence of the IEEE (2006), IEEE, pp. 4759–4762.

38. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., and Pal, C. The importance of skip con-
nections in biomedical image segmentation. In International Workshop on Large-Scale Annotation
of Biomedical Data and Expert Label Synthesis (2016), Springer, pp. 179–187.

39. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. Why does
unsupervised pre-training help deep learning? Journal of Machine Learning Research 11, Feb
(2010), 625–660.

40. Fine, J. L., Grzybicki, D. M., Silowash, R., Ho, J., Gilbertson, J. R., Anthony, L., Wilson, R.,
Parwani, A. V., Bastacky, S. I., Epstein, J. I., et al. Evaluation of whole slide image immunohis-
tochemistry interpretation in challenging prostate needle biopsies. Human pathology 39, 4 (2008),
564–572.

41. Flood, G. Deep learning with a dag structure for segmentation and classification of prostate cancer.
Master’s Theses in Mathematical Sciences (2016).

42. Freund, Y., and Schapire, R. E. A desicion-theoretic generalization of on-line learning and an
application to boosting. In European conference on computational learning theory (1995), Springer,
pp. 23–37.

43. Fu, H., Qiu, G., Shu, J., and Ilyas, M. A novel polar space random field model for the detection of
glandular structures. IEEE transactions on medical imaging 33, 3 (2014), 764–776.

44. Ghaznavi, F., Evans, A., Madabhushi, A., and Feldman, M. Digital imaging in pathology: whole-
slide imaging and beyond. Annual Review of Pathology: Mechanisms of Disease 8 (2013), 331–359.

45. Ghosh, J. Multiclassifier systems: Back to the future. In International Workshop on Multiple
Classifier Systems (2002), Springer, pp. 1–15.
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