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A B S T R A C T

The increasing availability of biomedical data creates valuable resources for developing
new deep learning algorithms to support experts, especially in domains where collect-
ing large volumes of annotated data is not trivial. Biomedical data include several
modalities containing complementary information, such as medical images and reports:
images are often large and encode low-level information, while reports include a sum-
marized high-level description of the findings identified within data and often only con-
cerning a small part of the image. However, only a few methods allow to effectively
link the visual content of images with the textual content of reports, preventing medi-
cal specialists from properly benefitting from the recent opportunities offered by deep
learning models. This paper introduces a multimodal architecture creating a robust
biomedical data representation encoding fine-grained text representations within image
embeddings. The architecture aims to tackle data scarcity (adopting shared layers across
modalities and combining supervised and self-supervised learning) and to create multi-
modal biomedical ontologies. The architecture is trained using over 6’000 colon whole
slide Images (WSI), paired with the corresponding report, collected from two digital
pathology workflows. The evaluation of the multimodal architecture involves three
tasks: WSI classification (on data from pathology workflow and from public repos-
itories), multimodal data retrieval, and linking between textual and visual concepts.
Noticeably, the latter two tasks are available by architectural design without further
training, showing that the multimodal architecture that can be adopted as a backbone to
solve peculiar tasks. The multimodal data representation outperforms the unimodal one
on the classification of colon WSIs and allows to halve the data needed to reach perfor-
mance wtht he same accuracy, reducing the computational power required and thus also
the carbon footprint. The combination of images and reports exploiting self-supervised
algorithms allows to mine databases without requiring new annotations provided by ex-
perts, extracting new information. In particular, the multimodal visual ontology, linking
semantic concepts to images, may pave the way to advancements in medicine and the
biomedical analysis domains, not limited to histopathology.
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1. Introduction

The increasing production of multimodal biomedical data
empowers the development of new deep learning algorithms
to analyze and represent data, especially in domains where
data annotations are few and heterogeneity is high, such as
the histopathology domain. Still, few methods allow extract-
ing knowledge and linking information from different medical
modalities in effective ways.

Physicians rarely base their diagnosis on analyzing a single
biomedical modality, usually collecting and combining infor-
mation from several medical modalities, such as images, sig-
nals and structured data. The collection of several biomedical
data modalities aims to gather relevant information on varying
aspects linked to patient health to identify possibly dangerous
conditions. Data analysis from multiple biomedical modalities
requires the development of new deep learning algorithms, in-
tegrating data from heterogeneous modalities. In this regard,
multimodal learning represents a promising direction. Multi-
modal learning (Bulten et al., 2022; Stahlschmidt et al., 2022;
Zhang et al., 2020; Acosta et al., 2022) involves the combina-
tion of information from multiple modalities, aiming to learn
relationships between modalities to improve data representa-
tion (Stahlschmidt et al., 2022; Acosta et al., 2022). Multi-
modal learning algorithms are becoming increasingly popular
in machine learning for several reasons. First, the information
included in different modalities is usually complementary since
every medical modality generally provides information on spe-
cific aspects of the patient condition (Heiliger et al., 2022). Sec-
ond, the cost of collecting multimodal biomedical data is be-
coming relatively low (Nagai et al., 2017; Gaziano et al., 2016),
thanks to the increasing amount of initiatives pairing multi-
modal sources of information (Acosta et al., 2022). Third, com-
bining multiple sources of information can bring benefits in a
domain where collecting annotated datasets is time-consuming,
as data are heterogeneous (Amal et al., 2022) and inherently
multifaceted.

All these characteristics are particularly relevant in the
histopathology domain. Histopathology involves the analysis
of tissue samples (Gurcan et al., 2009) to identify the micro-
scopic findings characteristic of diseases such as cancer. Pathol-
ogists are the medical experts analyzing tissue sections, the ex-
ploration of which is time-consuming, having been estimated in
about one hour per sample (Krupinski et al., 2013). The anal-
ysis of histopathology samples does not usually rely on digital
assistance in clinical practice, despite the growing digitization
of tissue samples (Pallua et al., 2020; Fraggetta et al., 2017;
Hanna et al., 2019). Digital pathology involves digitizing and
managing tissue specimens, called Whole Slide Images (WSI),
acquired at high resolution and usually stored in a multi-scale
format. WSIs are usually paired with pathology reports (Hanna
et al., 2020), which include observations derived from manual
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stefano.marchesin@unipd.it (Stefano Marchesin*)

WSI analysis for a patient, possibly using several WSIs. Fig-
ure 1 shows examples of WSIs paired with reports.

Fig. 1. Some examples of colon WSIs paired with the corresponding pathol-
ogy reports.

The collection of large-scale image repositories and associ-
ated diagnoses are paving the way for the development of the
computational pathology domain (Marini et al., 2022; Abels
et al., 2019), a domain involving the development of algorithms
for the automatic analysis of WSIs. Even if the performance
reached by computational pathology algorithms is becoming
more and more accurate, some limitations still limit their adop-
tion in clinical practice, such as the need for annotated data
(Madabhushi and Lee, 2016; Campanella et al., 2019); the lack
of model generalization on unseen data due to data heterogene-
ity (e.g. in terms of tissue morphologies and color variations)
(Tellez et al., 2019; Marini et al., 2023); the limited combina-
tion between WSIs and other medical modalities in network de-
sign.

In particular, combining multiple modalities, such as WSIs
and reports, is still challenging because of the relationship
between modalities. Analyzing a specific medical modality
requires a specific architectural design (Acosta et al., 2022;
Huang et al., 2020), but combining heterogeneous architectures
may not be trivial, also because a single report often concerns
a larger number of WSIs. For instance, images are often an-
alyzed with Convolutional Neural Networks (CNN) or Visual
Transformers (ViT), while reports with pre-trained Large Lan-
guage Models (LLMs). Furthermore, the relationship among
modalities can influence how they combine: if a modality is
subordinated to another, not all available multimodal learning
frameworks can be adopted. This is particularly true consider-
ing modality fusion algorithms, where multiple modalities must
be combined at both training and testing phases. For this rea-
son, most applications that combine images and reports exploit
reports to produce weak labels, which are then used as ground
truth for the corresponding images (Marini et al., 2022; March-
esin et al., 2022).

This paper presents a multimodal architecture combining the
low-level visual information encoded within biomedical images
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with the high-level semantics stored within textual reports. The
novelty of the paper includes both technical aspects and the pos-
sibility to create visual ontologies with biomedical data. Tech-
nical aspects involve the adoption of self-supervised algorithms
in a context where training data are scarce. Usually, SSL algo-
rithms require large amounts of training data (Azizi et al., 2022;
Chen et al., 2022; Campanella et al., 2023; He et al., 2020;
Chikontwe et al., 2020; Caron et al., 2021; Vorontsov et al.,
2023). However, the collection of a large amount of biomedi-
cal samples may not be trivial. For this reason, the multimodal
architecture shows a peculiar design: it consists of two input
branch encoders (which separately encode WSIs and pathol-
ogy reports) and it is trained combining supervised with self-
supervised learning. The encoders aim to generate an embed-
ding vector for each input modality, that are afterwards aligned
exploiting peculiar SSL loss functions and are processed by a
shared projection head and a shared classifier. During train-
ing, the loss function includes both weak and self-supervised
terms to (i) optimize the classification of images and reports
and (ii) learn relationships among modalities. While classifica-
tion requires supervised learning, the terms involved in relation-
ship learning across modalities aim to build a strong multimodal
histopathology representation space in a self-supervised (SSL)
fashion. This choice differs from classical SSL algorithms and
VLMs, where no annotations are required. Those frameworks
are based on the idea that large unannotated datasets can be col-
lected. However, as explained, this condition may not be always
possible, particularly in the biomedical domain. Therefore, the
lack of a large training dataset is compensated by adding weak
supervision.

The multimodal architecture, based on SSL and weakly su-
pervised learning, aims to create visual ontologies of biomed-
ical data from limited training sets. Learning relationships be-
tween images and reports via SSL allows mining databases to
discover new knowledge without the need for annotations by
medical experts. The chosen concepts to match are fine-grained
concepts, collected from the ExaMode Ontology (Menotti et al.,
2023). The adoption of these concepts is not trivial: even if
VLMs allow to link visual and textual concepts, most of the
SOTA algorithms focus on broader concepts, such as the can-
cer type (Vorontsov et al., 2023; Lu et al., 2023a) or molecular
subtypes (Filiot et al., 2023).

The generated multimodal histopathology data representa-
tion, being more robust than its unimodal counterparts, can
serve as a strong backbone to address various other tasks. The
analysis described in this paper targets over 6’000 colon WSIs
and pathology reports – paired together – collected from digital
pathology workflows and over 1’000 WSIs collected from pub-
licly available datasets. The architecture is evaluated on three
tasks: WSI classification (evaluated on pathology workflow and
publicly available data), multimodal data retrieval (considering
a modality as input to retrieve the other one), and linking visual
and textual concepts. While the architecture is trained to clas-
sify input samples, the latter two tasks are available by design,
obtained without the need for further training, learned without
any supervision.

Colon cancer was selected as a use case because it has a

significant impact worldwide and it is challenging to diagnose.
Regarding the first reason, colon cancer is the fourth most fre-
quently diagnosed cancer globally (Benson et al., 2018), with
a projected 75% increase by 2040 for both genders and across
various age groups (Rahib et al., 2021). For the second reason,
the diagnosis of colon cancer is complex as it requires the iden-
tification of multiple concepts, such as the presence of cancer,
the presence of dysplasia (and its grades), and the presence of
polyps.

1.1. Related work

Multiple Instance Learning. Multiple Instance Learning (MIL)
is currently the state-of-the-art framework to train weakly-
supervised models (i.e., models trained using global labels) in
the computational pathology domain (Campanella et al., 2019;
Ilse et al., 2018; Wang et al., 2019; Lu et al., 2021; Hashimoto
et al., 2020). MIL allows the organization of data as a bag
of instances (Carbonneau et al., 2018), where the global an-
notations related to data include information about the whole
bag, and no information about the single instances is available.
MIL algorithms process the single instances, exploiting archi-
tectures such as CNNs or ViT as backbone, and then aggre-
gate them. Currently, most of the MIL algorithms are based
on the embedding-based framework (Carbonneau et al., 2018),
where the features representing the single instances are aggre-
gated by a component called the pooling layer. The state-of-
the-art pooling layer is based on an attention network (Ilse
et al., 2018), where learnable weights are assigned to each patch
based on its significance in the overall prediction. In the com-
putational pathology domain, a WSI represents a bag includ-
ing patches (i.e., the instances), and the available annotations
involve the entire WSI. Campanella et al. (2019) showed that
applying MIL can lead to the development of models reaching
almost perfect cancer vs. non-cancer predictions. The paper
was the first to show the data needed (around 10,000 per tis-
sue use case) to reach AUC = 0.99. Ilse et al. (2018) presented
the Attention-Based Multiple Instance Learning (ABMIL), the
first MIL framework embedding an attention network as a pool-
ing layer. The attention network presents a single attention
channel since the ABMIL framework is designed to be applied
to binary problems. Javed et al. (2022) presented Additive-
MIL (ADMIL), a MIL framework aiming to extend the MIL
formulation to multiclass scenarios, embedding an attention-
pooling layer with a channel for every output class. Lu et al.
(2021) presented Clustering-constrained Attention Multiple In-
stance Learning (CLAM), an embedding-based MIL algorithm,
adopting a cluster technique to aggregate relevant instances and
identify relevant regions, to improve the WSI-representation.
Li et al. (2021a) presented Dual-Stream MIL, a MIL frame-
work producing patch-level and image-level predictions. The
instance-level predictions are evaluated only on a subset of rel-
evant patches. They are aggregated using an attention mech-
anism to produce a WSI-level embedding, afterward adopted
for WSI classification. Shao et al. (2021) presented TransMIL,
a MIL framework combining CNN backbone and ViT compo-
nents (Vaswani et al., 2017), to exploit spatial included within
WSIs. The Transformer architecture represents instance fea-
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tures (processed by a CNN backbone) as a sequence of to-
kens. It adopts a self-attention mechanism to highlight relation-
ships between individual instances lost in attention networks.
Li et al. (2021b) presented Deformable Transformer for Multi-
ple Instance Learning (DTMIL), a hybrid architecture including
convolutional layers and ViT components. The architecture al-
lows focusing attention on a sub-set of relevant patches instead
of the entire WSI, limiting the range of self-attention and re-
quiring less computational power. Zhang et al. (2023) presented
Multi-Level Multiple Instance Learning (MMIL-Transformer),
a pure Transformer architecture to classify WSIs. The architec-
ture aims to mimic the behavior of pathologists, that small sub-
regions of interest from a sample, combining the single sub-
region representations via a self-attention mechanism to build
the WSI representation feeding a classifier.

Self-supervision. Self-supervised learning is a framework in-
vestigating how to exploit unlabeled data to learn a relevant
data representation that can be fine-tuned afterward to per-
form specialized downstream tasks. The self-supervised do-
main is reaching increasing success, especially in domains such
as computational pathology, where collecting annotated data
is time-consuming (Koohbanani et al., 2021; Srinidhi et al.,
2022). Training modern CNNs from scratch (i.e., with ran-
dom initialization weights) to perform a supervised task may
lead to the limited generalization capability of networks due
to the limited amount of data. Typically, CNN backbones are
pre-trained on the ImageNet data. However, the ImageNet
dataset includes natural images, different from histopathology
images. Therefore, the peculiar fine-grained features needed
to analyze histopathology data may not be identified (Dehaene
et al., 2020). Self-supervised algorithms aim to learn pecu-
liar features and relationships from data collected from a spe-
cific domain instead of adopting natural images to pre-train
the network. Currently, most of the self-supervised algorithms
adopted in computational pathology, such as MoCO (He et al.,
2020), simCLR (Chikontwe et al., 2020), and DINO (Caron
et al., 2021), are contrastive algorithms adopted from general
computer vision domains. The algorithms show similar char-
acteristics since they aim to learn a data representation where
similar samples are close to each other and far from dissimilar
examples (e.g., glands close in the latent space and stroma in
a different latent space region). For each couple of samples,
both algorithms try to minimize the distance (in the embed-
ding space) between the embeddings representing similar sam-
ples and maximize the distance between the embeddings repre-
senting dissimilar samples. Due to human-in-the-loop absence,
couples of similar and dissimilar examples are automatically
generated via data augmentation. Therefore, a sample is simi-
lar to its augmented version (i.e., after a transformation such as
rotation, flipping, or color perturbation) and dissimilar to other
samples in a batch (He et al., 2020; Dehaene et al., 2020). Az-
izi et al. (2022) presented REMEDIS as a training strategy to
improve the medical data representation. REMEDIS includes
two training steps: first, a self-supervised pre-training strategy
(on natural and then medical data), exploiting the simCLR algo-
rithm and large datasets, and then a fine-tuning strategy, training
the model to classify the limited data. Chen et al. (2022) pre-

sented the Hierarchical Image Pyramid Transformer (HIPT), a
ViT architecture trained on over 10’000 WSIs (from 33 cancer
types) to exploit the hierarchical multi-level structure of WSIs,
combining two levels of self-supervised learning. HIPT aims to
capture tissue structures from multiple magnification levels and
combine them to enrich the WSI representation. Wang et al.
(2022) presented Semantically-Relevant Contrastive Learning
(SRCL), a self-supervised algorithm inspired by MoCov3, that
aligns multiple positive instances with similar visual concepts
instead of couples of positive examples collected from WSIs.
The positive instances are generated using data augmentation
and some semantically relevant images identified from a mem-
ory bank. Chen and Krishnan (2022) presented a study com-
paring different self-supervised and weakly-supervised strate-
gies, aiming to identify the more robust representation in com-
putational pathology. The authors identified that ViTs, pre-
trained using the DINO algorithm (based knowledge distilla-
tion), guarantee robust and interpretable features since different
attention heads can learn features related to distinct morpho-
logical phenotypes. Filiot et al. (2023) presented iBOT, a self-
supervised transformer-based algorithm based on Masked Im-
age Modeling (MIM). MIM involves the reconstruction of ran-
domly masked image portions (i.e., patches or pixels), aiming to
learn meaningful representations. Campanella et al. (2023) pre-
sented a study including the largest histopathology dataset ever
collected, over 3 billion images collected from over 423’000
WSIs. The study aims to compare the pre-training of ViT ex-
ploiting DINO and the masked autoencoder (MAE) algorithms.
After the pre-training, the learned representation is evaluated on
downstream tasks. Vorontsov et al. (2023) presented Virchow,
a large neural network trained with a DINO algorithm on over
1.5 million WSIs.

Vision-Language models for image representation learning.
Vision-Language models (VLM) are algorithms aiming to build
a data representation combining images and texts. VLMs are
trained with images and the corresponding text (e.g., a textual
description of the image content) to learn how to link the infor-
mation from the two modalities. For this reason, VLM models
are usually designed with multiple input branches, embedding
architectures to process specific input data, respectively, to in-
put images and texts. The goal of VLMs is to build a stronger
data representation that can be adopted as a backbone to solve
downstream tasks (i.e. specific tasks), such as classification or
zero-shot learning, avoiding the need for annotations that may
be expensive to collect. Radford et al. (2021) presented Con-
trastive Language-Image Pre-training (CLIP), a self-supervised
algorithm to align visual and textual representations. CLIP
is trained to maximize the similarity between corresponding
image-text pairs while minimizing the similarity on unrelated
pairs, exploiting a contrastive loss function (Oord et al., 2018).
After a pre-training phase, CLIP is evaluated on downstream
tasks via zero-shot learning, showing strong performance on 30
benchmark datasets. The training involves around 400 million
paired image-texts collected from publicly available reposito-
ries. Yu et al. (2022) presented Contrastive Captioner (CoCa),
an algorithm to pre-train image-text encoder-decoder. The
pre-trained architecture can be adopted to solve downstream
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tasks, as shown for CLIP. CoCa is trained by combining a con-
trastive loss function with a captioning loss, which aims to min-
imize capture the dissimilarity between the predicted sequence
of output tokens (autoregressively produced by the output de-
coder) and the actual target sequence. Zhang et al. (2020) pre-
sented Contrastive VIsual Representation Learning from Text
(ConVIRT), a framework aiming to learn image representations
combining medical images and the corresponding reports. The
image encoder (a CNN) is trained with MRIs. The training
involves optimizing two loss functions: the first is adopted to
maximize the similarity between image-to-text pairs. In con-
trast, the second one is adopted to maximize the similarity be-
tween text-to-image pairs. In both cases, the loss function is the
Noise-Contrastive Estimation loss function (InfoNCE), which
is asymmetric for each input modality Wang et al. (2021) pre-
sented a UniFied TransfOrmer (UFO), a Transformer-based ar-
chitecture that can be trained with both unimodal and multi-
modal data, depending on the task to solve. The peculiarity of
UFO is that it includes a single encoder, adopted for multiple
modalities (that are concatenated). The encoder is trained to
optimize several loss functions: an image-text contrastive loss,
an image-text matching loss and a masked language modeling
loss.

Multimodal Learning in Computational Pathology. The ap-
plication of multimodal learning algorithms in computational
pathology aims to combine multiple sources of pathology data
(usually histopathology images with reports or genomics data).
Multimodal algorithms are usually pre-trained on agnostic tasks
to provide a robust (including complementary characteristics)
backbone model that can be further applied to specific down-
stream tasks. Lu et al. (2023b) presented MI-Zero, a frame-
work to pre-train a model in a self-supervised fashion, exploit-
ing a mechanism similar to CLIP. MI-Zero is pre-trained on
many image-text pairs (around 33’000 histopathology image-
report pairs) and then adopted to solve several downstream
tasks, exploiting zero-shot learning. Furthermore, the text en-
coder is pre-trained using a corpora including around 900’000
reports from two hospitals and PubMed repositories. Huang
et al. (2023) presented Pathology Language Image Pre-Training
(PLIP) a vision-language model trained with a self-supervised
algorithm to align histopathology images and the correspond-
ing description. PLIP is pre-trained to adopt OpenPATH, a
dataset including over 200,000 histopathology images paired
with the corresponding text. Exploiting the alignment among
modalities, PLIP can be adopted to classify samples labeled
with unseen classes using zero-shot learning. Lu et al. (2023a)
presented CONtrastive learning from Captions for Histopathol-
ogy (CONCH), a visual-language foundation model designed
to exploit several histopathology images and biomedical text.
CONCH is trained using over 1.17 million image-text pairs, us-
ing two loss functions: an image-text contrastive loss to align
the multimodal representation and a captioning loss function,
such as the one proposed in CoCa.

1.2. Main contributions
In this work, we aim to address the following research ques-

tion:

RQ: Can high-level concepts from textual reports be effec-
tively combined with low-level image representations?

To do so, we present a multimodal architecture combining vi-
sual information from images with textual information from re-
ports to improve histopathology data representations. Specifi-
cally, the contributions of this work are:

• A multimodal learning architecture combining images and
reports, leading to a stronger histopathology data repre-
sentation, that can be used as a backbone to solve compu-
tational pathology tasks.

• A multimodal histopathology data representation al-
lows outperforming unimodal representations in terms of
WSI classification, making it possible to exploit smaller
datasets to train effective networks.

• The combination of self-supervised learning methods to
learn similarities and dissimilarities between images and
reports, using limited training datasets.

• The representation of medical ontologies in terms of visual
knowledge, linking visual information from images with
textual information from reports.

The rest of the paper is organized as follows: Section 2 de-
scribes the multimodal architecture, the dataset, including WSIs
paired with reports, and the experimental setup. Section 3 de-
scribes the experimental results of the multimodal architecture
on four tasks: WSI classification on pathology workflow data,
Section 2.4.1, WSI classification on publicly available data,
Section 2.4.1, multimodal data retrieval, Section 2.4.1, and the
linking between visual and textual concepts, Section 2.4.1. Sec-
tion 5 provides a discussion on the obtained results, while Sec-
tion 6 concludes the paper with some final remarks.

2. Methods

2.1. Data
The dataset used in this paper includes over 6’000 colon

WSIs and reports collected from the pathology workflows
of two hospitals (the Catania cohort and Radboudumc) and
over 1’000 colon images collected from two publicly available
repositories.

Data from pathology reports are used to train and test the
architecture. The architecture is trained with both WSIs and re-
ports, while during the test phase, the model is mutually exclu-
sive: only WSIs or reports can be used. Both images and reports
are manually annotated by experts with five classes: Adenocar-
cinoma, High-Grade Dysplasia (HGD), Low-Grade Dysplasia
(LGD), Hyperplastic Polyp and Normal Glands. The classes
are not mutually exclusive, leading to multilabel annotations.
Pathology workflow data are not manually selected, leading to
unbalanced data in terms of class distribution, from both the
Catania cohort and Radboudumc data. This choice aims to sim-
ulate a common scenario in digital pathology, where informa-
tion about the image content is easy to be collected. In fact,
querying a LIS for specific information about WSIs is often not
feasible.
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Table 1. Composition of the dataset collected from the pathology workflows of the Catania cohort and Radboudumc. The dataset includes paired WSIs
and reports. The dataset is split into training and testing partitions. A 10-fold cross validation approach is applied to train and validate the models.

Source Adenocarcinoma HGD LGD Hyperplastic Polyp Normal glands Total
Training data

Catania 893 774 1263 470 579 3091
Radboudumc 395 357 856 952 939 3085

Total 1288 1131 2119 1422 1518 6176
Testing data

Catania 111 96 113 32 98 348
Radboudumc 75 65 146 119 193 520

Total 186 161 259 151 291 868

WSIs and reports are paired together. WSIs include gigapixel
tissue samples, heterogeneous in terms of stain and sample
types. Stain variability is a consequence of the heterogeneous
acquisition procedures, especially regarding whole slide scan-
ners and the composition of chemical reagents applied to the tis-
sue. Catania cohort images are scanned using two Aperio scan-
ners and two 3DHistech ones (at magnification 20/40x), while
Radboudumc images are scanned using 3DHistech (at magni-
fication 40x). Furthermore, the images are acquired with dif-
ferent types of medical tests: the Catania cohort dataset mainly
includes colorectal polypectomies, biopsies, tissue resections
and margin resections; while the Radboudumc dataset mainly
includes biopsies and few polypectomies. Usually, biopsies are
smaller in terms of size than colorectal polypectomies and tis-
sue resections. The latter two types of images include more
tissue and therefore more patches can be extracted. Table 1 in-
cludes a detailed composition of data collected from pathology
reports, split in training and testing partitions.

Reports include heterogeneous free-text short descriptions of
the findings identified during the analysis, that may lead to one
or more high-level concepts linked to the considered classes
(e.g., high-grade and low-grade dysplasia). The finding de-
scription is collected from the ’Conclusion’ field, that may in-
clude macroscopic or microscopic description about the sin-
gle WSI to which it is paired, avoiding any other information
about the patient (such as the family history or personal infor-
mation). Textual reports are heterogeneous in terms of source
language, internal structure organization, and textual content.
Reports are translated to English before the analysis, but the
source languages are Italian and Dutch for the Catania cohort
and Radboudumc, respectively. The internal structure of the re-
ports varies according to the workflows from which they orig-
inate: The Catania cohort reports include a field with the diag-
nosis of the images, while Radboudumc reports include a field
with the diagnosis of the whole block including one or more
images. The last source of heterogeneity involves the textual
content, as samples and reports are collected over the years.
Therefore, several pathologists wrote the reports with their own
personal style. Furthermore, Catania cohort reports are manu-
ally typed, while Radboudumc ones are sometimes generated
through “speech to text” tools, thus introducing an additional
source of noise in the report analysis.

For what concerns WSIs from publicly available datasets,
they are collected from two publicly available repositories:

UNITOPatho (Barbano et al., 2021) and IMP-CRC (Oliveira
et al., 2021). These repositories include heterogeneous images,
in terms of color variations, sample types, and classes. UNI-
TOPatho images are scanned using a Hamamatsu Nanozoomer
S210 (at magnification 20x). They include sections of WSIs
that are paired together and treated as a single WSI, and are an-
notated with four classes: High-Grade Dysplasia, Low-Grade
Dysplasia, Hyperplastic Polyp, Normal Glands. IMP-CRC im-
ages are scanned using two Leica GT450 scanners (magnifi-
cation 40x). They include colorectal biopsy and polypectomy
slides, and are annotated with three classes: High-Grade Le-
sions, Low-Grade Lesions, Non-Neoplastic Lesions.

Publicly available data are collected to evaluate the capability
of the multimodal data representation to generalize on hetero-
geneus data. The architecture is adopted to solve different clas-
sification problems (i.e. adopting other output classes and re-
training the architecture classifier), comparing it with the uni-
modal data representation. Table 2 includes a detailed composi-
tion of data collected from publicly available repositories, split
in training and testing partitions.

Overall, the data involved in this study presents a high degree
of heterogeneity, which well resembles the landscape that these
methods are required to face in real-case scenarios. In support
of this, Figure 2 shows the dataset heterogeneity, in terms of
tissue sample type and of color distributions.

2.2. Multimodal architecture and training

We present a multimodal architecture to combine visual and
textual information from biomedical images and textual reports,
aiming to combine the low-level information from images with
the high-level information from reports.

Figure 3 provides an overview of the architecture. The ar-
chitecture includes two input branches and some shared layers,
including the classifier. The input branches process and encode
WSIs and pathology reports. The image input branch (encoding
WSIs) consists of a CNN backbone and exploits the ADMIL
framework to create an embedding of fixed dimension (128)
representing a WSI. The embeddings are aggregated using an
attention pooling layer, producing a single attention channel
for each one of the classes involved in the classification (i.e.
five). The attention channels are aggregated in a single embed-
ding vector, representing the WSI, exploiting another attention
pooling layer. The latter aggregation aims to create a single-
dimension vector, that can be aligned to the one produced by
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Table 2. Composition of the dataset collected from public available repositories: UNITOPatho and IMP-CRC. The dataset includes only images and it is
split into training and testing partitions. A 10-fold cross validation approach is applied to train and validate the models.

UNITOPatho images
Partition HGD LGD Hyperplastic Polyp Normal Glands Total
Training 35 144 31 16 226
Testing 11 40 10 5 66

IMP-CRC images
Partition High-Grade Lesions Low-Grade Lesions Non-Neoplastic Lesions Total
Training 200 427 174 801
Testing 51 100 52 203

Tissue type

Margin resection Polypectomy

Patch distribution Color distribution

Tissue resectionBiopsy

Catania Radboudumc IMP-CRCUNITOPatho

Fig. 2. Overview of dataset heterogeneity. The upper part includes examples of tissue samples: biopsy, tissue resection, margin resection and polypectomy.
The lower part includes the distribution of patches per dataset (on the left), considering the Catania cohort (green), Radboudumc (Blue), UNITOPatho
(yellow) and IMP-CRC; the distribution of color variation according the dataset (on the right), considering the PCA projection of the RGB components
for H&E of the patches.

the text encoder. The architecture is shown in the lower layer of
Figure 3. The text input consists of a BERT backbone, that out-
puts an embedding (768 in size) followed by a fully connected

layer, to project the BERT embedding to a lower dimension
size. The fully-connected layer creates an embedding of fixed
dimension (i.e. 128, the same as WSI embeddings) representing
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a report. The embeddings of both modalities feed a shared pro-
jection layer. The choice of adopting a shared projection layer
aims to tackle the lack of large datasets to train the architecture.
Usually, VLMs embed a l2-normalized projection head for ev-
ery modality, such as in CLIP architecture Radford et al. (2021).
However, those models are usually trained with a larger magni-
tude of samples (between hundreds of thousands and millions
of samples) than our setup, where we adopted around 6’000
WSIs. The rationale behind this single projection head is to en-
hance alignment between image and text representations, given
the limited data in self-supervised scenarios. This design aims
to avoid overfitting, allowing the projection head to more effec-
tively align modalities when processing both images and texts,
leveraging its weight updates for classifying both modalities.
The embeddings of both modalities feed the classifier, which
outputs predictions on multilabel classes for both WSIs and re-
ports. The embeddings representing WSIs and reports are not
l2-normalized, as usually shown in VLMs, since the embed-
dings feed a classifier and it is not typical to normalize embed-
dings before a classifier.

The training of the network aims to classify histopathology
samples (both WSIs and reports) and to combine high-level
properties from reports with low-level properties from the im-
age representation, based on raw pixels. While the first goal is
achieved by minimizing the errors on the WSI and report pre-
dictions via two Binary Cross-Entropy loss function terms, the
combination of high-level and low-level properties is achieved
through several factors. First, the training loss function includes
three terms to combine information: the NTXent loss function,
the L1-loss, and the cosine similarity loss. The ablation study
involving the three loss functions is shown in Section 4. The
NT-Xent loss function is a contrastive loss function adopted in
self-supervised algorithms, such as MoCo and simCLR. During
training, the architecture is fed with two input batches of dimen-
sion n: the WSIs and the reports. Every sample is linked to a
similar example and n-1 dissimilar examples in the other batch.
A similar example is the paired sample corresponding to the
other modality (in the case of a WSI, the corresponding pathol-
ogy report and viceversa), while instead the dissimilar examples
are the other samples (i.e. in the case of a WSI, the reports of
the other WSIs). The role of NT-Xent optimization is to learn
the similarity and dissimilarity between samples in a batch. In
this paper, the NT-Xent loss function is used to learn the sim-
ilarity between a couple of corresponding WSI-report and the
dissimilarity between unpaired WSIs and reports, as shown in
a paper in recent papers about Vision-Language models, such
as (Radford et al., 2021; Zhang et al., 2020; Lu et al., 2023b;
Huang et al., 2023). NT-Xent is mainly sensitive to two param-
eters, which influence the loss function: a temperature param-
eter and the batch size. The temperature value chosen is fixed
at 0.07, while the batch size is equal to 4. More information
about the batch size is detailed in the Supplementary Material.
The role of L1-loss and cosine similarity loss functions is to
align the multimodal representations by minimizing the differ-
ences between the WSI and report representations. The L1-
loss (Mean Absolute Error loss) is a function that minimizes
the absolute differences between two vectors. The cosine sim-

ilarity loss function is a function that minimizes the cosine of
the angle between two vectors, computed as the dot product
of the two vectors divided by the product of their magnitudes.
The combination of both loss functions to align representations
aims to avoid overfitting on training data (as shown in Section
4), since the direct minimization of the distance between multi-
modal representations, in combination with the relatively small
training dataset (around 6’000 couples images-reports), could
lead the image and text representations into a small cluster in
the embedding space (Liao, 2021). Furthermore, the fact that
both modalities are classified by the same output branch helps
to align the modality representations. In fact, during the train-
ing phase, the network weight updates influence both modali-
ties, which are supposed to be as similar as possible.

In this paper, the multimodal architecture can be trained with
several setups:

• unimodal: the architecture is trained only on the classifi-
cation of WSIs.

• self-supervised learning (CLIP loss): the architecture is
trained only on the self-supervised task, with the CLIP loss
function.

• self-supervised learning (our loss): the architecture is
trained only on the self-supervised task, with the loss func-
tion proposed in the paper (L1-loss + Cosine similarity
Loss function + NT-Xent Loss).

• multimodal (CLIP): the architecture is trained combining
the classification terms and the CLIP loss function.

• multimodal (our): the architecture is trained combining the
classification terms and with the loss function proposed in
the paper (L1-loss +Cosine similarity Loss function +NT-
Xent Loss).

2.3. ExaMode ontology

The ExaMode ontology (Menotti et al., 2023) contains sev-
eral components, including the key high-level concepts and
properties for analyzing the findings identified during the tis-
sue analysis.

The high-level concepts are summarized in three macro cat-
egories:

• Type of the polyp identified (‘Adenoma-Serrated Polyps’
or ‘Malignant Polyps’). This kind of information refers to
the node ‘Polyp of Colon’ and to its subclasses.

• Presence of Dysplasia, with the corresponding grade (low
grade, medium grade, or high grade). This kind of infor-
mation refers to the node ‘Dysplasia’ and to its subclasses.

• Characteristics of malignant polyps (considered as can-
cer), such as the type of tumor, the tumor grade. This kind
of information refers to the node ‘Adenocarcinoma’ and to
its subclasses.
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Shared weights

Training
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ENCODER

IMAGE ENCODER

CNN backbone
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Fig. 3. Overview of the multimodal architecture. It includes two input branches, to encode WSIs and pathology reports, a shared projection head and a
shared classifier. During the training both modalities are used, while instead during the testing the modalities are analyzed alone. The training involves the
optimization of a loss function including several terms: the classification errors for both WSIs and reports, a self-supervised loss including NT-Xent loss, a
L1-loss and a cosine similarity loss function. The self-supervised loss function aims to align the representations of WSI and reports. The lower part of the
Figure shows the image encoder: an ADMIL network, which includes a CNN backbone and two attention networks. The first attention network aggregates
the single patches to create a WSI-embedding, containing an embedding for every class. In order to obtain a monodimensional embedding vector, another
attention network aggregates the channels.

2.4. Experimental setup
2.4.1. Evaluation tasks
WSI classification on pathology workflow data. The multi-
modal architecture is tested on the classification of WSIs from
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pathology workflows, considering the unimodal and the mul-
timodal setups (both with CLIP and our loss function to align
multimodal representations). The testing partition includes an
independent (split at patient-level) set of 868 WSIs, from both
the Catania cohort (348) and Radboudumc (520). The goal of
this task is to evaluate if the multimodal representation (learnt
combining WSIs and reports) reaches higher performance com-
pared with the unimodal representation (learnt only from im-
ages), using the same architecture. Furthermore, both architec-
tures are trained with an increasing percentage of data (from
10% to the whole dataset), to evaluate if the combination of
images and reports (paired together in pathology workflow)
leads to high classification performance with a smaller amount
of training data, reducing the need for the collection of large
datasets.

WSI classification on publicly available data. The multimodal
architecture is tested on the classification of images from public
available datasets (UNITOPatho and IMP-CRC), considering
the unimodal and the multimodal (our loss function) training
setups. The goal of this task is to evaluate if the multimodal
histopathology data representation can generalize better than
unimodal one on heterogeneous data. The multimodal architec-
ture is adopted as a pre-trained backbone to classify WSI from
external datasets, including different classes. Therefore, WSI
classification on publicly available data involves the finetuning
of the multimodal architecture, trained using both couples of
WSIs-reports or only WSIs, as shown in Paragraph 2.4.1. In
this task, only the classifier is trained, while the backbone of
the multimodal architecture image input branch is frozen. The
classification performance of the multimodal representation is
compared with the performance of the unimodal representation.

Multimodal data retrieval. The multimodal architecture is
tested on the multimodal retrieval of images and reports, con-
sidering all the training setups, except the unimodal one. The
task involves the retrieval of samples across modalities. When
the input sample is an image, the goal is to retrieve the most
similar reports; on the other hand, when the input sample is a
report, the goal is to retrieve the most similar images. A point
to stress about this task is that the multimodal retrieval task is
inherently available after the multimodal training of the archi-
tecture – since the network is not directly trained on the retrieval
task – without the need for additional training or finetuning.

Linking between visual and textual concepts. The multimodal
architecture is tested on the linking between visual and textual
concepts, considering all the training setups, except the uni-
modal one. The concepts are the ones described in Section 2.3.
The linking involves semantic concepts from pathology reports
and the corresponding visual representations based on pixels,
exploiting a zero-shot learning setup. Textual concepts can be
extracted from textual reports, but it is still not completely clear
how to link them to images, that include only raw-pixels, with-
out any semantics. The linking involves the evaluation of sim-
ilarity (cosine similarity) between the embeddings of images
and concepts. In this paper, the images may be single patches
(224x224 from magnification 10x) or entire WSIs. When the

linking involves the single patches, firstly, the corresponding
textual representation (a 128-element vector) of every concept
is evaluated, using the textual branch of the architecture. For
each input patch, the cosine similarity between the image and
the concepts is evaluated. The patch is linked with the con-
cept showing the highest similarity value. One hundred patches
per concept were selected (the ones with the highest similarity
value), which an expert pathologist reviewed. When the link-
ing involves the WSIs, the evaluation is slightly different since
the task is not a multiclass problem, such as at patch-level, but
it is rather a multilabel problem, since many concepts may be
linked to a single WSI. Following a similar approach to the one
proposed for patch linking, the cosine similarity between the vi-
sual embedding representing WSIs and the textual embedding
representing concepts/classes is evaluated. Several thresholds
are applied to link visual and textual concepts (0.7, 0.8, 0.9), as
shown by Veeranna et al. (2016). When the cosine similarity
exceeds the threshold, the textual concept is linked to the WSI.

Also, for this task, a point to stress is that the concept match-
ing task is inherently available after the multimodal training of
the architecture, without the need for additional training costs
or fine-tuning since the network is not directly trained on the
linking between visual and textual concepts task.

2.4.2. Image pre-processing
Image pre-processing involves splitting the image into

patches, selecting the ones from tissue regions, and discard-
ing regions from the background. The splitting of WSIs into
patches is necessary due to the gigapixel nature of WSIs. Cur-
rently, GPU hardware has limited memory and struggles to
handle large input images. Images are split into patches of
224x224 pixels, extracted from magnification 10x, using the
Multi Scale Tools library (Marini et al., 2021b). The patch size
is chosen considering that the ResNet34 backbone used as CNN
requires this input data size. The magnification level is chosen
considering that the WSIs at 10x allow visualizing the com-
ponents that correctly identify the considered classes. Patches
coming from background regions are not informative for the tis-
sue analysis and are therefore discarded. The tissue and back-
ground regions are identified by generating tissue masks with
HistoQC tool (Janowczyk et al., 2019).

2.4.3. Report pre-processing
The report pre-processing involves the translation of the re-

ports into English and the splitting of text into tokens. Re-
ports are originally stored in Italian and Dutch, according to the
workflows from which they originate. However, state-of-the-
art NLP algorithms are often developed to use English. There-
fore, the report content is first translated to English using pre-
trained MarianMT neural machine translation models (Junczys-
Dowmunt et al., 2018). Then, before the analysis, translated
reports are WordPiece tokenized using the BERT model vo-
cabulary. BERT vocabulary includes around 30’000 tokens di-
vided into words, subwords, or characters. When words are
not included in the vocabulary, the WordPiece tokenizer divides
words in known subword units or characters. By design, BERT
accepts sequences of a maximum of 512 tokens, where the first
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token of each sequence is a special classification token ([CLS])
and the last is a special separator token ([SEP]). The final hid-
den state corresponding to the [CLS] token is the aggregate
sequence representation for classification tasks (Devlin et al.,
2018).

2.4.4. Multimodal architecture pre-training
Both input branches for encoding images and reports are pre-

trained.
The image input branch is a ResNet34 backbone, pre-trained

with MoCo v2. MoCo v2 is a self-supervised framework aim-
ing to learn features from input data. MoCo v2 is adopted to
pre-train the CNN backbone on learning similarities and dis-
similarities between input samples. In this paper, the input sam-
ples correspond to the WSI patches collected from the training
partition. The concepts of similarity and dissimilarity among
input data are achieved using data augmentation: an input sam-
ple is considered similar to its augmented version and dissim-
ilar from the others. The augmented samples are collected in
a queue to produce dissimilar examples from the input data.
This paper’s queue includes 16384 samples, while each batch
includes 256 samples. The augmentation pipeline includes sev-
eral operations, implemented with Albumentations python li-
brary (Buslaev et al., 2020): horizontal and vertical flipping,
random rotations (90/180/270 degrees), HUE saturation value,
RGBShift, Contrast Limited AHE (CLAHE), random bright-
ness, random contrast, elastic transformation, grid distortions.
Each operation is applied to an input sample with a probability
of 0.8. During CNN pre-training, a H&E-adversarial optimiza-
tion (Marini et al., 2021a) is adopted to force the network to
learn stain-invariant features to improve the capability of the
network to generalize well when tested on data, including dif-
ferent stains that the ones included in the training partition.

The report input branch uses PubMedBERT (Gu et al., 2021)
as the backbone, a BERT model pre-trained from scratch us-
ing abstracts from PubMed and full-text articles from PubMed
Central (Gu et al., 2021). PubMedBERT has been pretrained
from scratch – using a domain-specific vocabulary – over
biomedicine text to overcome the limitations of mixed-domain
pre-training strategies. PubMedBERT has been optimized via
Masked Language Modeling (MLM), Next Sentence Prediction
(NSP), and adversarial pre-training, which introduces perturba-
tions in the (input) embedding layer that maximizes the adver-
sarial loss. Adversarial pre-training forces PubMedBERT to op-
timize the standard training objective (i.e., MLM and NSP) and
minimize the adversarial loss (Liu et al., 2020). In this work,
we take PubMedBERT as is and use it as an encoder for textual
reports.

2.4.5. Image data augmentation pipeline
Input whole slide images are augmented during CNN train-

ing using the Albumentations library (Buslaev et al., 2020).
Image data augmentation pipeline includes three operations:
90/180/270 degrees random rotation, vertical and horizontal
flipping, and hue-saturation-contrast (HUE) color augmenta-
tion. The augmentation is applied at image-level to have a
consistent transformation for all the patches included in a WSI,
with a probability of 0.5.

2.4.6. Report data augmentation pipeline
The report data augmentation pipeline exploits three oper-

ations. The first operation is a back2back translation – that is,
translating the input text to a different language and then back to
English – using French, Italian, German, Spanish, Turkish, Chi-
nese, Japanese, and Russian as middle languages, implemented
using the nlpaug library (Ma, 2019). The second operation is
an insert/rephrase strategy, implemented via the nlpaug library,
which consists of slightly modifying the sentence by inserting
new words or paraphrasing it. The third operation is a Chat-
GPT augmentation. The augmented report is produced by the
GPT v3 model (text-davinci-003 backend) (Brown et al., 2020),
submitting a prompt stating to modify the input text without
changing its global content. The prompt adopted is: “Generate
a different version of the following pathology report, without
changing its content, but rather the order of the words, the sen-
tences, and the medical terminology. [...]”

2.4.7. Metrics to evaluate the architecture
The model’s performance is evaluated on three tasks: the

WSI classification (pathology workflow and publicly available
data), multimodal data retrieval, and linking visual and textual
concepts.

WSI classification. The model’s performance on WSI classifi-
cation is evaluated using the weighted macro F1-score. WSI
classification is defined as a multilabel problem (on the pathol-
ogy workflow data) and as multiclass problem (on the publicly
available data). Weighted macro F1-score is adopted to tackle
the class imbalance. The macro-weighted average involves the
evaluation of the F1-scores for the single classes, which are
then weighted according to the class support (number of true
samples for the class). F1-score metric is defined as the aver-
age among the recall and the precision. The precision measures
the capability of a classified to not misclassify negative sam-
ples as positive ones, while the recall measures the capability
to classify positive samples correctly. The weighted F1-score is
reported in terms of average and standard deviation of the ten
experiment repetitions, evaluated on the test partition.

Multimodal data retrieval. The performance of the model on
multimodal retrieval is evaluated using the precision@k and the
mean average precision (mAP). The precision@k evaluates the
number of relevant items retrieved concerning the total num-
ber of retrieved items (i.e., k value). The paper’s k value (i.e.,
cut-off) for the precision equals 5, 10, 50. The choice of adopt-
ing low cut-off values is driven by the fact that medical doc-
tors or experts querying the retrieval system may not have a
large amount of time to check all possible outcomes, so the sys-
tem must be effective with a small number of retrieved sam-
ples. The mean average precision involves the evaluation of
the average precision (the area under the precision-recall curve)
for the single input samples of the retrieval system. The av-
erage precisions are then averaged. The area under the recall-
precision curve involves the evaluation of the recall@k and the
precision@k, where k is the number of samples that can be re-
trieved (in this case the whole dataset from pathology work-
flows). In the paper, the k value for the mAP equals 1000. The
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cut-off value for this metric is higher than the one adopted for
precision@k. This choice is driven by the fact that the mAP
metric also involves the evaluation of recall@k, which measures
the ability to retrieve as many relevant documents as possible;
therefore, a high cut-off value shows how well the system per-
forms in terms of retrieving relevant content across a wide range
of possibilities. Since data are multilabel, both metrics are com-
puted with the micro-average (true positives and true negatives
are considered separately and then aggregated).

Linking between visual and textual concepts. The performance
of the model on the linking between visual and textual concepts
is evaluated for each task using the accuracy (true positives over
the total amount of samples).

2.5. Statistical significance test

The Wilcoxon Rank-Sum test (Woolson, 2007) is adopted
during a comparison between two algorithms to verify if the
performance difference is statistically significant (p-value <
0.05).

2.5.1. k-fold cross validation
The multimodal architecture is trained using k-fold cross-

validation to show the robustness of the model concerning data
used for training. The training partition is divided into k groups
(in this paper k=10): for every training repetition, k-1 groups
are used to train the model. In contrast, the other group is used
to validate the model. Data are divided at the patient level so
that the samples collected from a patient cannot be on both
training and validation partitions. During the training, the loss
function involves optimizing five terms, as shown in Section
2.2. During the validation, the weights of the best model are
stored when the loss function reaches the lowest value. In this
case, the only evaluated term is the classification of WSIs.

2.5.2. Hardware & Software
The experiments are implemented using Python libraries.

The deep learning algorithms are implemented and trained us-
ing PyTorch 1.11. Transformers 4.6.1 (Wolf et al., 2019) is
used to implement the BERT architecture and to pre-process
textual reports. Deep learning experiments are performed on
a Tesla V100 GPU. WSIs are accessed using openslide 3.4.1
(Goode et al., 2013). The model performance is evaluated with
the metrics implemented by scikit-learn 0.23. The image pre-
processing and augmentation are applied using albumentations
1.8 (Buslaev et al., 2020).

2.5.3. Hyperparameters
The grid search algorithm is adopted to identify the optimal

configuration of CNN hyperparameters. The optimal configura-
tion chosen reaches the lowest loss function on WSI classifica-
tion in the validation partition. The parameters involved in the
grid search algorithm are: the optimizer (Adam selected; Adam
and SGD tested); the number of epochs to train the model (15;
above this amount of epochs, the validation partition loss func-
tion does not reach a lower level); the learning rate (10−3; 10−2,
10−3, 10−4, 10−5 were tested); the decay rate (10−3; 10−2, 10−3,

10−4, 10−5 were tested); the number of nodes in the intermedi-
ate layer after the ResNet backbone (128; 32,64,128,256 were
tested).

3. Results

Multimodal

Unimodal

WSI embeddings Reports embeddings

Fig. 4. Overview of the latent space, considering both the unimodal repre-
sentation (architecture trained only with WSIs, upper Figure) and the mul-
timodal representation (architecture trained combining WSIs and reports
using our self-supervised loss function, lower Figure). The latent space of
the multimodal representation shows regions where images and reports are
close to each other. The latent space of the unimodal representation shows
two separate clusters, one including images, the other including textual re-
ports.

Multimodal representation latent space. Figure 4 shows the la-
tent spaces including the embeddings representing either WSIs
and reports, as the outcome of the unimodal representation (ar-
chitecture trained only with images, upper part), and the mul-
timodal representation (architecture trained combining the im-
ages and reports using our self-supervised loss function, lower
part). Each dot in the Figure shows the embeddings, either
WSIs (red) and reports (blue) evaluated on the internal test-
ing partition (data from the Catania cohort and Radboudumc).
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The latent space is obtained via dimensionality reduction, pre-
processing the embeddings with Principal Component Analysis
(PCA) and then applying t-distributed stochastic neighbor em-
bedding (t-SNE).

The upper part of Figure 4 shows the embeddings represent-
ing WSIs and reports, outcome of the unimodal representation.
Since the input data encode different characteristics and are pro-
cessed with different architectures, the corresponding embed-
dings are separated in the space.

The lower part of Figure 4 shows the embedding represent-
ing WSIs and reports, outcome of the multimodal representa-
tion. The multimodal representation is learned by forcing the
representations of WSIs to be similar to the corresponding re-
port representations and by learning relationships of similarity
and dissimilarity among WSIs and reports, as shown in Section
2.2. The main characteristic of the multimodal representation is
that WSI embeddings (red dots) are close to report embeddings
(blue dots), showing that the image representation encodes both
raw-pixel and concepts information. This characteristic is not
trivial, since the characteristics of both modalities are comple-
mentary: while reports are short and include high-level con-
cepts, images are large and the pixels do not include any se-
mantic information.

Table 3. Results for the performance of the multimodal architecture on the
classification of WSIs, considering the Catania cohort and Radboudumc
datasets. The evaluation involves the unimodal and the multimodal rep-
resentation (considering both CLIP and our self-supervised loss function).
The performance is evaluated with weighted F1-score, reporting the aver-
age and the standard deviation (of the models involved in the k-fold cross-
validation) and including cumulative results for each dataset. The results
that are statistically significant (compared with the unimodal representa-
tion, using the Wilcoxon Test) are reported with an asterisk (*).

F1-score Catania Radboudumc Cumulative
Unimodal 0.765 ± 0.013 0.771 ± 0.012 0.769 ± 0.011

Multimodal (CLIP) 0.785 ± 0.013* 0.782 ± 0.013* 0.784 ± 0.013*
Multimodal (our) 0.788 ± 0.011* 0.792 ± 0.012* 0.790 ± 0.009*

WSI classification on pathology workflow data. The multi-
modal representation outperforms the unimodal representation
in the classification of WSIs collected from pathology work-
flows for every percentage of training data adopted in every
testing partition.

The architecture is evaluated with the weighted F1-score,
considering different percentages of input data and reporting
the average and the standard deviation of ten models (trained
using cross-validation). The architecture is trained with an in-
creasing percentage of data, starting from 10% and up to the
whole dataset. The training results on the increasing amount of
data are shown in Figure 5. The architecture trained with both
modalities (using our loss function to align images and reports),
but using half of the dataset (3’000 couples of WSIs-repors in-
stead of 6’000), reaches the same performance of the unimodal
architecture trained with the whole dataset. This suggests that
combining images and reports may alleviate the need to collect
large datasets to reach robust performance. When the whole
training dataset is used (100%), the multimodal representation
reaches higher accuracy than the unimodal one, with cumula-
tive (considering both the Catania cohort and Radboudumc test

partition) F1-score = 0.790 ± 0.009. In contrast, the unimodal
representation reaches a cumulative F1-score = 0.769 ± 0.011,
as shown in Table 3.

Table 4. Results for the performance of the multimodal architecture on
the classification of WSIs, considering the UNITOPatho and the IMP-
CRC datasets .The evaluation involves the unimodal and the multimodal
representation (considering both CLIP and our self-supervised loss func-
tion). The performance is evaluated with a weighted F1-score, reporting
the average and the standard deviation (of the models involved in the k-
fold cross-validation). The evaluation involves the unimodal and the mul-
timodal histopathology data representation. The statistically significant
results (compared with the unimodal representation, using the Wilcoxon
Test) are reported with an asterisk (*).

F1-score UNITOPatho IMP-CRC
Unimodal 0.790 ± 0.017 0.874 ± 0.018

Multimodal (CLIP) 0.750 ± 0.062 0.881 ± 0.007
Multimodal (our) 0.824 ± 0.022* 0.894 ± 0.014*

WSI classification on publicly available data. The multimodal
representation , trained with our loss function to align the image
and textual representations, outperforms the unimodal represen-
tation on classifying images from publicly available datasets.
Both the representations are learned during the previous task
(i.e., WSI classification on pathology workflow data, section
2.4.1).

Images from publicly available datasets, collected from UNI-
TOPatho and IMP-CRC, are annotated with different classes.
While the architecture is originally trained with multilabel data
(five classes), both UNITOPatho and IMP-CRC include multi-
class data (respectively four and three classes). The architecture
backbone, considering both the multimodal, trained with CLIP
loss and our loss function to align modalities, and the unimodal
representation, is pre-trained on pathology workflow data, as
shown in Paragraph 2.4.1. On the other hand, the classifier is
trained from scratch on different classes.

The multimodal representation reaches an F1-score = 0.824
± 0.022 on UNITOPatho dataset and an F1-score = 0.894 ±
0.014 on IMP-CRC dataset, while the unimodal representa-
tion reaches respectively an F1-score = 0.790 ± 0.01 on UNI-
TOPatho dataset and an F1-score = 0.874 ± 0.018 on IMP-CRC
dataset. The multimodal representation trained with our self-
supervised loss function also outperforms the multimodal repre-
sentation obtained by aligning images and texts with CLIP loss.
Table 4 summarizes the results on publicly available datasets.

Multimodal data retrieval. The multimodal architecture allows
building a robust retrieval system without any peculiar architec-
tural design for reports and image retrieval compared with other
methods developed for this purpose.

Due to the multimodal representation characteristics, the re-
trieval system can retrieve reports using a WSI input sample
and WSIs using a report input sample. The system is evalu-
ated using the precision@k (cut-off k chosen values are 5, 10,
50) and the mean average precision (mAP). In both cases, the
performance is evaluated considering the samples from the test-
ing partition of the Catania cohort and Radboudumc as input
queries, with the possibility to retrieve data from all the WSIs
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Catania

Radboudumc

Cumulative

Fig. 5. Results for the average performance of the architecture. The eval-
uation involves the multimodal representation (blue line) and the uni-
modal representation (green). The results are reported for the Catania
cohort testing partition (upper sub-figure), the Radboudumc testing par-
tition (middle sub-figure), and the combination of both testing partitions
(bottom sub-figure). In the three sub-figures, the dashed line represents
the performance of the architecture when trained by combining both im-
ages and reports on the whole dataset (100%); the dotted line represents
the performance of the architecture when trained with only images on the
whole dataset (100%).

and reports collected from pathology workflows (6’176 samples
from the Catania cohort and Radboudumc).

Table 5 summarizes the performance reached on the multi-
modal retrieval, for both images and reports. The highest re-
sults are achieved by the multimodal setups (using CLIP and
our loss function to align modalities) that exceed both self-
supervised setups. In particular, the multimodal setup using
our loss function to align modalities reaches the highest perfor-
mance in terms of precision@k, for both datasets and modal-
ities; while instead, the multimodal setup using CLIP loss as
self-supervised loss function reaches the highest performance
in terms of mAP, for both datasets and modalities. These results
highlight the importance of the classification term in the mul-
timodal architecture training, especially when training datasets
are not large in size.

Linking between visual and textual concepts. The multimodal
representation allows linking tissue morphologies from images
to high-level concepts included in the reports, building a mul-
timodal knowledge graph of paired histopathology visual and
text information.

The concepts adopted for the linking are extracted from the
ExaMode colon ontology, presented in Section 2.4.1. The im-
ages associated with the ontology concepts were reviewed by
an expert pathologist. Visual concepts can be linked to textual
concepts at patch-level and WSI-level.

Table 6 shows the results of the multimodal architecture on
the linking between visual and textual concepts, collected from
reports, at patch-level.

Table 6 shows the results of the linking between visual and
textual concepts, collected from reports. The linking is effec-
tive, considering that the global accuracy of the multimodal
architecture (trained with our self-supervised loss function) is
0.607, higher than the other setups (self-supervised and mul-
timodal with CLIP). The result is relevant, considering the fact
that modality combination does not require any supervision and
that most of the concepts where the linking is effective are not
involved in the classification. More details about the single con-
cept linking are described in the Supplementary Material.

The visual ontology is shown in Figure 6. For every concept,
nine randomly selected patches are linked to the concept.
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Mild Dysplasia

Moderate Dysplasia Severe Dysplasia

High Grade Dysplasia
Pre-Cancerous Dysplasia, Su...

Dysplasia

Polyp of Colon Colon Hyperplastic Polyp

Adenoma (Adenomatous Polyp)

Colon Tubular Adenoma Serrated Adenoma Colon Villous Adenoma Colon Tubolovillous Adenoma

subClassOf

subClassOfsubClassOf subClassOfsubClassOf

subClassOf

subClassOf

Adenocarcinoma

Positive Outcome

subClassOf

subClassOf

subClassOf

hasDysplasia

subClassOf

Fig. 6. The ExaMode visual ontology as a result of the linking between between visual (patches) and textual concepts. The visual ontology includes concepts
related to colon dysplasia concepts and on the polyp of colon.
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Table 5. Overview of the results of the multimodal retrieval task. The
task is evaluated on the image retrieval (reports as input) and the report
retrieval (images as input), considering several methods: self-supervised
(CLIP as self-supervised loss function), self-supervised (our loss as self-
supervised loss function), multimodal (CLIP), multimodal (our loss as self-
supervised loss function). The performance is evaluated with precision@k
(k values are 5, 10, 50) and mAP, reporting the average and the standard
deviation (of the models involved in the k-fold cross-validation).

Self-supervised (CLIP)
Retrieve reports (image as input)

Metric Catania Radboudumc
Precision@5 0.255 ± 0.030 0.244 ± 0.097

Precision@10 0.253 ± 0.031 0.251 ± 0.076
Precision@50 0.249 ± 0.049 0.268 ± 0.064

mAP 0.179 ± 0.024 0.212 ± 0.040
Retrieve images (reports as input)

Precision@5 0.233 ± 0.066 0.231 ± 0.059
Precision@10 0.248 ± 0.049 0.239 ± 0.041
Precision@50 0.247 ± 0.031 0.245 ± 0.026

mAP 0.159 ± 0.008 0.186 ± 0.007
Self-supervised (our)

Retrieve reports (image as input)
Metric Catania Radboudumc

Precision@5 0.757 ± 0.021 0.768 ± 0.020
Precision@10 0.756 ± 0.019 0.768 ± 0.021
Precision@50 0.770 ± 0.009 0.775 ± 0.016

mAP 0.463 ± 0.017 0.583 ± 0.008
Retrieve images (reports as input)

Precision@5 0.836 ± 0.030 0.850 ± 0.016
Precision@10 0.832 ± 0.028 0.851 ± 0.012
Precision@50 0.827 ± 0.012 0.845 ± 0.007

mAP 0.467 ± 0.010 0.580 ± 0.010
Multimodal (CLIP)

Retrieve reports (image as input)
Metric Catania Radboudumc

Precision@5 0.780 ± 0.012 0.777 ± 0.016
Precision@10 0.779 ± 0.014 0.779 ± 0.018
Precision@50 0.789 ± 0.010 0.789 ± 0.017

mAP 0.546 ± 0.020 0.639 ± 0.018
Retrieve images (reports as input)

Precision@5 0.847 ± 0.033 0.887 ± 0.016
Precision@10 0.847 ± 0.024 0.882 ± 0.017
Precision@50 0.846 ± 0.013 0.874 ± 0.014

mAP 0.515 ± 0.020 0.632 ± 0.022
Multimodal (our)

Retrieve reports (image as input)
Metric Catania Radboudumc

Precision@5 0.795 ± 0.030 0.794 ± 0.015
Precision@10 0.794 ± 0.028 0.796 ± 0.015
Precision@50 0.798 ± 0.020 0.802 ± 0.013

mAP 0.537 ± 0.023 0.632 ± 0.012
Retrieve images (reports as input)

Precision@5 0.867 ± 0.030 0.880 ± 0.015
Precision@10 0.864 ± 0.024 0.877 ± 0.013
Precision@50 0.854 ± 0.021 0.873 ± 0.016

mAP 0.508 ± 0.019 0.620 ± 0.015

Table 6. Overview of the results on the linking between visual and textual
concepts, considering all training setups, at patch-level. For every concept,
one hundred images are collected and reviewed by an expert pathologist.
The model adopted for the linking is the one reaching the highest per-
formance in terms of classification (multimodal setups) or retrieval (self-
supervised setups), among the training repetitions involved in the k-fold
cross-validation.

Setup True Positives Accuracy
Self-supervised (CLIP) 204/1500 0.136
Self-supervised (our) 747/1500 0.498
Multimodal (CLIP) 745/1500 0.496
Multimodal (our) 911/1500 0.607
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The upper part of the Figure 6 shows the linking between
visual and textual concepts from the ExaMode ontology related
to the ‘Positive Outcome’ (i.e. when findings are identified).
The most relevant concepts in this part of the ontology are the
ones related to the ‘Adenocarcinoma’, where it is possible to
identify a small number of glands (that are not well defined).

The central part of the Figure 6 shows the linking between
visual and textual concepts from the ExaMode ontology related
to colon polyps. Within the patches, it is possible to identify
the presence of glands, better defined in terms of shape respect
to the dysplasia patches, and the presence of a stroma less infil-
trated.

The bottom part of the Figure 6 shows the linking between
visual and textual concepts from the ExaMode ontology related
to dysplasias. Within the patches, it is possible to identify the
presence of deformed glands and of the stroma infiltrated by
cells, usually related to the dysplasia condition. An important
characteristic to underline is the fact that the patches linked to
concepts are invariant to the color variations: the learned repre-
sentation embeds features linked to tissue morphologies and to
color variations.

Table 7 shows the results of the linking between visual and
textual concepts, collected from reports, at WSI-level. The
linking is effective, considering the number of concepts (15)
and that the F1-score achieved by the multimodal architecture
(trained with our self-supervised loss function) is higher than
the other setups (self-supervised and multimodal with CLIP).
One aspect to stress is the fact that the self-supervision using
the CLIP loss function reaches always 0, as a consequence of
the low similarity values obtained with the concepts. This re-
sult can be explained considering the large amount of samples
needed to train a deep learning model in a self-supervised fash-
ion: in this only 6’000 samples were used, reducing the im-
pact of the CLIP loss function. The result is relevant, because
modality combination does not require any supervision and that
most of the concepts where the linking is effective are not in-
volved in the classification.

4. Ablation study

The ablation study aims to investigate the contribution of the
self-supervised loss functions on the classification of WSIs and
of the image encoder in the multimodal architecture.

The contribution of self-supervised loss functions on the classi-
fication of WSIs. This section of the ablation study aims to in-
vestigate the contribution of the self-supervised loss functions
on the WSI classification. The investigated loss functions are
combinations of L1-loss, cosine similarity loss and NT-Xent
loss; the application of CLIP loss.

The multimodal architecture is trained considering the clas-
sifications terms (for both WSIs and reports) and the combina-
tion of self-supervised losses and evaluated in terms of classi-
fication performance, considering the pathology workflow test
partitions (Catania cohort, Radboudumc and their combination)
and compared with the unimodal representation.

Table 8 shows an overview of the performance. The multi-
modal representation, learnt combining the three loss functions,

reaches the highest performance in the Catania and the cumula-
tive dataset, while instead the highest performance in the clas-
sification of Radboudumc data is reached by the multimodal
(with CLIP loss function). Furthermore, comparing the perfor-
mance with the unimodal representation, the multimodal archi-
tectures trained with our self-supervised loss function and with
CLIP loss function are the only ones where the difference in
performance is statistically significant (according to Wilcoxon
Rank-Sum test).

The contribution of the image encoder in the multimodal ar-
chitecture. This section of the ablation study aims to investi-
gate the contribution of the image encoder on the WSI classi-
fication, considering four different MIL frameworks: ABMIL,
CLAM, transMIL and ADMIL (the framework adopted in the
paper). The multimodal architecture is trained considering two
setups: the unimodal representation and the unimodal represen-
tation (with our self-supervised loss function) and evaluated in
terms of classification performance, considering the pathology
workflow test partitions (Catania cohort, Radboudumc and their
combination).

Table 9 shows an overview of the performance, according to
different MIL image encoders. The multimodal representation,
learnt combining the three loss functions, reaches the highest
performance in every test partition (Catania, Radboudumc and
their combination), considering every MIL framework. How-
ever, the difference in performance is statistically significant for
every partition only for the ABMIL and the ADMIL frame-
works. The reason may be identified in the more complex
architecture of CLAM and transMIL frameworks. These ar-
chitectures implement mechanisms to identify relevant patches
among the input bags. Therefore, the unimodal architecture,
trained only with WSIs, reaches a plateau in the classification
performance. Even if the classification performance is higher,
we chose to adopt ADMIL: CLAM and transMIL framework
are not trivial to set up and their tuning may not be trivial, re-
quiring additional optimizations.

5. Discussion

This paper presents a multimodal architecture, trained to
combine histopathology images and textual reports to empower
histopathology data representation. The multimodal architec-
ture shows several advantages: a more robust representation
of histopathology data, a solution to tackle data scarcity (still
reaching accurate performance), and the possibility to link vi-
sual concepts from images to textual concepts from reports. The
approach includes two input encoders, a CNN for images and a
BERT model for textual reports, to process and combine modal-
ities during the training. At testing time, the architecture works
on single modalities.

The architecture is trained on data collected from pathology
workflows and evaluated on several tasks: first, WSI classifi-
cation (on pathology workflow data, Section 2.4.1 and on pub-
licly available data, Section 2.4.1); secondly, multimodal data
retrieval (Section 2.4.1) and, lastly, the creation of multimodal
ontologies, linking visual and textual concepts (Section 2.4.1).
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Table 7. Overview of the results on the linking between visual and textual concepts, considering all training setups, at WSI-level. The performance is
evaluated on the test partition collected from pathology workflow (Catania and Radboudumc). Being a multilabel problem, three threshold levels for the
matching are proposed: 0.7, 0.8, 0.9. The performance is evaluated with weighted F1-score, reporting the average and the standard deviation (of the
models involved in the k-fold cross-validation).

0.70 0.80 0.90
Setup Catania Radboudumc Catania Radboudumc Catania Radboudumc

Self-supervised (CLIP) 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Self-supervised (our) 0.449 ± 0.055 0.485 ± 0.032 0.392 ± 0.068 0.432 ± 0.046 0.231 ± 0.047 0.173 ± 0.095
Multimodal (CLIP) 0.462 ± 0.027 0.449 ± 0.040 0.419 ± 0.046 0.476 ± 0.057 0.269 ± 0.047 0.242 ± 0.084
Multimodal (our) 0.484 ± 0.030 0.486 ± 0.051 0.435 ± 0.053 0.480 ± 0.040 0.286 ± 0.050 0.263 ± 0.114

Table 8. Overview of ablation study involving the self-supervised loss functions and their combinations. The loss functions are: L1-loss, cosine similarity
loss, NT-Xent loss and CLIP loss. The performance is evaluated with weighted F1-score, reporting the average and the standard deviation (of the models
involved in the k-fold cross-validation). The statistically significant results (compared with the unimodal representation, using the Wilcoxon Test) are
reported with an asterisk (*).

Loss function Catania Radboudumc Cumulative
Unimodal 0.765 ± 0.013 0.771 ± 0.012 0.769 ± 0.011

L1 0.770 ± 0.015 0.775 ± 0.006 0.774 ± 0.008
Cosine similarity 0.773 ± 0.019 0.773 ± 0.010 0.774 ± 0.009

Contrastive 0.773 ± 0.009 0.778 ± 0.017 0.776 ± 0.012
L1 + Cosine similarity 0.770 ± 0.019 0.773 ± 0.015 0.772 ± 0.014

L1 + Contrastive 0.777 ± 0.016 0.785 ± 0.012* 0.783 ± 0.009
Cosine similarity + Contrastive 0.780 ± 0.010* 0.782 ± 0.010 0.782 ± 0.009*

CLIP loss function 0.785 ± 0.006* 0.782 ± 0.016* 0.784 ± 0.016*
L1 + Cosine similarity + Contrastive 0.788 ± 0.011* 0.792 ± 0.012* 0.790 ± 0.009*

Table 9. Overview of ablation study involving the image encoder backbone. The comparison involves four MIL frameworks, considering the unimodal and
the multimodal representation (with our loss function as a self-supervised loss function) setups: ABMIL, CLAM, transMIL and ADMIL (the framework
adopted in the paper). The performance is evaluated with weighted F1-score, reporting the average and the standard deviation (of the models involved in
the k-fold cross-validation). The statistically significant results (compared with the corresponding unimodal representation, using the Wilcoxon Test) are
reported with an asterisk (*).

Image encoder setup Catania Radboudumc Cumulative
ABMIL (Unimodal) 0.762 ± 0.012 0.769 ± 0.011 0.766 ± 0.010

ABMIL (Multimodal) 0.779 ± 0.006 0.793 ± 0.005* 0.787 ± 0.003*
CLAM (Unimodal) 0.778 ± 0.011 0.783 ± 0.017 0.781 ± 0.012

CLAM (Multimodal) 0.783 ± 0.013 0.798 ± 0.012* 0.792 ± 0.009*
transMIL (Unimodal) 0.783 ± 0.018 0.800 ± 0.015 0.793 ± 0.014

transMIL (Multimodal) 0.803 ± 0.011* 0.806 ± 0.007 0.805 ± 0.006*
ADMIL (Unimodal) 0.765 ± 0.013 0.771 ± 0.012 0.769 ± 0.011

ADMIL (Multimodal) 0.788 ± 0.011* 0.792 ± 0.012* 0.790 ± 0.009*

The results achieved in the classification of images, both on
pathology workflows and publicly available repositories, show
that the multimodal data representation is more robust than the
representation learnt adopting only images, leading to higher
performance, and to better capability to generalize on unseen
data.

The multimodal architecture presented in the paper shows
more robust characteristics for its application in the histopathol-
ogy domain, compared with other Vision-Language Models
presented in scientific literature to align the representations,
such as CLIP (Radford et al., 2021), CoCa (Yu et al., 2022),
ConVIRT (Zhang et al., 2020), PLIP (Huang et al., 2023),
MI-Zero (Lu et al., 2023b), CONCH (Lu et al., 2023a). The
main difference with these methods involves the amount of data
adopted for training the architecture. While usually VLMs
and SSL require a large amount of training samples, in this

case only around 6’000 input samples are adopted: regarding
the computational pathology domain, MI-Zero is trained with
33’000 pairs of image-text (over 5x bigger than this paper train-
ing dataset), PLIP on over 200’000 pairs (over 33x bigger than
this paper training dataset), CONCH on over 1.17 million pairs
(over 190x bigger than this paper training dataset); regarding
computer vision domain, CLIP is trained on over 200’000 pairs
(over 66’660x bigger than this paper training dataset). This de-
tail is not trivial: the application of self-supervised loss func-
tions, such as the one adopted to train the CLIP algorithm,
does not lead to fine-grained histopathology data representa-
tions, required when training data are not large in size. For ex-
ample, the multimodal architecture (trained adopting the CLIP
setup) reaches the poorest performance in all the downstream
tasks (i.e. multimodal retrieval and linking between visual and
textual concepts). The reason may be identified in the de-



N. Marini, S. Marchesin et al. /Medical Image Analysis (2024) 19

sign of CLIP, which requires two projection heads, that are
l2-normalized, before aligning the multimodal representations.
Due to this architectural design, the model risks overfitting on
the relatively short amount of training data (compared with hun-
dreds of thousands of samples required to train VLMs). The
architecture design presented in the paper (a single projection
head, shared among modalities, without any l2-normalization)
allows a smoother modality alignment, that is reflected in the
performance on every evaluated downstream task. Therefore,
the loss function presented in the paper (a combination of L1-
loss, cosine similarity loss and NT-Xent loss) better fits the sce-
nario where multimodal datasets are not large in size, which
is particularly true in the biomedical domain, therefore on the
histopathology domain. The benefits that the network shows
to tackle the scarcity of training data are particularly clear when
the classification performance is analyzed. The multimodal rep-
resentation reaches the same performance as the unimodal rep-
resentation, but using half of the training data (3’000 WSIs and
reports vs. 6’000 WSIs). This result is remarkable considering
the application of the architecture in the histopathology domain
(in general in the biomedical domain), where the collection of
WSI annotations is time-consuming and not trivial. Therefore,
the need for a reduced amount of training data to reach accurate
and robust performance allows saving computational time, and
reducing energy and carbon footprint for training deep learn-
ing models. The adoption of the multimodal architecture is also
facilitated by the fact that usually WSIs (medical images in gen-
eral) are paired and stored with the corresponding reports in the
Laboratory Informative Systems, avoiding additional costs and
efforts of collecting two medical modalities.

The multimodal representation generalizes better on unseen
data, considering the results achieved on UNITOPatho and
IMP-CRC data. In both cases, the image input branch of
the architecture is trained with a brand new classifier, leaving
the backbone of the architecture frozen, since data from pub-
licly available datasets are annotated with different classes than
the ones used to pre-trained the network. The performance is
compared with the unimodal representation (learnt only from
WSIs). Multimodal representation reaches higher performance
in both datasets (the difference is statistically significant), which
is not trivial. However, the main implication of this result is the
fact that the multimodal representation can be used as a valu-
able pre-trained backbone to train models on other classifica-
tion tasks (for example including different classes) when dataset
size is limited (UNITOPatho has around 200 WSIs in the train-
ing set, while IMP-CRC has around 800). Therefore, the pre-
trained model can be easily fine-tuned with a small amount of
data, guaranteeing good performance.

The results achieved in the multimodal data retrieval and on
the linking of visual and textual concepts show that the multi-
modal data representation can be used to mine data and extract
new knowledge from data. In both multimodal retrieval and
concept matching tasks, the architecture shows robust perfor-
mance, even if the architecture is not explicitly trained to solve
those tasks. This feature of the network can be explained by
considering the loss functions adopted to combine and align the
image and report representations. In particular, the multimodal

architecture shows competitive performance in the linking of
visual and textual histopathology concepts at patch-level and
WSI-level. The combination of SSL and weakly supervised
learning enables the creation of visual ontologies for biomed-
ical data, even when working with small training sets. This
feature is crucial to understand in the content, since it may pave
the way to advancements in medicine and biomedical analysis
domains, not limited to histopathology. Multimodal ontologies
of biomedical data are still rare and difficult to create, often
requiring human inputs. This fact not only prevents medical
experts from properly benefitting from the recent opportunities
offered by deep learning models, but it also prevents medical
researchers in deep learning from benefitting from the opportu-
nities offered by medical experts. Multimodal ontologies may
allow medical experts to benefit from recent advancements in
deep learning, considering aspects such as education, a richer
data integration and standardization, and improved diagnostics.
Biomedical visual ontologies can be adopted as educational
tools for medical students, helping experts to understand the
relationships among different structures and can improve their
learning experience, also facilitating to better visualize infor-
mation and peculiar conditions. Multimodal ontologies may
help to standardize and better describe diseases, aligning med-
ical terminology and data formats and contributing to enhance
the exchanges among different healthcare systems. Multimodal
ontologies would provide a shared framework for identifying
diseases, symptoms and treatments, increasing the agreement
of medical experts on diagnosis. Currently, due to morpholog-
ical structure, the inter-agreement among experts on peculiar
diseases may not always be high. All these conditions would
lead to enhanced diagnoses and better treatments provided by
medical experts. On the other hand, multimodal ontologies may
allow medical researchers in deep learning to benefit from the
opportunities offered by medical experts, considering aspects
such as data annotation and model refinement, accessible in-
formation, enhanced learning and prediction. The adoption of
multimodal ontologies would allow to exploit large amounts of
WSIs, currently unexploited and unannotated, to build weakly-
supervised algorithms. The WSIs would be linked to relevant
concepts, that could be used as weak labels. Furthermore, mod-
els can be refined on peculiar tissue structures that can be iden-
tified at patch-level. Therefore, by exploiting this feature, it is
possible to build richer and richer datasets, including rare dis-
eases. These datasets, built by linking high-level textual con-
cepts to visual images, can be exploited to train new robust tools
with relatively limited effort, starting a virtuous cycle not only
in histopathology, but in the entire biomedical domain. Mul-
timodal ontologies, linking visual and textual content, may al-
low to have more accessible and interpretable information, that
can be exploited by several users, including clinicians and re-
searchers. Also in this case, these aspects may dramatically
help to design more robust algorithms to analyze biomedical
data.

6. Conclusions

Linking visual and textual knowledge from biomedical data
is still an unsolved task in biomedical domain, especially in do-
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mains where annotated datasets are few and heterogeneity is
high, such as in computational pathology. This paper presents
a multimodal architecture, including input branches for pro-
cessing images and reports. The network is trained to classify
images and reports, but due to the combination of modalities
during training, it can be applied to solve other tasks, such as
multimodal data retrieval and linking between visual and tex-
tual concepts. The multimodal architecture, trained combining
both modalities, outperforms the same network, trained with
only images, on the classification of pathology workflows (the
Catania cohort and Radboudumc datasets) and publicly avail-
able data (two external datasets). Furthermore, the multimodal
nature of the network also allows to retrieve multimodal data
and to link textual concepts and images in a self-supervised
fashion, providing a tool to mine large unlabaled datasets stored
in hospital informative systems. In particular, the linking be-
tween visual and textual concepts allows to create a visual on-
tology of biomedical data. The application of biomedical ontol-
ogy may dramatically lead to benefit for both medical experts
and medical researchers. The multimodal approach can have
a huge impact, not only on digital pathology but in general on
biomedical sciences. Future works could target the develop-
ment of multimodal representations including different tissues,
pathologies, concepts. Especially, linking together multimodal
data representations of different domains may pave the way to
unified multimodal representations of biomedical knowledge.
The code, the pre-trained models, and the multimodal archi-
tecture will be made publicly available on Github upon paper
acceptance.
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