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Abstract— Although remarkable improvements have been
made, the natural control of hand prostheses in everyday life
is still challenging. Changes in limb position can considerably
affect the robustness of pattern recognition-based myoelectric
control systems, even if various strategies were proposed to
mitigate this effect. In this paper, we investigate the possibility
of selecting a set of training movements that is robust to limb
position change, performing a trade-off between training time
and accuracy. Four able-bodied subjects were recorded while
following a training protocol for myoelectric hand prostheses
control. The protocol is composed of 210 combinations of
arm positions, forearm orientations, wrist orientations and
hand grasps. To the best of our knowledge, it is among the
most complete including changes in limb positions. A training
reduction paradigm was used to select subsets of training
movements from a group of subjects that were tested on the
left-out subject’s data. The results show that a reduced training
set (30 to 50 movements) allows a substantial reduction of
the training time while maintaining reasonable performance,
and that the trade-off between performance and training time
appears to depend on the chosen classifier. Although further
improvements can be made, the results show that properly
selected training sets can be a viable strategy to reduce the
training time while maximizing the performance of the classifier
against variations in limb position.

I. INTRODUCTION

In recent years, remarkable advances have been made in
the development of pattern recognition methods to control
dexterous robotic hand prostheses. Pattern recognition-based
myocontrol systems are now widely studied and applied
in scientific research. Despite the many advantages with
respect to the classic myocontrol strategy, the results are still
poorly translated into clinical applications and commercial
products [1], [2], [3]. This gap is due to several aspects,
particularly the numerous factors potentially influencing the
Surface Electromyography (sEMG) signals, preventing the
pattern recognition approach to reach the desired robustness
in unconstrained settings [3], [2], [4]. In particular, changes
in limb position were shown to influence the task of clas-
sifying hand gestures for the control of hand prostheses
considerably [3], [5]. The influence that the variations of
limb position has on the accuracy of decoding the subject’s
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movement intent with the use of pattern recognition methods
was investigated and reported in several studies e.g. [5], [6],
[7], [8], [9].

Fougner et al. [8] studied the influence of variations in
limb postures on eight motion classes performed in 5 limb
positions, using the well-known Time Domain (TD) [10]
features and the Linear Discriminat Analysis (LDA) clas-
sifier. The results showed that the average classification
error decreases from 18% to 5.7% by training the classifier
in multiple limb positions and a further improvement of
0.7% was obtained including accelerometry data. Liu et
al. [11] monitored the effects of dynamic changes on patterns
with three metrics regarding a hyperellipsoidal representation
of feature vectors. The effect of arm movements on the
recognition rate of hand and wrist motions are reflected in
the changes of sEMG pattern characteristics from one arm
position to another and ranged from an average of 5.26%
(intra-condition) to 20.98% (inter-condition) in terms of
classification accuracy. Betthauser et al. [12] investigated the
use of a classifier that is less sensitive to signal variations re-
sulting from untrained limb positions using a sparse Extreme
Learning Machine (ELM) with Adaptive Sparse Represen-
tation Classification (EASRC) algorithm. The classification
accuracy as a function of train-test distance for two amputee
subjects wearing a prosthesis was chosen as a metric to judge
the classifier performance. The proposed algorithm showed a
good classification accuracy as function of train-test distance
in both off-line and on-line tests with transradial and able-
bodied subjects. Radman et al. [13] investigated the level of
robustness that various feature sets and classifiers provide
when classifying data from dynamic limb movements, with
a focus on the commonly used TD features and LDA. They
showed that LDA provides good performance when clas-
sifying dynamic movements and the classification accuracy
can be further improved by including or replacing some of
the standard TD feature components. Miselovic et al. [14]
explored the effects of postural and temporal variability in the
recognition of hand gestures via myoelectric signals. They
acquired and released a data set including six grasp-types
recorded in four arm positions and repeated for eight days,
showing that the Support Vector Machine (SVM) with radial
basis function (RBF) kernel provides the highest accuracy at
the cost of higher computational requirements, whereas LDA
was the most robust model for inter-posture grasp recognition
with the lowest computational needs. Jiang et al. [9] investi-
gated the influence of arm position on the performance of a
simultaneous and proportional control approach. Their results
confirmed that changes in arm position negatively impact the



performance of the algorithm, showing that this influence is
less pronounced in amputees.

Other improvements in this respect were made on the
features describing the sEMG signal. Several features have
been proposed and evaluated over the years, showing diverse
performance [15]. Novel features designed to be more robust
against changes in limb position, forearm orientation and
force level variation have been proposed [16], [17], [18],
[19]. In particular, a new set of features called fused Time-
Domain Descriptors (fTDD) were presented in [19]. These
features are an extension of the spectral-moments-based fea-
tures introduced in [17], that were shown to be more robust
for pattern recognition-based hand gesture classification in
presence of limb position variations [17], [18].

Despite several advances, the adversarial effect of upper
limb movements in pattern recognition-based myoelectric
control still represents a challenging task. One of the reasons
may be that, although dynamic movements with variations
in arm position, forearm orientation, wrist orientation and
hand grasp are common in daily life activities, movements
simultaneously involving more than one or two joints are
not often investigated. One of the most effective solutions
to increase the robustness of the classifier against limb
movements is to train it in multiple limb positions [5], [8].
However, this can lead to long and tiring training sessions,
making it unfeasible for real-life applications [8], [9].

In this work, we aim at exploring and evaluating whether
it is possible to select a training set reducing the training
time while maintaining comparable performance in presence
of limb position variations. In order to do so, we first
investigate the performance of the TD, marginal Discrete
Wavelet Transform (mDWT) [20] and fTDD features in
classifying hand gestures during dynamic and complex upper
limb movements. Then, we explore the variability of the
classification accuracy as a function of the training set
dimension and, finally, we investigate the feasibility of the
approach by selecting a subset of movements from a pool of
subjects that can be used as training set for a new subject.

II. METHODS

This section includes the description of the acquisition
setup, the acquisition protocol, the pre-processing procedure
and the mathematical description of the inter-subject training
set reduction paradigm.

A. Acquisition setup

sEMG and accelerometry data were recorded at 1925.9Hz
and 148.1Hz respectively using a Trigno Lab Wireless
system (Delsys Inc., USA). Eight electrodes were equally
spaced on the subject’s forearm at the height of the radio-
humeral joint. A second array composed of four electrodes
was placed next to the first one, in a more distal position. A
single electrode was positioned at the wrist level to record
accelerometry data (Fig. 1). A custom-made software was
used to record the data and to guide the subject through the
exercise. Vocal instructions synthesized with a text-to-speech
engine were used to interact with the subject. A total of 4

able-bodied participants (3 males and 1 female; age 29.3±6.2
years old, height 177.0± 6.8 cm) participated in the study.

B. Experimental protocol

A set of movements was obtained starting from the pos-
tures reported in Tab. I. Each movement was defined as a
combination of postures of the different segments of the
upper limb, including the upper arm, the forearm, the wrist
and the hand e.g. performing a lateral grasp with arm forward
(90◦), forearm pronated, and wrist in radial deviation. Three
grasp-types were chosen according to their importance for
activities of daily living (medium wrap, lateral and precision
disk), together with a no grasp hand posture. All the possible
movements were tested by two able-bodied subjects in order
to evaluate their feasibility and intuitiveness. This evaluation
allowed to select the movements that a person would intu-
itively perform in everyday life conditions. After this process,
a total of 210 movements were chosen. In order to make

TABLE I
THE LIST OF POSTURES THAT WERE COMBINED TO FORM A MOVEMENT.

Arm Forearm Wrist Hand
forward
upward

downward
internal
external

neutral
supinated
pronated

neutral
flexion

extension
radial deviation
ulnar deviation

no grasp
medium wrap

lateral
precision disk

the data recording easily reproducible, the acquisitions were
performed using a bookshelf and real objects. The position of
the objects was defined in accordance with the movements
and it was kept as similar as possible for the three grasp-
types, as depicted in Fig. 1. A set of identical objects for
each grasp type were attached to a wooden tray to guarantee
the same placement for each subject. In addition, the height
of the objects on the bookshelves was further adjusted
according to the subject’s height, maintaining a shoulder
flexion angle of ~45◦ for the downward position, ~90◦ for
the forward position and ~135◦ for the upward position.
The subjects were asked to stand in front of the bookshelf

Fig. 1. The bookshelf and the objects used in the experiment. Sets of
empty 0.5l plastic bottles, cardboard stripes and sponge balls were used for
the medium wrap, lateral and precision disk grasps respectively.

and were instructed to execute the movements as naturally



as possible. Each movement was performed dynamically,
starting from a neutral position with the arm at the side of the
body. The arm position, forearm orientation, wrist orientation
as well as grasp-type had to be adjusted simultaneously to
perform the requested movement. The subjects were guided
by the acquisition software via vocal instructions, providing
both the description of the movement to perform (taking on
average 4s), and indicating the beginning of the movement
and when the subject should return to the rest position. Each
trial was composed of 3s of movement and 3s of resting,
repeated three times. Therefore, the total time for the pure
signal recording was approximately of 105 minutes. Initial
technical preparations were usually thirty minutes long and
three pauses of roughly five minutes each were included in
order to limit muscular and mental fatigue. The length of
a complete acquisition session approximately reached two
hours and a half. The acquisition protocol was approved by
the Commission Cantonale Valaisanne d’étique médicale.

C. Data pre-processing and feature extraction

The raw sEMG and accelerometry data were first pre-
processed. This step checks the consistency of the data and
removes the power line interference at 50Hz. Then, three
signal features, namely TD, mDWT, and fTDD [21], were
extracted using a sliding window approach (window length
of 200ms with an overlap of 20ms) [10]. Based on previous
results, we decided to use the 7th order Daubechies wavelet
function considering the marginal coefficients up to the third
level [22], [20]. Due to a technical failure, the data from
two electrodes of the distal array were not recorded. The
analysis was therefore performed using only the 8 proximal
electrodes for all the subjects in order to obtain comparable
results. Only the sEMG data were considered in the analysis.

D. Variability analysis

A random sampling was applied to evaluate the variability
of the classification accuracy as the size of the training set
dimension changes. More precisely, 200 random assignments
were performed for each dimension, from B = 1 to B =
209 (with B being the cardinality of the selected subset of
movements), to construct a probability distribution. Formally,
given the random variable AB as the accuracy scored by a
training set of dimension B, we approximate all the possible
outcomes with a Gaussian distribution aB characterized by
its mean µaB

and standard deviation σaB
computed over the

200 random samples. The analysis was performed only with
the fTDD features using the LDA classifier.

E. Training set reduction method

An algorithm was tested to select target movements using
an incremental average ranking based on predictive model
scores (Incremental Average Algorithm (IAA)). Since the
IAA evaluates a model at each iteration, the chosen clas-
sifier was LDA due to its low computational requirements.
The algorithm follows an ε − greedy policy to select the
movements. In other words, the greedy paradigm follows the
best local option (the movements) with probability 1−ε, and

a random one with probability ε. Preliminary experiments
on our data revealed that the best value for ε was 0.1. The
algorithm selects a pool of a predefined dimension B at each
iteration. Afterwards, the LDA model is trained with the
chosen B movements and validated on a different repetition
of the overall training set (210 movements). The validation
consisted in the classification of the four grasp-types. This
process outputs a validation accuracy α(t) that is the value
needed to update the performance metric θ(t) in θ(t+1),
namely the average accuracy scored by each movement m
at iteration t+ 1:

θ(t+1)
m = θ(t)m +

1

N
(t)
m

(α(t) − θ(t)m ) (1)

with N (t)
m being the number of times the movement m is

selected. The algorithm outputs the labels of the movements
that scored the highest average accuracy in the validation
step. As a shorter training time is preferable and the IAA
has a high computational cost, we focused the analysis on
subsets of the training set requiring fewer than 30 minutes
to be recorded, corresponding to B ∈ {10, 20, 30, 40, 50}
movements. Three other evaluations were done for B ∈
{75, 110, 150} to explore the overall trend, resulting in 8
training sets composed of B movements selected by the IAA.
The training reduction paradigm is repeated three times to
explore the variability of the algorithm. In our experiments
we set the number of iterations to 5× 104.

F. Inter-subject training set evaluation

The grasp type classification is executed by training and
testing with a linear and a non-linear classifier, namely LDA
and Random Forest (RF). The investigation was performed
using an inter-subject training set reduction approach. In
other words, the first step consisted of the selection of subsets
composed of B training movements from the data of the
S − 1 subjects using the IAA. Then, the training set for the
Sth subject was created using the same types of movements
that were selected. While the IAA only selected the subset
of B movements, both training and testing were performed
using the data of the new subject Sth .

In both variability analysis and inter-subject training set
evaluation the classifiers were trained with two repetitions
(the ones used to train and validate the IAA) and the testing
set was created using the remaining repetition, which was
unknown to the models. The classification was performed on
the grasp-type, having a 4-class problem (no grasp, medium
wrap, lateral and precision disk). The data set was slightly
unbalanced (75 movements in the no grasp class and 45 in
the others), with a baseline accuracy of 75/210 = 0.3571.

III. RESULTS

First, we evaluated the performance of the hand ges-
ture classification on the proposed protocol, which includes
210 movements with dynamic changes in arm position,
forearm orientation, wrist orientation and hand grasp. The
performance was evaluated using the inter-subject training
set reduction approach described in the previous section,



with the TD, mDWT, fTDD features and the LDA and RF
classifiers. The results are reported in Tab. II where the
size of the training set is referred to as B and the results
are reported as average classification accuracy and standard
deviation among all the subjects and for both LDA and RF.
On the leftmost column of Tab. II we show the length of the
pure signal acquisition time with B movements.

The maximum average classification accuracy for the four
grasp-types is 85.89%. This value is obtained with RF trained
on all 210 movements and the fTDD features. The same
features achieved the highest performance also with LDA,
with a maximum average of 78.81%. The fTDD consistently
exhibited best performance in terms of average classification
accuracy, therefore only this feature type was considered for
the subsequent analyses.

TABLE II
INTER-SUBJECT TRAINING SET ACCURACY (%) WITH TD, MDWT AND

FTDD FEATURES USING THE LDA AND RF CLASSIFIERS.

Time
[min] B TD mDWT fTDD

L
D

A

5 10 51.13 ± 8.74 52.75 ± 7.17 61.05 ± 7.01
10 20 54.09 ± 5.32 54.92 ± 5.75 68.06 ± 5.75
15 30 54.07 ± 7.15 55.67 ± 5.52 68.99 ± 6.07
20 40 57.53 ± 9.14 55.85 ± 6.47 72.24 ± 5.78
25 50 59.89 ± 7.87 58.08 ± 5.09 74.53 ± 4.96
38 75 63.14 ± 7.36 59.41 ± 5.06 74.97 ± 4.63
55 110 63.22 ± 7.84 59.17 ± 4.55 77.54 ± 3.23
75 150 65.30 ± 8.07 59.24 ± 5.37 78.33 ± 4.32
105 210 65.54 ± 7.57 60.47 ± 5.17 78.81 ± 4.16

R
F

5 10 52.18 ± 11.31 52.20 ± 10.10 53.75 ± 8.58
10 20 58.13 ± 7.45 62.76 ± 8.44 66.73 ± 7.38
15 30 61.50 ± 7.82 65.46 ± 8.53 69.21 ± 7.77
20 40 65.40 ± 8.12 67.49 ± 9.34 73.43 ± 7.27
25 50 68.73 ± 8.28 71.29 ± 6.81 75.13 ± 7.67
38 75 73.36 ± 7.25 75.58 ± 5.54 78.95 ± 5.28
55 110 78.48 ± 7.11 79.10 ± 7.05 82.76 ± 4.37
75 150 81.59 ± 6.97 82.12 ± 5.90 85.84 ± 5.39
105 210 84.92 ± 5.74 85.07 ± 5.35 85.89 ± 4.60

The classification performance in randomly selected sub-
sets of the training set (previously introduced in Sec. II-D)
shows a rapid increase of the classification accuracy (roughly
until B = 50) and then saturates (as shown in Fig. 2). The
detailed results reported in the aB column of Tab. III show
that the variability decreases as the training set dimension
increases, being already lower than ±2% when training with
B = 50 movements. Therefore, we focused the investigation
on sets of 10 and 50 movements to explore the characteristics
that a training set should have to assure a high ratio between
performance and training time.

The results of the inter-subject training set evaluation
analysis (as described in Sec. II-F) are reported in Fig. 3.
The average classification accuracy ranges between 54.31%
and 84.51% for LDA and between 50.15% and 92.45% for
RF. The gaps between the classification accuracy obtained
with the whole training set of 210 movements and the one
achieved with B = 50 movements are, on average, of
4.65% for LDA and 10.76% for RF. The selection of a
proper training set composed of 30 - 50 movements with
the fTDD and LDA allows the recording of the training data
in 15 - 25 minutes (from the original 105 minutes) while

TABLE III
AVERAGE ACCURACY (%) WITH IAA AND OF aB USING LDA. THE

FULL TRAINING SET ACCURACY (B = 210) IS INDICATED IN BRACKETS.

B aB IAA Subject
10 47.15 ± 5.44 54.31 ± 2.13

1
(77.55%)

20 57.69 ± 4.21 61.27 ± 4.30
30 63.32 ± 3.05 68.64 ± 2.49
40 66.53 ± 2.30 68.77 ± 1.48
50 68.90 ± 1.98 71.18 ± 1.01
10 52.42 ± 6.17 62.76 ± 3.08

2
(78.58%)

20 62.78 ± 3.82 67.37 ± 1.51
30 68.14 ± 2.74 70.58 ± 2.49
40 71.15 ± 2.09 72.81 ± 0.90
50 72.97 ± 1.61 74.09 ± 2.09
10 48.63 ± 5.14 57.78 ± 0.91

3
(74.58%)

20 58.37 ± 3.71 61.41 ± 2.15
30 62.98 ± 2.82 64.27 ± 0.84
40 65.84 ± 2.22 67.69 ± 1.74
50 67.62 ± 1.90 69.71 ± 0.36
10 63.31 ± 6.65 69.37 ± 1.79

4
(84.51%)

20 72.20 ± 3.31 77.17 ± 2.03
30 76.26 ± 2.58 77.98 ± 1.16
40 78.46 ± 2.05 80.27 ± 0.31
50 79.70 ± 1.83 81.64 ± 1.08

losing on average 8.44 - 4.65% of accuracy with respect
to the one obtained by training with the full set of 210
movements (Tab. III). The loss in accuracy is however higher
when considering the RF classifier (Fig. 3). Higher values
are obtained with LDA for B ≤ 50 with respect to RF, but
higher overall accuracy is reached with the latter.

In order to evaluate the effectiveness of the inter-subject
training set reduction approach, a comparison with the results
obtained by choosing a random subset of fixed size B coming
from the probability distribution aB was performed (Tab. III).
It is important to note that a repeated random search cannot
directly be executed on the new subject, as this would
inevitably imply the acquisition of the whole data set and
the fundamental hypothesis of choosing only B movements
would vanish. As reported in Tab. III, the average classi-
fication accuracy obtained with the movements selected by
the IAA is always greater than µaB

for the movement range
B ∈ [10, 50], falling outside the 75% confidence interval of
the probability distributions aB . The largest improvements
were obtained where the variability is highest, particularly
for B = 10. An average increase of up to ~10% with respect
to the distribution mean is obtained. However, the increase
in classification accuracy is already halved when considering
the case of B = 20. An example is shown in Fig. 2.

IV. DISCUSSION

According to the results previously presented, it is possible
to select inter-subject training sets that improve the trade-
off between training time and classification accuracy, even
when there are variations in upper limb position. The fTDD
were also shown to be more robust against limb posture
changes and the high variability of the classification ac-
curacy for smaller randomly chosen training sets suggests
that noticeable improvements can be achieved by selecting
a proper training set. The proposed training set selection
method exhibited larger improvements where the variability



Fig. 2. This plot shows the average accuracy of the inter-subject training
set evaluation (IAA for the selection phase and LDA for the testing phase)
and the means and confidence intervals (referred to in the legend as CI)
of the probability distributions aB considering B ∈ [1 − 209]. Due to
space limitation we only report the complete results belonging to subject 2.
Similar trends are obtained for the other subjects.

is higher, with an increase in classification accuracy of up to
~10% with respect to the distribution mean.

The use of features that are more robust against changes
in limb position can improve the robustness of myoelectric
hand gesture recognition, also in presence of dynamic limb
movements that are common in everyday life. It may be
helpful to include such features in future studies particularly
when considering different limb positions.

The variability analysis highlights how the growth in
classification accuracy diminishes when the training set in-
cludes more than approximately 50 movements. Although the
sample size is limited, this behaviour is consistent among all
the subjects. Therefore, it does not seem worth to acquire
such an extensive training set since the gain in classification
accuracy is not proportional to the time needed to acquire
it. Focusing on fewer than 50 movements, the variance of
the probability distributions highlights the possibility that
a noticeable performance improvement can be obtained by
selecting a proper training set. In fact, the gap between
the classification accuracy obtained by training the LDA
classifier with all the movements and the one obtained at the
upper confidence interval of aB with a set of 20 movements
can drop to roughly 11% for subject 1 and to 6% for subject
4, while the time needed to acquire the training set passes
from about 105 minutes to 10 minutes.

The inter-subject training set reduction approach is able to
find subsets of movements that provide a reasonable accuracy
while considerably reducing the training time. The growth
in classification accuracy diminishes when the training set
includes more than approximately 50 movements for both
classifiers. This behaviour is more pronounced for LDA,
and less marked for RF, suggesting that it can depend on
the type of classifier chosen. The LDA classifier exhibits
better performance for B ≤ 50, RF improves over 50
movements and the two classifiers obtain similar accuracy
for 50 movements. Therefore, LDA, being a fast and simple
classifier, seems a good candidate to be used for hand gesture
classification in presence of limb position changes, which is

Fig. 3. Average classification accuracy for the inter-subject training set
evaluation. The scores obtained for all subjects are reported. At the top, we
show the accuracy obtained with LDA while at the bottom with RF. The
accuracy of a single observation for B = 210 is reported for RF.

consistent with what is found in [13], [14]. These findings
seem to indicate that LDA exhibits better performance when
the training set dimension is moderate. This can also be
influenced by the fact that LDA was used to select the
movements by the IAA and that few classes need to be
classified. It was shown that better performance in terms of
classification accuracy can be reached with other classifiers
when a high number of classes are present [20].

The training sets selected with the IAA (where the selec-
tion is performed on more subjects and tested on the left-
out one) were compared with the randomly selected sets,
showing a systematic increase in classification accuracy with
respect to the average random selection when the training set
includes fewer than 50 movements. The comparison with
acquisition protocols previously described in literature is
currently in progress, however it is not straightforward due
to the larger variety of movements and positions considered.
Even though these values are still far from those required
by a reliable interface in unconstrained environments, the
results suggest the feasibility of the approach in improving
the trade-off between classification accuracy and acquisition
session time. Furthermore, since the anatomical differences
between amputee and able-bodied subjects might be one of
the reasons why arm position has a smaller influence for
amputees [9], it seems plausible that this may also apply
to pattern recognition approaches. It is therefore possible
that the data set and consequently the training time can be



further reduced in the actual target population. It would have
been interesting to find movement subset recurrences that
can be used as basic building blocks for the design of future
acquisition protocols. However, all movement types seem to
be necessary for the classification task. The chosen subsets
are generally balanced in terms of limb, forearm, wrist and
grasp categories and no clear patterns were found. Therefore,
movement combinations seem to be more valuable than
single movements in the model building process.

V. CONCLUSIONS
Reliable and robust myoelectric prosthesis control un-

der conditions of everyday life is still challenging. Sev-
eral remarkable steps have been made to improve pattern
recognition-based myocontrol systems, spanning from ac-
quisition system characteristics, new sets of features and
more reliable classifiers. On the other hand, the limited
robustness of the myoelectric pattern recognition techniques
still limits their application in every-day life. This work
tries to bring the domain one step further by increasing the
robustness of such control against the adversarial influence
of changes in limb position. We first defined an acquisition
protocol containing dynamic movements involving variations
in arm position, forearm orientation, wrist orientation and
hand grasp. The protocol makes the classification task more
challenging by including movements that are commonly
performed in everyday life activities. Afterwards, we perform
inter-subject training set reduction with the aim of maximiz-
ing the grasp-type classification accuracy while minimizing
the training time. The results show that the IAA is capable
of identifying a set of movements that maintain reasonable
performance in terms of classification accuracy for a new
subject, suggesting the feasibility of the approach. On the
other hand, the improvements are limited (on average of up
to ~10% with respect to the average random accuracy), the
highest improvements were obtained for B = 10 where the
variability is higher, and they may also be influenced by the
chosen classifier. The proposed approach can also be useful
in multi-posture and multi-day training strategies, in which
a selected subset of movements that ensures a quick training
phase can be used to re-train or update the training of the
classifier daily.

Future research directions include the evaluation of the
inter-subject training set selection method on a bigger sam-
ple, the investigation of other algorithms to select and
classify movements and a comparison with other protocols
commonly investigated in literature.
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