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Henning Müller2, and Adrien Depeursinge2,5

1Universidad Nacional de Colombia, Bogotá, Colombia,
2University of Applied Sciences Western Switzerland (HES-SO),

3Case Western Reserve University, Cleveland, OH, USA,
4St. Jude Childrens Research Hospital from Memphis, TN, USA,
5Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

Abstract. Medulloblastoma (MB) is a type of brain cancer that rep-
resent roughly 25% of all brain tumors in children. In the anaplastic
medulloblastoma subtype, it is important to identify the degree of ir-
regularity and lack of organizations of cells as this correlates to disease
aggressiveness and is of clinical value when evaluating patient prognosis.
This paper presents an image representation to distinguish these sub-
types in histopathology slides. The approach combines learned features
from (i) an unsupervised feature learning method using topographic in-
dependent component analysis that captures scale, color and translation
invariances, and (ii) learned linear combinations of Riesz wavelets cal-
culated at several orders and scales capturing the granularity of multi-
scale rotation-covariant information. The contribution of this work is to
show that the combination of two complementary approaches for fea-
ture learning (unsupervised and supervised) improves the classification
performance. Our approach outperforms the best methods in literature
with statistical significance, achieving 99% accuracy over region-based
data comprising 7,500 square regions from 10 patient studies diagnosed
with medulloblastoma (5 anaplastic and 5 non-anaplastic).

1 Introduction

Medulloblastoma (MB) is a type of brain cancer that represent roughly 25% of all
brain tumours in children, it grows in the cerebellum on the lower, rear portion
of the brain. Classifying MB is useful to determine aggressive phenotypes that
require intense and early treatments [5, 7]. There are subtypes of MB based on
histological appearance. These include classical, anaplastic, and desmoplastic.
In anaplastic MB, the degree of anaplasia correlates to disease aggressiveness
and is of clinical value when evaluating patient prognosis [7]. The problem of
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distinguishing between anaplastic and non anaplastic MB is difficult mainly due
to the complexity of the patterns found in the histopathology images and is due
to cell organization, size, shape and orientation variability towards the different
malignant grades of the tumor. Examples of several tissue patterns from cases
of MB whole slide images (WSI) are shown in Fig. 1. Common approaches for

Fig. 1. Inter and intra class variability from MB tumor tiles of WSI at 40× magnifi-
cation: anaplastic (Top), non-anaplastic (Bottom).

automatic tumor grading and phenotype differentiation rely on the identification
of informative and discriminative features of the visual morphological patterns
found in WSI. Unfortunately, they usually fail at capturing the variety of complex
patterns present in the WSI, for example, considering only the subtle patterns
captured by texture descriptors. This highlights the need for more powerful
techniques or combinations of techniques to overcome the challenging tasks of
automatical analysis of WSI [12].

Learning appropriate representations directly from data is a powerful ma-
chine learning strategy that has recently been applied with great success to pat-
tern recognition problems, including image understanding and speech recogni-
tion [11, 10]. The representative techniques are mainly based on neural networks
and can be grouped into two types: deep learning algorithms and unsupervised
feature learning (UFL). An important assumption of these methods is that data
patterns can be represented by the interaction of several factors at several hier-
archically organized levels with semantically increasing content. Convolutional
Neural Networks (CNN) are a representative technique where the features are hi-
erarchically learned through several layers that combine convolution and pooling
with non-linear functions [10].

For MB tumor differentiation, previous work [1] showed that the use of deep
learning and UFL techniques outperforms classical texture descriptors. In [2], the
authors made a comparative evaluation of several representation learning tech-
niques including CNNs, Topographic Independent Component Analysis (TICA)
and sparse Autoencoders (sAE), against MR8 and Haar texture descriptors.
The results demonstrated the superior performance of the features learned by
TICA, which builds a rotation and translation invariant representation of cell
organizations in the anaplastic MB subtype.
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Neural networks are the dominant approach for representation learning. How-
ever there are other representation learning strategies that are able to adapt
conventional image descriptors to the needs of a particular image analysis task.
In [3], the authors propose a multiscale texture signature learning approach using
rotation-covariant Riesz wavelets, where most relevant combinations of orienta-
tions and scales are learned directly from the data. This approach outperformed
state-of-the-art representations based on local binary patterns and grey level
cooccurrence matrices for lung tissue classification [4]. Drawbacks of the data
driven representations approaches are the amount of parameters involved that
have to be manually tuned, which requires more time in model training. Some
texture based representations fail to describe the feature patterns present in
training samples that the data-driven approach is able to find [1].

In this work, we propose a joint framework for classification of MB WSI,
where the invariant properties of TICA features and the multiscale rotation-
covariant properties of Riesz wavelet features complement each other. We hy-
pothesize that this fusion can lead to a better classification performance. This
work join efforts of [3] and [1] in a simple manner to achieve the best accuracy
reported for this histopathology WSI database.

2 Methodological Description

2.1 Topographic Independent Component Analysis

TICA is an unsupervised feature learning model, inspired by findings of the visual
cortex behaviour. It groups activations of units in order to discover features that
are rotation and translation invariant [1]. These are appropriate features for
histopathology image characterization since shapes and cell organizations can
be present regardless of the position or orientation of cells. Particularly, TICA
organizes feature detectors in a square matrix for l groups such that adjacent
feature detectors activate in a similar proportion to the same stimulus. To learn
such groups, we need to optimize the cost function:

JTICA(W) =
λ
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where x(i) ∈ Rm is the i-th sample, T is the number of samples, W ∈ Rn×m is
the matrix that encodes the features in each row, and H ∈ {0, 1}l×n is the binary

topographic organization where H
(j)
k = 1, if the j-th feature detector, j-th row

of W , belongs to the k-th group, and 0 otherwise. This model sets H fixed while
learning W. In addition, TICA has two main computational advantages. First,
the only parameters to be tuned are the regularization hyperparameter λ and the
sparsity controller ε. Second, it is an unconstrained optimization problem, which
can be solved efficiently by optimization techniques such as Limited memory-
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS).



4 S. Otálora et al.

2.2 Image Representation via Rotation-Covariant Riesz Wavelets

A fine to coarse wavelet image representation is obtained using Riesz wavelets.
Class-wise texture signatures are learned for each scale as follows. First, image
tiles are expressed in a feature space spanned by the energies of the responses of
Riesz components. Then, an optimal linear combination of the Riesz components
is learned using support vector machines (SVM) to maximize the margin between
two classes. This linear combination yields class-wise texture signatures, that are
locally aligned to maximize its response at the smallest scale, yielding rotation-
covariant texture representations [3]. The wealth of the filterbank is controlled
by the order N of the Riesz transform R, defined in the Fourier domain as:Ÿ�R(n1,n2)f(ω) =

…
n1 + n2
n1!n2!

(−jω1)n1(−jω2)n2

||ω||n1+n2
f̂(ω),

for all the combinations of (n1, n2) with n1,2 ∈ N such that n1 + n2 = N . The
vector ω is composed of ω1,2 corresponding to the frequencies along the two

image axes and f̂(ω) is the Fourier transform of f(x). The Riesz transform
yields N+1 distinct components behaving as N -th order directional differential
operators when coupled with a multi-resolution framework based on isotropic
band-limited wavelets ψs, with s = 1, · · · , S the number of iterations of the
wavelet transform. An interesting property of Riesz wavelets is that the response
of each component R(n1,n2), rotated by an arbitrary angle θ, can be derived from
a linear combination of the responses from all components of the filterbank. This
steerability property is leveraged to obtain rotation covariant-texture features [3].
For a class c, the multiscale texture signature ΓN

c is defined as:
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SVMs are used to find the optimal weights wT = (w1 . . . wSN+S)[3]. Finally, the
local orientations of each signature are optimized to maximize their local magni-
tude at the first scale ΓN

c,1. The final representation is a vector of dimensionality
(N + 1)× J × k, where k is the number of classes.

2.3 Fusing UFL and Riesz Features

Once we have the features for each tissue tile, the features are concatenated.
The latter is used as input to feed a standard softmax classifier with weight
decay regularization. Two outputs of the classifier represent the probability for
a tissue tile being considered as anaplastic or not, respectively. To train the
models weights Θ that map the fused features into the anaplastic probability,
the following cost function is minimized with an L-BFGS procedure:

J(Θ) = − 1
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where m stands for the number of samples, and k is the number of classes, and
ρ is the weight decay parameter that penalizes large values for parameters. The
fused representation of an unseen test tissue tile x(p) ∈ R(N+1)Jk+l is classified
as anaplastic (or non-anaplastic) by calculating a probability:

p(yp = 1|xp;Θ) =
exp (Θ1x

(p))∑2
l=1 exp (Θlx(p))

.

A tile belongs to the anaplastic class if p(yp|xp;Θ) > 0.5 and non-anaplastic
otherwise.

3 Experimental Results and Discussion

The workflow of the proposed approach is summarized in Fig. 2. As first step, we
compute the UFL features learned by TICA and the supervised features learned
with Riesz wavelets for each image as described in Sections 2.1 and 2.2. Once
TICA and Riesz wavelets are computed a final step of supervised classification is
made using the combination of the computed features in a concatenated vector
as input for a standard softmax classifier as described in Section 2.3. Parameter
tuning is presented in Section 3.2.

[2.4] Medulloblastoma 
        Image Cases

Fig. 2. Flowchart for MB feature extraction and classification for both learned repre-
sentations: Riesz and TICA, the details of each stage are described in subsections.

3.1 Medulloblastoma Dataset

Our MB database is from St. Jude Childrens Research Hospital in Memphis
where a neuropathologist manually annotated the cancerous regions of 10 pathol-
ogy slides, 5 diagnosed as anaplastic and 5 as non-anaplastic MB. Slides were
stained with hematoxylin and eosin (H&E) and digitization was done on an
Aperio Scanner obtaining WSI with a resolution of 80,000×80,000 pixels. Each
image can have several cancerous regions, which were manually annotated. For
training, we randomly extracted a total of 7,500 square regions (750 per case) of
200×200 pixels of the tumor regions (3,750 anaplastic and 3,750 non-anaplastic).
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3.2 Experimental Setup

In order to evaluate the advantages of the presented approach we compare the
performance of the state-of-the art work on this database [1, 7]. In [7], the authors
used a bag-of-visual-words approach using texton-based features obtained from
Haar wavelets and MR8 filterbanks. In [1], the authors perform an extensive
comparison between UFL techniques (sAE and TICA) and CNN, showing that
the TICA outperforms by a considerable margin the previous approaches in [7].
Our evaluations follow the same leave-two-patients-out cross-validation scheme
that consist of 20 trials where for each 4 of the non-anaplastic and 4 of the
anaplastic cases are randomly selected for training whereas the remaining 2 slides
(i.e., 1 non-anaplastic and 1 anaplastic) are used for validation. The architectures
and setup for the approaches are summarized as:

– 2-Layer CNN: The best CNN model reported in baseline [1] was reproduced,
consisting of a 2-layer architecture with 225 features in the first layer, and
225 units on the fully-connected layer. The feature kernel was of 8×8 pixels
and a pool size of 2×2.

– TICA: The best of the three different TICA models reported in baseline [1]
were reproduced: TICA225

F :8,P :1 using a pool size of 1 and using 225 features
with a feature kernel size of 8×8.

– Riesz wavelets: For the presented Riesz wavelet representation we explore the
order N of the wavelet as well as the number of scales J as N ∈ [1, 2, 3, 4, 5]
and J ∈ [1, 2, 3, 4]. We also tried concatenations of orders and scales.

– TICA + Riesz fusion: For the combination of the best approaches we propose
to build a joint vector 240 features for each of the tiles composed of the 225
best features found by TICA and the 15 features of the concatenation of the
Riesz wavelets of orders 1,2,3 and scales 2,2,1 respectively.

For softmax the weight decay parameter was explored logarithmically in the
range [1e-10, 100]. The performance measures are accuracy, sensitivity and speci-
ficity.

3.3 Results

Table 1 presents the results of the approaches. The best results were obtained
by combining TICA and Riesz wavelets. We show some qualitative digital an-
notation results on 2 sample test cases in Fig. 3. We compare the statistical
significance of the results of the combined representation and the TICA results
with the Kruskal-Wallis test that calculates the average rank of the accuracy
results of two approaches on the 20 trials, and compute the p-value for the null
hypothesis that the two set of results comes from the same distribution. The test
gives us a p-value of 2.5394−7 at a 1% significance level, hence we reject the null
hypothesis.
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Table 1. MB classification performance (baseline, Riesz, fusion). The measures are
averaged over the 20 test runs with standard deviation where available.

Method Accuracy Sensitivity Specificity

TICA + Riesz[N1
3 , N

2
2 , N

2
1 ] 0.997 ± 0.002 0.995 ± 0.004 1 ± 0

TICA [1] 0.972 ± 0.018 0.977 ± 0.021 0.967 ± 0.031

Riesz [N1
3 , N

2
2 , N

2
1 ] [3] 0.964 ± 0.038 0.999 ± 0.001 0.932 ± 0.07

Riesz [N1
3 ] [3] 0.958 ± 0.062 0.963 ± 0.05 0.916 ± 0.125

Riesz [N2
2 ] [3] 0.94 ± 0.02 0.94 ± 0.02 0.3 ± 0.04

2-Layer CNN [1] 0.90 ± 0.1 0.89 ± 0.18 0.9 ± 0.0.3

sAE [1] 0.90 0.87 0.93

BOF + A2NMF (Haar) [2] 0.87 0.86 0.87

Riesz [N2
1 ] [3] 0.85 ± 0.23 0.9 ± 0.15 0.7 ± 0.47

BOF + K - NN (Haar) [7] 0.80 - -

BOF + K - NN (MR8) [7] 0.62 - -

4 Concluding Remarks

We present a feature fusion between unsupervised feature learning and super-
vised Riesz wavelet representation that captures subtle pattern of textures as
well as high level features, allowing to create a more separable feature space
where the differentiation of medulloblastoma into anaplastic and non-anaplastic
can be made with high classification accuracy outperforming any other result
previously described in the literature. To our knowledge this is the first time
that a feature fusion method is presented between UFL and the Riesz wavelets
in the context of histopathology image analysis showing the complementarity
between these learned features for the challenging task of tumour differentia-
tion, we are currently working on extending the method to other patch-based
histopathology image analysis problems with larger cohorts of patients.

Fig. 3. Predictions over two WSIs, non-anaplastic MB (left) and anaplastic (right).
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