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Abstract. Free-text reporting has been the main approach in clinical
pathology practice for decades. Pathology reports are an essential infor-
mation source to guide the treatment of cancer patients and for cancer
registries, which process high volumes of free-text reports annually. In-
formation coding and extraction are usually performed manually and it
is an expensive and time-consuming process, since reports vary widely
between institutions, usually contain noise and do not have a standard
structure. This paper presents strategies based on natural language pro-
cessing (NLP) models to classify noisy free-text pathology reports of high
and low-grade prostate cancer from the open-source repository TCGA
(The Cancer Genome Atlas). We used paragraph vectors to encode the
reports and compared them with n-grams and TF-IDF representations.
The best representation based on distributed bag of words of paragraph
vectors obtained an f1-score of 0.858 and an AUC of 0.854 using a logistic
regression classifier. We investigate the classifier’s more relevant words
in each case using the LIME interpretability tool, confirming the clas-
sifiers’ usefulness to select relevant diagnostic words. Our results show
the feasibility of using paragraph embeddings to represent and classify
pathology reports.

Keywords: Pathology Reports · Natural Language Processing · Para-
graph Embeddings

1 Introduction

Pathologists examine tissue via a microscope or in a digital image looking for
specific cell and gland morphologies that resemble cancer or healthy tissue. After
careful examination, they summarize their findings in a free-text report, as shown
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in Figure 1. Pathology reports include a diagnosis or a score in a grading/staging
system, despite being an inherently complex and uncertain process [13]. The out-
comes are often discussed in tumor boards or given to oncologists and referring
clinicians to decide on the best treatment options for the patient.

While free-text reporting has been the main approach in clinical practice
for decades (sometimes helped by speech recognition), structured reporting is
gaining importance in clinical practice, as it allows to improve quality parameters
in diagnostic practice, including timeliness, accuracy, completeness, conformance
with current agreed standards, consistency and clarity in communication. In
addition, structured approaches can be fundamental (e.g. for cancer registries)
for population-level quality monitoring, benchmarking, interventions and benefit
analyses in public health management [6].

Automatic analysis and classification of reports can allow to enhance the
practice of pathologists. First, it is a possible way to create structured reports
from free text ones, in order to standardize previously diagnosed cases for mon-
itoring, benchmarking and benefit analyses in public health management. Sec-
ond, it can allow to retrieve similar cases in proprietary databases [16], enabling
pathologists to navigate repositories of images for clinical decision support and
teaching. In such situations, the comparison with visually similar cases is fun-
damental to reduce the risk of misinterpretations in the diagnosis and provide
high quality teaching guidelines. Finally, it can allow faster preparation of multi-
center and population-level studies, which require a single agreed international
and evidence-based standard to ensure interoperability and comparability [6].

Manually extracting information from free-text pathology reports is an ex-
pensive and time-consuming process since they vary widely between institutions,
usually contain noise and do not have a standard structure. Still, manual extrac-
tion is the most common practice when structured reports are not available, since
free-text reports are in most cases extremely noisy and the design and creation
of tools that automatically extract information from pathology reports is not
straightforward [12, 3, 18]. With the advent of digital pathology and structured
reporting, there is an increasing interest in automatic analysis of pathology re-
ports [2, 23, 14, 7, 22].

Natural Language Processing (NLP) tools are used extensively to analyze
clinical health records automatically [23, 11, 7]. While there has been an increase
in the use of recurrent neural networks [7] and word2vec embeddings [17] to
represent the content of reports, the use of deep learning techniques has not yet
fully penetrated clinical NLP [21]. Particularly, with the recently proposed dis-
tributed representations of words and documents [8], and transformer networks
that have outperformed traditional NLP approaches in many NLP tasks and
benchmarks [19], the evidence on the applicability to clinical and pathology text
remains under-explored.
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1
Primary Gleason Grade: 3

Secondary Gleason Grade: 3
2 Gleason score 3+4

Gleason grade: 

a) Primary pattern 3/5

b) Secondary pattern 4/5

a) Total Gleason score 7/10

Fig. 1. Snippets of three pathology reports from the TCGA-PRAD repository. The
variation in the diagnosis text makes it difficult to manually develop specified rules to
extract these important parts of the report automatically.

2 Related Work

There are machine learning and NLP approaches in the literature that classify
and extract clinical information from pathology reports [7] automatically. The
tasks’ performance varies widely and depends mainly on the database’s size of the
database and how structured the reports are. In the work of Yala et al. [23], each
of the sentences in a large dataset of more than 90,000 breast cancer pathology
reports is represented with an n-gram. Each report is classified independently
into 20 categories, with an average accuracy of 97%. In the work of Qiu et al. [14],
the authors use a CNN to automatically extract ICD-O-3 topographic codes from
a corpus of breast and lung cancer pathology reports, obtaining a micro-F score
of 0.811 and outperforming conventional NLP strategies. Gao et al. [7] used
hierarchical attention networks to model free-text pathology reports and extract
from them information, including primary tumor sites and histological grades,
obtaining macro F-scores of 0.852 and 0.708 respectively in a set of 942 pathology
reports. In the work of Alawad et al. [1], the authors used a multitask CNN for
classifying histological grade, type, laterality, and primary cancer site in a dataset
of 95231 pathology reports, achieving a macro-F measure of 0.766 in the grading
task. Similar studies usually lack an in-depth analysis of the classifier’s more
relevant words, besides reporting the model’s quantitative performance. This
paper investigates the use of paragraph vectors to represent and classify high and
low-grade prostate pathology reports. We encode the reports using distributed
representations of sentences and compare it to standard NLP techniques. Our
results show that our approach is better than conventional and TF-IDF by 0.23
in AUC, reaching an F-score of 0.858 and an AUC of 0.854. We also analyze
the more relevant words qualitatively for classifying the reports in each class,



finding them similar to the words that pathologists use the diagnosis of Gleason
grading.

3 Methods

This section describes the pathology report corpus used, the pre-processing steps
and the classification approach. Figure 2 gives an overview of our approach used
to automatically classify pathology reports into high-grade vs. low-grade prostate
cancer.

Fig. 2. Our approach

3.1 Corpus

The approach described in this paper uses publicly available prostate adeno-
carcinoma clinical pathology reports from The Cancer Genome Atlas (TCGA)
PanCancer dataset 3. The clinical report corpus originally consisted of 494 4

3 lhttps://portal.gdc.cancer.gov/projects/TCGA-PRAD
4 http://www.cbioportal.org/study/clinicalData?id=prad_tcga_pan_can_

atlas_2018



reports out of which 404 non-empty reports were selected for further analysis.
These reports were varying in length (see Figure 5), unstructured free-text (see
Figure 1) scanned copies of the original documents available as Portable Docu-
ment Format (PDF). An unstructured report in contrast to a structured report
is not divided into self-explanatory sections. The corpus documents were manu-
ally labelled with two class labels: high-grade (Gleason Score > 7) and low-grade
(Gleason Score < 6,7) using the diagnosis information from them. This separa-
tion has clinically relevant patient stratification [10]. After manual classification,
171 reports were identified as high-grade prostate cancer and 233 reports were
identified as low-grade prostate cancer creating a slight class imbalance (refer
Figure 5).

3.2 Corpus Preprocessing

Any text corpus requires thorough preprocessing before it can be used for any
downstream NLP task. Text preprocessing primarily includes 1) conversion of
immutable text documents to machine readable, 2) filtering of useless and noisy
parts from the data, and 3) removal of uninformative filler words. The following
preprocessing steps were performed before the feature extraction.

1. PDF to text: The PDF documents were converted into editable and search-
able text files using GOCR, an open-source optical character reader (OCR) data
suite 5.

2. Fixed-pattern noise removal: Next, the most apparent noise elements fol-
lowing a known pattern, like a trail of hyphens (-), pipes (|), asterisks (*), pa-
tient identifiers (for e.g., Patient ID: QUID : 70DD94DF - 1301 . 40FC-A52B -
43E2229563E3), sample identifiers (for e.g., TCGA- ZG-A9NI - 91A-PR), and
HEX NULL characters (e.g. <0x0C>, <0x0F>) were automatically removed.
Fully automatic filtering can miss some noise. Denoising these documents was
an important preprocessing step.

3. Stop-word removal: The most frequent, noisy tokens were automatically re-
moved using a set of predefined English language stop-words provided by NLTK
(Natural Language ToolKit) 6 along with the corpus-specific stop-words and
punctuation, listed in Table 1.

3.3 Data Augmentation

Class imbalance often reduces the classifier performance, so in the present work
it was addressed by oversampling through back-translation text augmentation
technique. Augmentation and oversampling using back-translation process in-
volves augmenting the minority class by translating a document to a language

5 http://jocr.sourceforge.net/
6 https://www.nltk.org/api/nltk.tokenize.html



Table 1. List of the additional corpus-specific stop-words removed from the pathology
reports.

Stop-words Punctuation

report reviewed surgical ; # [] ‘ .

electronically approved signed : () ? / &

pathology page redacted , ! \ ”

other than the source language and then translating it back to the source lan-
guage [20]. Here the documents were translated from the source language English
to German and back using the Google translate python package 7. German was
used as a target language for augmentation because it has a high lexical simi-
larity with English (a similarity coefficient of 0.60) thereby adding variability to
the oversampled text without altering its meaning [5].

The corpus was split into training and test sets. After splitting, the training
set was oversampled to equally learn both the classes during training. Table 2
gives a summary of the corpus used in our experiments.

Table 2. Number of reports per class after train-test split and oversampling.

Partition/Class Train Test

High-Grade 186 47

Low-Grade 186 34

3.4 Document Representation

In natural language classification problems, it is important to represent the text
documents in machine understandable form. Text representation or vectorization
methods convert text documents into fixed-length numeric vectors understood
by NLP systems. Two types of numeric representations were extracted from
the documents, each one encoding different levels of information. These text
representation methods were: I) Count-based vectors, and II) Semantic vectors.

Count vectors: Count vectors encode text as word counts or frequency. Term
Frequency - Inverse Document Frequency (TF-IDF) is weighted, sparse, word
frequency encoding for numeric text representation. TF-IDF is a multiplication
between term frequency (TF) matrix and inverse document frequency (IDF)
matrix. Term frequency of a word W is defined as the word count of W for
the document D divided by the number of words N in D. IDF of a word W is
defined as logarithm of the total number of documents divided by the number
of documents containing W . tf-idf increases weight for the meaningful words in
the corpus and reduces the weight for filler words like a, an, the, in, if, etc [4].

7 https://pypi.org/project/googletrans/



Semantic vectors: Count vectors not only lose the word order and semantic
information but also suffer high-dimensionality and sparsity. To take into ac-
count semantics of the text, document-level, semantic, dense paragraph vectors
were extracted. Paragraph vectors are generated in an unsupervised manner and
learn a distributed representation for pieces of text along with distributed repre-
sentation for the individual words. These vectors learn to associate words with
document identifiers rather than with the other words in the context. This work
used two kinds of paragraph vectors: 1) a distributed memory model of para-
graph vectors (PV-DM) and 2) a distributed bag of words model of paragraph
vectors (PV-DBOW) [8]. PV-DM and PV-DBOW vectors were generated for the
training documents on fly during the experiments using the gensim functional-
ity 8.

3.5 Document Classification

After feature extraction for each document, L2 normalization for each feature
vector was computed. All the labelled documents were used to train and evaluate
multiple classifiers (Logistic Regression (LR), Support Vector Machines (SVMs)
with linear kernel and K-nearest neighbour (KNN)) in order to separate the
reports into high vs. low-grade prostate cancer. Grid search was used to explore
and identify best performing parameters for these classifiers and feature vector
combinations. The model performance was evaluated on an independent held-out
test set.

3.6 Experimental Setup

Twelve experiments were conducted each combining the above-mentioned feature
vector-classifier combination. Grid search was used to identify the best feature
vector, hyperparameters and classifier combination in the training set using ROC
AUC (Receiver Operating Curve; Area Under Curve) as a guiding metric. The
macro-F1 score, Precision, Recall and ROC AUC measures were used. Random
seed for the experiments was set to 42.

Hyperparameter space for count vectors: The tf-idf vectors were extracted and
an n-gram space with n ranging from 1 to 10 was explored. Too frequently or
too infrequently appearing terms were controlled.

Hyperparameter space for semantic vectors: For the semantic paragraph vec-
tors, vector dimensions of 100, 300, and 500 with window sizes 2, 3 and 5. The
paragraph vectors were trained for epochs 20, 30 and 50 along with the above
vector dimension and window size combination.

8 https://radimrehurek.com/gensim/models/doc2vec.html



4 Results

Table 3 reports classification results for the best feature vector classifier com-
bination. Paragraph vectors capture better discriminatory information between
the classes compared to the count vectors as seen from the ROC AUC scores.
PV-DBOW - logistic regression has the best ROC AUC score of 85.4% com-
pared to the other feature vector classifier combinations. Compared to SVM
classifier combined with paragraph vectors, LR offers gains in precision by 2.6%,
while the recall values for both the classifiers remain identical (79.4%). Para-
graph vectors achieve this best ROC AUC score for the denoised, augmented and
class-balanced training documents, but training with noisy documents leads to
a massive drop in ROC AUC by 11.5%. Training these noisy documents without
any oversampling leads to a further drop in ROC AUC by 2.6%. The confusion
matrix for both the best performing feature vector - classifier combination is
shown in Figure 3. The hyperparamters for the best performing feature vectors
are shown in Table 4. For the tf-idf vectors, KNN classifier offers overall better
macro precision and recall compared to the other classifiers.

Table 3. The table shows the results for the best classifier-feature vector combination
(see section 3.6).

class “High-grade” Macro average

Feature-Classifier Precision Recall F1 Precision Recall F1
ROC
AUC

tf-idf-LR 0.630 0.500 0.554 0.657 0.644 0.645 0.645
tf-idf-SVM 0.655 0.559 0.603 0.683 0.683 0.675 0.673
tf-idf-KNN 0.739 0.500 0.596 0.723 0.686 0.689 0.686
PV-DBOW-KNN 0.826 0.559 0.667 0.784 0.737 0.743 0.737
PV-DBOW-SVM 0.844 0.794 0.818 0.850 0.844 0.847 0.843
PV-DBOW-LR
- Denoised oversampled 0.870 0.794 0.830 0.866 0.854 0.859 0.854
- noisy reports 0.847 0.579 0.688 0.767 0.739 0.732 0.739
- no oversampling 0.735 0.658 0.694 0.716 0.714 0.713 0.713

Table 4. The table shows the parameter settings used for the best feature vector-
classifier combination (refer section 3.6).

Features Classifier Vector parameters

tf-idf KNN n-gram 10, max df 0.7, min df 0.0
PV-DBOW LR window size 5, vector dimension 300, epochs 20



Fig. 3. Confusion matrix for best count vector classifier combination vs. best semantic
vector classifier combination

5 Discussion & Analysis

The corpus characteristics: The corpus with pathology reports consisted of
highly variable length reports. These are unstructured reports without any ex-
plicit demarcation or order for different sections like patient history, diagnosis,
conclusion and summary. Figure 5 shows a histogram of the number of reports
against report length measured in number of characters. The smallest report
had 485 characters while the longest one had 11440. Additionally, except diag-
nosis section, not all reports were complete and comprehensive lacking one or
the other above mentioned sections. The reports originated from heterogeneous
sources and were available in the PDF format. Upon conversion from PDF to
text format using open-source OCR software, further added to the noise to the
already heterogeneous corpus. All these issues made the preprocessing and clas-
sification process rather challenging.

Fig. 4. The graph shows report
length for non-empty reports in
terms of characters.

Fig. 5. Histogram showing class
imbalance in the corpus. “0” corre-
sponds to class low-grade prostate
cancer and “1” correspond to class
high-grade prostate cancer.



Interpretation: Paragraph vectors (refer Paragraph 3.4) used in our work are
representations generated in unsupervised manner using shallow neural net-
works. Such representations are not interpretable and are considered as black-
box representations. In order to inspect if the best performing paragraph vector
representations did capture relevant hints for classifying the documents into
high vs. low-grade prostate cancer, we used LIME (Local Interpretable Model-
Agnostic Explanations) [15]. LIME abstracts the behavior of a black-box system
around individual predicted instances in the form of interpretable natural lan-
guage units (bag of words) i.e. the words. It generates explanations by training
a locally-faithful interpretable linear model for individual predicted instances by
tweaking its feature values and observing the output. LIME was used to extract
six explanations for each class from the individual reports in the test set. Fig-
ures 6, 7, 8, and 9 show LIME explanations for the high-grade and low-grade
prostate cancer classes on the test instances.

Figure 6 shows a high-grade instance with LIME explanations for both the
classes. LIME picks up the numbers “4”, “5”, and “9” from the text which forms
the part of gleason score phrase. Total gleason grading score of “9” is one of the
strongest clues to classify the diagnosed prostate cancer into high-grade.

Fig. 6. LIME explanation for a high-grade report instance from the test set.

In Figure 7, we present a contradictory example where for a high-grade
prostate cancer report, LIME confidently picks up rather irrelevant terms (right,
left, prostatic, etc.) for the low-grade class instead.

Figure 8 shows low-grade instance with LIME explanations for the low-grade
class. One of the relevant explanation for classification into low-grade are the
numbers “3”, “4”, and “7”. These numbers form part of the total gleason score
term for low-grade prostate cancer. The model, however, does not pick any word
explanations from the class high-grade and also picks other irrelevant explana-
tions like the term “prosectomy” and “excision”.

Figure 9 shows a low-grade instance with several strong explanations. For the
class low-grade, several relevant clues are picked up; the tumor histologic grade
term “g3” and the numbers “3” and “4”. It can be noticed that these numbers



Fig. 7. LIME explanation for a high-grade report instance from the test set.

Fig. 8. LIME explanation for a low-grade report instance from the corpus.

form part of the Gleason grade phrases and are present in the reports as “gleason
grade 3+3”, “gleason grade 3+4”, “primary gleason grade 3”, “secondary gleason
grade 4” depicting an overall low-grade Gleason score.

Fig. 9. A strong LIME explanation for a low-grade report instance from the corpus.



From each example LIME explanation demonstrated here, it has to be noted
that the paragraph representation model picks several strong informative terms
for each class but also picks up many irrelevant words with high confidence and
misses out on rather strong diagnosis information terms. LIME explanations
warrant further inspection with respect to the hyper-parameters like the number
of explanations generated, number of neighbouring samples used to generate
explanations, random seed used, and distance metric [9].

6 Conclusions & Future Work

We presented an approach for classification of noisy, heterogeneous pathology
reports corpus into high-grade prostate cancer and low-grade prostate cancer
using two levels of textual information. Semantic information proved to be more
discriminatory between the classes compared to the count information. These
pathology reports included unstructured complex information that is spread over
long segments of text. Our results and interpretability analysis suggest not only
the feasibility, but also reliability of using paragraph vectors to represent and
classify prostate pathology reports into high- vs. low-grade prostate cancer.

Each report consists of multiple tumor staging terms, clinical measurements,
prostrate tissue anatomy information and their combination with negation terms.
We hypothesize that this problem of extracting information from pathology re-
ports might be better suited as an entity recognition problem. Extracting seman-
tically inclined entities could help fine-grained classification of these rather noisy,
heterogeneous reports. The noisy and denoised prostrate cancer pathology report
corpus, the source code to reproduce our experiments and the python notebook
to explore interpretability analysis can be found on Github: https://github.
com/anjani-dhrangadhariya/pathology-report-classification.git.
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