MedGIFT
Topic: VISCERAL
Publications for topic "VISCERAL"
2017
Combining Radiology Images and Meta-data for Multimodal Medical Case-Based Retrieval, Springer, 2017 | , and ,
|
Retrieval of Medical Cases for Diagnostic Decisions: VISCERAL Retrieval Benchmark, chapter Retrieval of Medical Cases for Diagnostic Decisions: VISCERAL Retrieval Benchmark, Springer, 2017 | , , , and ,
|
VISCERAL: Evaluation-as-a-Service for Medical Imaging, VISCERAL book, Springer, 2017 | and ,
|
2016
Cloud–based Evaluation of Organ Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks (2016), in: IEEE Transactions on Medical Imaging
|
, , , , , , , , , , , , , , , , , , , , , , , , , , and ,
[DOI] [URL] |
Report on the Cloud-Based Evaluation Approaches Workshop, in: SIGIR Forum, pages 35-41, 2016 | , , , , , , , , , , , , and ,
|
2015
Efficient and fully automatic segmentation of the lungs in CT volumes, in: Proceedings of the VISCERAL Anatomy Grand Challenge at the 2015 IEEE ISBI, New York, USA, pages 31-35, CEUR-WS, 2015 | , , and ,
[URL] |
Hierarchic Anatomical Structure Segmentation Guided by Spatial Correlations (AnatSeg-Gspac): VISCERAL Anatomy3, in: Proceedings of the VISCERAL Anatomy Grand Challenge at the 2015 IEEE ISBI, pages 22-26, CEUR-WS, 2015 | , , and ,
[URL] |
Open Innovation in Data Science through Evaluation-as-a-Service, in: European Data Forum, Luxembourg, 2015 | and ,
|
Overview of the first workshop on Multimodal Retrieval in the medical domain (MRMD 2015), Springer, 2015 | , , , and ,
|
Overview of the VISCERAL Retrieval Benchmark 2015, in: Multimodal Retrieval in the Medical Domain, Vienna, Austria, Springer, 2015 | , , , and ,
|
Proceedings of the VISCERAL Anatomy3 Organ Segmentation Challenge, 2015 | , , and ,
[URL] |
RadLex Terms and Local Texture Features for Multimodal Medical Case Retrieval, in: Multimodal Retrieval in the Medical Domain (MRMD) 2015, Vienna, Austria, Springer, 2015 | , , and ,
|
Report on the Evaluation-as-a-Service (EaaS) Expert Workshop, in: SIGIR Forum, pages 57-65, 2015 | , , , , , , , , , , and ,
|
Texture classification of anatomical structures in CT using a context-free machine learning approach, in: SPIE Medical Imaging 2015, pages 94140W-94140W-14, SPIE, 2015 | , , and ,
[DOI] [URL] |
USYD/HES-SO in the VISCERAL Retrieval Benchmark, in: ECIR workshop on Multimodal Retrieval in the Medical Domain, Vienna, Austria, Springer Lecture Notes in Computer Science (LNCS), 2015
|
, , , and ,
|
VISCERAL-VISual Concept Extraction challenge in RAdioLogy: Organsegmentierung: Übersicht, Einblicke und erste Ergebnisse, in: Deutscher Röntgenkongress, Hamburg, Germany, 2015 | , , , , , , , , , , , , , and ,
|
VISCERAL-VISual Concept Extraction challenge in RAdioLogy: Segmentation challenge: overview, insights and preliminary results, in: ECR, Vienna, Austria, 2015 | , , , , , , , , , , , , , and ,
|
Workshop Multimodal Retrieval in the Medical Domain, in: ECIR, Vienna, Austria, 2015 | , , , and ,
|
2014
A Cloud-based Framework for Evaluation on Big Data, in: BIG workshop, Korea, 2014 | , , and ,
|
A Formal Method For Selecting Evaluation Metrics For Image Segmentation, in: IEEE International Conference on Image Processing (ICIP) 2014, Paris, France, 2014 | , and ,
[DOI] [URL] |
Finding seed points for organ segmentation using example annotations, in: SPIE Medical Imaging 2014, San Diego, CA, USA, 2014 | and ,
[DOI] |
Hierarchical Multi-atlas Based Segmentation for Anatomical Structures: Evaluation in the VISCERAL Anatomy Benchmarks, in: Medical Computer Vision. Large Data in Medical Imaging, Springer, 2014 | and ,
|
Hierarchical multi-structure segmentation guided by anatomical correlations, in: Proceedings of the VISCERAL Challenge at ISBI, Beijing, China, pages 32-36, 2014 | and ,
[URL] |
Medical Computer Vision: Algorithms for Big Data (MCV2014), Springer, LNCS 8848, 2014
|
, , , , , , and ,
|
Multi atlas–based segmentation with data driven refinement, in: Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International Conference on, Valencia, Spain, pages 605-608, IEEE, 2014 | and ,
[DOI] |
Multi-Structure Atlas-Based Segmentation Using Anatomical Regions Of Interest, in: Medical Computer Vision. Large Data in Medical Imaging, Nagoya, Japan, pages 217-221, Springer International Publishing, 2014
|
and ,
[DOI] [URL] |
Overview of the 2013 workshop on Medical Computer Vision (MCV 2013), in: Medical Computer Vision. Large Data in Medical Imaging, pages 3-10, Springer International Publishing, 2014
|
, , , , , and ,
[DOI] [URL] |
Overview of the 2014 Workshop on Medical Computer Vision: Algorithms for Big Data (MCV 2014), Springer, 2014
|
, , , , , , and ,
|
Proceedings of the International Workshop on Medical Computer Vision (MCV), Springer, LNCS, 2014
|
, , , , and ,
[URL] |
Test Data and Results of the Automatic Metric Selection Method (2014), in: tuwien.ac.at | , and ,
[URL] |
Using Probability Maps for Multi-organ Automatic Segmentation, in: MICCAI MCV workshop, Nagoya, Japan, 2014
|
, and ,
|
VISCERAL - VISual Concept Extraction Challenge in RAdioLogy: ISBI 2014 Challenge Organization, in: Proceedings of the VISCERAL Challenge at ISBI, Beijing, China, pages 6-15, 2014 | , , , , , , , , , , , , , , , and ,
[URL] |
2013
Benefits of texture analysis of dual energy CT for computer-aided pulmonary embolism detection, in: The 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2013), Osaka, Japan, pages 3973-3976, 2013 | , , , , and ,
[DOI] |
Cloud-based Evaluation Framework for Big Data, in: FIA book 2013, 2013 | , , and ,
|
Epileptogenic lesion quantification in MRI using contralateral 3D texture comparisons, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, pages 353-360, Springer Berlin Heidelberg, 2013 | , , , and ,
[DOI] [URL] |
Semantik und Bilddaten: wie Terminologien in der Radiologie helfen könnten, in: Deutscher Roentgenkongress, Hamburg, Germany, 2013 | ,
|
VISCERAL: Towards Large Data in Medical Imaging - Challenges and Directions, in: MCBR-CDS MICCAI workshop, Nice, France, 2013 | , , and ,
|
2012
Bringing the algorithms to the data: cloud–based benchmarking for medical image analysis, in: CLEF conference, 2012 | , , , , and ,
|
Fast Content-based Visual Retrieval of Radiology Cases in Hospital Systems, in: RSNA, Chicago, IL, USA, 2012 | , , , , , and ,
|
VISCERAL: Towards Large Data in Medical Imaging - Challenges and Directions, in: MCBR-CDS MICCAI workshop, Nice, France, 2012 | , , and ,