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Abstract. Organ segmentation is a vital task in diagnostic medicine.
The ability to perform it automatically can save clinicians time and labor.
In this paper, a method to achieve automatic segmentation of organs in
three–dimensional (3D), non–annotated, full–body magnetic resonance
(MR), and computed tomography (CT) volumes is proposed.
According to the method, training volumes are registered to a chosen
reference volume and the registration transform obtained is used to cre-
ate an overlap volume for each annotated organ in the dataset. A 3D
probability map, and its centroid, is derived from that. Afterwards, the
reference volume is affinely mapped onto any non–annotated volume and
the obtained mapping is applied to the centroid and the organ probability
maps.
Region–growing segmentation on the non–annotated volume may then
be started using the warped centroid as the seed point and the warped
probability map as an aid to the stopping criterion.
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1 Introduction

Clinicians have come to rely very heavily on imaging for diagnosis and pre–
operative surgical planning. Segmentation is often an essential step in the anal-
ysis of patient data. Automatic segmentation can greatly reduce the burden
on clinicians who are called upon for manual delineation of organs in full–body
scans or other images. They can, thus, save time which they could invest in other
aspects of their work in order to provide better care to patients. To achieve this
goal, a method to automatically segment the contents of full–body MR/CT scans
using probability maps built from training images is proposed in this paper.

Moreover, medical information is being produced and collected at a massive
rate and there is a clear need for its efficient processing and storage. This is
particularly important in order to effectively exploit the information contained
in images gathered for past clinical cases in order to improve diagnosis and
surgical planning outcomes. Automating the processing and efficient storage of
the huge quantities of data being collected is thus becoming vital. The proposed



automatic segmentation technique would help greatly with that. In addition, it
will eventually allow for automatic organ classification and, subequently, effective
archiving and storage for later retrieval.

Furthermore, this study is well aligned with the FP7 VISual Concept Ex-
traction challenge in RAdioLogy (VISCERAL) [5] benchmark4 which involves
achieving automatic segmentation of anatomical structures in non–annotated
full–body MR/ CT volumes. The project also involves the segmentation of a
’surprise’ organ. Only training data and no a–priori knowledge can be used for
that purpose. A segmentation method that uses the proposed method of using
probability maps built from training images would be perfectly suited to achieve
it.

2 Methods

A full–body MR or CT volume, labelled as X, is chosen from the database of
training acquisitions, Y1 to YN (where N is the size of the database), provided
for VISCERAL. Each acquisition has been examined by expert radiologists who
have annotated up to 20 different organs and saved each annotation, labelled
A(Yn,organ) (where n is the identifier of a particular volume in the database),
as a separate volume.

Care is taken such that X is not an outlier in terms of body shape and size.
This ensures that the error introduced by affine registration, which will be used
in the next step, is kept to a minimum. Figure 1 illustrates the choice of X for
this paper and includes an illustrative annotation, A(X,liver) in blue.

Fig. 1: A full–body MR volume is chosen as X. For illustrative purposes, X is
superimposed with the liver annotation: A(X,liver)

2.1 Registration

A training volume, labelled as Y1, is then registered with X. Y1 is chosen as
the moving volume and X is the fixed volume. An affine transformation [1] is
applied during the registration process as it offers a good compromise between

4 VISCERAL benchmark: http://www.visceral.eu/benchmark-1/, 2012. [Online; ac-
cessed 31–July–2013].



computation speed and accuracy. The cost metric used is mutual information
(MI) [2] as two modalities — MR and CT — may need to be registered together.

To speed up the computation of MI, the implementation by Mattes et al. [6,
7] is utilized. To minimize the interpolation errors that necessarily occur during
registration while keeping computation time low, B–Spline interpolation [9, 10, 8]
is carried out. After the successful completion of registration, the linear transform
T that maps Y1 onto X is obtained.

Next, one organ of interest, Z, is picked. The annotation volume, A(Y1,Z),
is then converted into a binary volume before being transformed using T , giving
AT (Y1, Z). The latter is resampled such that it has the exact volume and voxel
dimensions as A(X,Z), which itself has the same mensurations as X.

2.2 Creation of a Probability Distribution Volume

To create a probability distribution volume, the above registration step is carried
out for all N available VISCERAL volumes. For each training volume Yn, a
different transformation T and a different warped annotated volume AT (Yn, Z)
are obtained.

Since AT (Yn, Z) for all n have the same volume and voxel sizes as A(X,Z),
they may be combined together voxel–wise and then normalized according to
equation (1) to obtain the probability distribution volume for organ Z: PDZ .

Please note that A(X,Z) is present in (1) as AT (X,Z) since X is a member
of the set (Y1, Y2, ..., YN ) and A(X,Z) = AT (X,Z).

PDZ =
1

N

N∑
n=1

AT (Yn, Z) (1)

2.3 Generation of a Seed Point

The centroid of PDZ , represented in row vector form as
[
xc yc zc

]
, corresponds

to the weighted average location of a point that lies within PDZ . For an MxNxP
volume, it can be found using equation (2), where V (x, y, z) is the voxel value at
coordinates (x, y, z), which is represented as

[
x y z

]
in vector form. For a volume,

B, on which the seed point for segmentation has to be found, affine registration
between X and B is carried out. This time, X is used as the moving image while
B is the fixed volume. The obtained transformation is applied to the volume
containing the centroid found above. The location of the warped centroid may
now be used as a seed point for segmentation on volume B.

[
xc yc zc

]
=

∑M
x=1

∑N
y=1

∑P
z=1 V (x, y, z) ∗

[
x y z

]∑M
x=1

∑N
y=1

∑P
z=1 V (x, y, z)

(2)

2.4 Region–growing Algorithm for Segmentation

Current region–growing algorithms only use the properties of voxels in the neigh-
bourhood of the seed point in order to determine if a certain voxel belongs to



the organ being segmented or not. In this paper, a method to supplement the
conventional voxel–based approach with information contained in the warped
probability map is proposed. At the time of writing, investigations to find such
a hybrid measure to discriminate between voxels are on–going. Current work is
focused on the weeding out of regions of lower probability value from the proba-
bility maps in order to determine the effect of doing that on the overlap between
the new probability maps and the reference organ annotation.

3 Preliminary Results

For a series of up to 9 MR/CT volumes corresponding to four types of organ
annotations: the left lung, the liver, the left kidney, and the urinary bladder,
the respective probability distribution volumes are computed. Figure 2a shows
the one for the liver, PDliver, in coronal view . The darkest red region indicates
a probability of one for a voxel to lie inside the liver and the darkest blue re-
gion indicates a probability of zero. The visualisation was generated using 3D
Slicer5 [4].

Figure 2b illustrates the centroid of PDliver as a very dark red point near
the centre of the probability distribution. When the same procedure is applied
to the right lung, right kidney and the urinary bladder, Figure3–6 are obtained
respectively. It may be observed that the seed points are located well within the
target organs, implying that the automatic computation of organ seed points
yields satisfactory results.

Currently, methods to improve the overlap between the probability maps
and the reference annotations are being investigated. It is quantified using Dice’s
coefficient [3]. Preliminary results of the investigation are displayed in Figure 7. It
is clearly shown in it that the Dice coefficient and, therefore, the overlap between
the maps and the reference annotation may be improved by neglecting lower
probabilities in the probability maps up to a certain point. This has interesting
implications for the use of probability maps as a control for region–growing
in segmentation algorithms. It is expected that further investigation into this
property of probability maps will be useful in devising an effective stopping
criterion.

5 3D Slicer: http://www.slicer.org, 2013. [Online; accessed 31–July–2013].



(a) (b)

Fig. 2: (a) Probability distribution volume of the liver (coronal view). The darkest
red region indicates a probability of 1 for a voxel to lie on the liver and the dark
blue region indicates a probability of 0; (b) The centroid of the liver is the darkest
point in the probability distribution volume.

Fig. 3: Dark red
seed point on X
and PDliver

Fig. 4: Seed
point on X and
PDleft lung

Fig. 5: Seed
point on X and
PDleft kidney

Fig. 6: Seed
point on X and
PDurinary bladder

Fig. 7: Evolution in the Dice coefficient as the probability threshold is increased.
Overlap may be improved by neglecting regions of lower probability up to a
certain threshold.



4 Conclusions

This article proposes a very generic, simple, scalable, and easy–to–implement
approach to achieve the automatic segmentation of any organ based on annotated
3D training data. Initial results indicate that it is effective in finding satisfactory
seed points automatically. Once the measure to discriminate between voxels
during region–growing is devised using voxel properties and 3D probability maps,
it is expected that fully automatic segmentation will be convincingly achieved.

However, some limitations to the approach are foreseen. Due to the sig-
nificantly large mismatch between the body–shape, the technique will perform
poorly when applied to MR/CT scans of children or people with extreme body
shapes such as obese or extremely long persons. Nevertheless, the technique de-
scribed in this paper is expected to perform well in all other cases. It is also
expected that it will achieve the goals of the VISCERAL benchmark and even-
ually play a significant role in the improvement in the way the ever–increasing
mass of collected medical data is processed and stored.
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