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ABSTRACT
Pulmonary embolism is an avoidable cause of death if treated
immediately but delays in diagnosis and treatment lead to
an increased risk. Computer–assisted image analysis of both
unenhanced and contrast–enhanced computed tomography
(CT) have proven useful for diagnosis of pulmonary em-
bolism. Dual energy CT provides additional information
over the standard single energy scan by generating four–
dimensional (4D) data, in our case with 11 energy levels in
3D. In this paper a 4D texture analysis method capable of de-
tecting pulmonary embolism in dual energy CT is presented.
The method uses wavelet–based visual words together with
an automatic geodesic–based region of interest detection al-
gorithm to characterize the texture properties of each lung
lobe. Results show an increase in performance with respect
to the single energy CT analysis, as well as an accuracy gain
compared to preliminary work on a small dataset.

Index Terms— Texture analysis, pulmonary embolism,
dual energy CT, visual words, 4D image analysis

1. INTRODUCTION

Acute pulmonary embolism (PE) is a common condition, par-
ticularly in emergency medicine, that consists of the obstruc-
tion of one or more arteries in the lungs as a complication
of deep vein thrombosis. Studies have shown that acute pul-
monary embolism mortality rates can reach 75% during initial
hospital admission [1] and after the hospital discharge 30%
within 3 years [2]. Although it can be succesfully treated
with anticoagulants, delays in diagnosis have shown to in-
crease the risk of death [3]. There is evidence that 3D tex-
ture features correlate with ventilation and vascularization of
the lung parenchyma [4] and that pulmonary embolism in-
duces wedge–shaped pleura–based regions of heterogeneous
increased attenuation in unenhanced computed tomography
(CT) scans that are also visible on contrast–enhanced CT [5].

Dual energy computed tomography (DECT) produces 4D
data in a single scan. Information is sampled at the three spa-
tial coordinates and the level of x–ray energy between 40

and 140 keV derived from the two energy levels used for
image acquisition (80 and 140 keV). One of the properties
of DECT is that materials have different energy–attenuation
curves, making it possible to distinguish materials with sim-
ilar densities. Several studies showed the value of DECT to
quantify perfusion defects of the lung parenchyma [6, 7] us-
ing iodine components, which can be derived from CT atten-
uation at two energy levels of 80 and 140 keV.

In this work a 4D texture analysis method for PE detection
is presented. Automatically detected regions of interest (ROI)
at multiple scales are used for describing each lung lobe, us-
ing wavelet–based features summarized with the bag of visual
words approach. By using these regions of interest, local pat-
terns are better described at multiple scales and results show
performance improvement with respect to preliminary efforts
on a smaller dataset without region detection [8]. Compari-
son to conventional single energy CT highlights the benefits
of using a combination of energy levels for Computer–Aided
Detection (CAD) of PE.

2. MATERIALS AND METHODS

This section presents the dataset of 4D DECT images and
our computer–assisted detection method based on three main
ideas: (1) an automatic multiscale region of interest detector,
(2) a 3D wavelet transform for multi–scale texture descriptors
for each scale and (3) visual words [9, 10] to obtain discrim-
inative visual features based on patterns actually occurring in
the data.

Dataset Pulmonary parenchyma ischemia in 4D dual en-
ergy CT (DECT) images of 25 patients were identified in
collaboration with the emergency radiology of the Univer-
sity Hospitals of Geneva. The images in the dataset contain
approximately 300 slices per patient and energy level. En-
ergy levels are sampled from 40 to 140 keV in steps of 10
keV. The total amount of data per patient is approximately
512 × 512 × 300 × 11 = 865.08 million voxels. For each
patient, the five pulmonary lobes were manually segmented



and the Qanadli index [11] was manually computed as a mea-
sure of the obstruction on a lobe basis. The Qanadli index is
calculated by adding a score per artery in the lobe: 0 if there
is no obstruction, 1 if there is partial obstruction and 2 if the
artery is completely obstructed.

Automatic region of interest detection As mentionned,
pulmonary embolism induces wedge–shaped heterogeneous
attenuation regions in the lung lobes. Therefore, image anal-
ysis needs to be sufficiently local to accurately characterize
these texture changes. On the other hand, an extremely local
analysis might fail to capture meaningful texture patterns at
larger scales. In addition to the local versus global constraint,
the enormous amount of data contained in a single DECT
scan suggests the use of data reduction techniques.

In 2D image processing, key–point detection has been
widely used to produce a set of salient points where local
analysis is performed, thus reducing the amount of areas to
analyze [12]. However, in 3D there is currently no standard
method for finding salient volumes. The superpixel [13]
approach was extended to supervoxels [14] and provides a
region–based descriptor of the image. However, supervoxels
are an exhaustive partition of the complete image and there-
fore do not reduce the amount of voxels to be analyzed. To
fullfill the requirements, a multiscale key–region detection
was developed [15]. It is designed to reduce the number
of points to be considered and to detect regions at different
scales.

The multiscale region detection is based on the wavelet
transform. At each wavelet scale, the difference of Gaussians
(DoG) of the image is obtained (see Definition 1). Then,
the regional maxima of the DoG are computed using the
fill–hole geodesic algorithm [16]. Small unconnected re-
gions are removed performing an opening operation on the
regional extrema image. Regions computed for every scale
yield a set of k connected components or regions of interest
R1, R2, . . . , Rk. Figure 1 shows an example of the regions
detected.

Fig. 1. Examples of regions detected in the lower lobes for
scales 4 (left) and 3 (right).

Definition 1 Let I(x) be a n–dimensional image indexed by
the coordinates x = (x1, x2, . . . , xn) and j a non–negative
integer value. The difference of Gaussians wavelet at scale
s = 2j , Isψ(x) is defined as:

σ1 = s; σ2 = 1.6σ1 (1)
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Then, the wavelet coefficients of an image I(x) at scale s
are obtained as:

Isψ(x) = I(x) ∗ ψs(x). (3)

Wavelet–based descriptors To describe each region of in-
terest detected, the energies of the wavelet coefficients are
used. For each region detected the energies of the wavelet
coefficients within the region are computed as a descriptor of
the local texture.

Definition 2 Let R1, R2, . . . , Rk be k regions of interest.
Then, an image I(x) can be described by the set of k feature
vectors fi, i = 1 . . . k calculated as:

Ei(I, s) =
∑
x∈Ri

Isψ(x)
2. (4)

fi = (Ei(I, 2
0)), Ei(I, 2

1), . . . , Ei(I, 2
N−1)). (5)

Bag of visual words Visual words [17, 9] have been widely
used in image retrieval and image classification for describing
image content. The approach is similar to the bag–of–words
approach used for text retrieval or text similarity match-
ing [18]. For each region, this technique maps a set of
continuous low–level features (the region–level descriptors)
into a compact discrete representation consisting of a visual
word. Visual words are cluster centers in the low–level fea-
ture space. This guarantees to have a set of visual features
actually corresponding to discriminative patterns that do oc-
cur in the database. Since each region is described by only
one visual word, an image–level descriptor is defined as the
histogram of visual words assigned to each of the regions in
the image.

Definition 3 Let F = {f1, f2, . . . , fm} be the set of m
descriptors, fi ∈ RN , describing visual characteristics
of a given set of images. A visual vocabulary WF,K =
{w1, w2, . . . , wK}, with wc ∈ RN , is constructed by group-
ing the elements of F into K disjoint subsets or words, and
selecting their K centroids wc with c ∈ {1, . . . ,K}.

The bag–of–visual–words of an image I , described bymI

visual descriptors {f1, f2, . . . , fmI}, is defined as a vector
hI = {S1, S2, . . . , SK} :

Sc =

mI∑
i=1

gc(fi) ∀c ∈ {1, . . . ,K}



where

gc(f) =

{
1 if d(f, wc) ≤ d(f, wd) ∀d ∈ {1, . . . ,K}
0 otherwise

being d(f, w) the distance between two vectors f and w.

Experimental configuration Given the different nature of
the four coordinates in the data, i.e., three spatial coordinates
and one energy coordinate, for each patient one 3D image
was obtained per energy level. The region–level descriptors
were computed independently for each energy level. Once
the region–level descriptors were obtained for each of these
3D images, they were regrouped to construct the complete
feature space that describes the images. Since regions were
detected for each image, the number of regions of interest
varied across patients and also across different energy levels
from the same patient.

Regions produced at various energy levels were consid-
ered as additional instances for the same patient. One pa-
tient was described by the total number of regions indepen-
dently of the energy level. The region–level descriptors were
4–dimensional (N = 4 in Equation 5). Eleven energy level–
specific vocabularies were constructed and concatenated into
eleven visual word histograms. This allowed enabling only
some of the energy–levels to find the best combination of
energy–levels.

Visual words were computed using a leave–one–patient–
out (LOPO) cross–validation. The lungs contain five lung
lobes (lower right, lower left, middle right, upper left, up-
per right) that have differing shapes and sizes and contain
specific texture patterns independently of being healthy or
not. Therefore, to perform an accurate evaluation of the sys-
tem, the experimental configuration described in this section
was repeated independently for each of the lobes, in order
to learn the healthy/pulmonary embolism patterns for each of
the lobes and not the patterns that distinguish one lobe from
another. To achieve this, the region detection was limited to
find regions in each of the lobes independently.

3. RESULTS

For the configuration described in Section 2, the classification
accuracy with two classes: healthy and pulmonary embolism
(for Qanadli index equal or above 0) was measured using a
nearest–neighbor classifier in the histogram of visual words
space.

In order to evaluate the accuracy of the proposed method
and specifically if using Dual Energy CT improves the results,
an exhaustive evaluation of all possible energy levels combi-
nations was performed. Table 1 shows the best combinations
of energy levels for each lobe compared to the correponding
accuracy value for conventional single energy CT (70 KeV).
In all cases the best accuracy was obtained when using 4D
data (DECT).

Lobe DECT Words Energy levels SECT
LR 84 % 5 (50,130) 52 %
LL 84 % 5 (100,140) 48 %
MR 80 % 5 (40,50,130,140) 52 %
UL 76 % 25 (40,70,80,90) 60 %
UR 80 % 25 (90,120) 56 %

Table 1. Parameters for the best DECT accuracies obtained
compared to single energy CT (SECT) for the same number
of words for each lobe (LL= lower left, LR= lower right, MR=
middle right, UL = upper left, UR = upper right).

4. DISCUSSION AND CONCLUSIONS

In this paper 4D texture analysis for pulmonary embolism de-
tection is presented. Results show that when using an ap-
propriate combination of energy levels from dual energy CT,
detection accuracy enormously increases when compared to
using single energy CT. The current work has only been vali-
dated on a small number of patients, which is a limitation of
the work. On the other hand it is expected that results improve
once a larger and more representative set of patients will exist
as lung patterns can change significantly based on age, and
environmental conditions, also for healthy tissue. We are cur-
rently working on increasing the size of the database to have
a larger set of patients and textures to compare and model.

Future work will include the use of supervised cluster-
ing based on non–linear transformations of the feature space
to obtain more stable and meaningful words and the use of
richer texture features such as directional wavelets. We are
also working with clinicians at the moment to enlarge the
database, which will ensure better validation.
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