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Abstract. Computer–based medical image analysis is often started with
the exact location of anatomical structures in clinical scans. Many meth-
ods have already been proposed for segmenting single and multiple anatom-
ical structures. However, it is uncommon to compare different approaches
with the same testset, particularly a publicly available testset. The com-
parison of these methods allows to define objectively the advantages and
limitations for each method. A hierarchical multi–atlas based segmenta-
tion approach is proposed for multiple anatomical structures in computed
tomography scans. The method defines an anatomical hierarchy that ex-
ploits the inherent spatial and anatomical variability of medical images
using image registration techniques. It was submitted and tested in the
VISCERAL project Anatomy benchmarks. In this paper, the results are
analyzed and compared to the results of the other segmentation methods
submitted in the benchmark. Six out of the ten structures obtained the
lowest average distance error and four had the best DICE overlap with
the proposed method. Although the method was trained with a small
trainingset it generated accurate output segmentations for liver, kidneys
and other organs.
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1 Introduction

As part of their daily clinical workload, health providers visually inspect medical
images to support a diagnostic hypothesis. This task has time limitations and
it can not be scaled for big data repositories [6]. Without an objective inter-
pretation of these medical images, more advanced research is limited to a small
subset of patient cases. It is then fundamental to have a first automatic inter-
pretation and selection of the images before performing more in–depth image
analysis. Many computer–aided diagnosis techniques thus initially require the
identification and segmentation of the anatomical structures.

There are already various methods that have been proposed for segmenting
anatomical structures. Some approaches are based on shape modeling or ran-
dom decision forests, while others combine intensity feature selection with dy-
namic programming [5, 1]. Even though some of the available approaches have



obtained high segmentation overlap, the results are frequently obtained in pri-
vate datasets. Many of these methods are also targeted towards a single anatom-
ical structure and their application for other organs is not straightforward. The
Visual Concept Extraction Challenge in Radiology (VISCERAL1) benchmarks
aim at evaluating the available state–of–the–art segmentation methods on a
large public dataset [4]. The VISCERAL dataset includes multiple anatomical
structures manually annotated by expert radiologists. These annotations were
considered the ‘gold truth’ against which the methods output segmentations are
compared. These include multiple organs (e.g. lungs, kidney, liver...) and rele-
vant anatomical structures (e.g. some muscles and bones) in different imaging
modalities such as computed tomography (CT) and magnetic resonance (MR).

A fully automatic segmentation approach for multiple anatomical structures
is presented in this paper. It is implemented using multi–atlas registration in a
hierarchical pipeline that includes a priori anatomical localization knowledge. It
maximizes the information contained in each patient scan, exploiting the inherent
anatomical variability and spatial distribution of the structures. The results from
the method are presented and compared to those of the other segmentation
methods submitted in the VISCERAL Anatomy Benchmarks.

2 Materials and Methods

The proposed method is divided into three steps: 1. Pre–processing, 2. Hierarchic
anatomical registration and 3. Label fusion. Each step is detailed in the following
paragraphs. The algorithm has already been described in [10].

2.1 Preprocessing

The test or target volumes were resampled to obtain isometric voxels in all
dimensions. The volumes were then downscaled half their size to improve the
algorithm speed and reduce the search area for the image registrations. The
volumes were upscaled to their original size for the final label fusion step of the
method.

2.2 Hierarchic Anatomical Registration

Multi–atlas Based Registration Multi–atlas based segmentation is an ap-
proach that estimates the unknown location of a structure in a target image
using multiple reference atlases. Each atlas includes a patient volume and a la-
bel volume, created by manual annotation. The label volume had annotated the
location of one or more structures in the patient volume. Parameterized image
registration based on a cost function was used to increase the spatial relationship
between the target and atlas volume. The cost function was optimized in each
step using the adaptive stochastic gradient descent optimizer proposed in [2]

1 http://www.visceral.eu/, as of 29 June 2014



with a multi–resolution approach. Normalized cross–correlation was used as a
similarity metric for the cost function. The label volumes were then transformed
taking the coordinate transformation obtained from the registration. The im-
age registration was performed using the implementation and method of Elastix
software2 [3].

Both affine and non–rigid registrations were carried out for the final label
estimation. Affine registration allowed scaling, rotation and translation. It was
used as an initial alignment for both the global and local transformations. The
non–rigid B–spline registrations defined the final output label and were used only
in the local anatomical regions–of–interest (ROI) created for each structure.

Anatomical Hierarchy In [9] it was shown how some structures influence the
distribution of the multiple organs in the thorax and abdomen. This anatomi-
cal property was exploited to create a hierarchical segmentation pipeline. The
advantage of such a hierarchy is that the smaller and harder to segment struc-
tures can benefit from a previous initialization made with a bigger surrounding
anatomical structure. It also maximizes the information contained in the training
set, since each structure is registered within their own anatomical ROI. There-
fore, the registrations are less affected by global inconsistencies between the atlas
and target volumes.

A global affine registration is followed by individual affine registrations using
local binary masks to enforce the spatial correlation of each anatomical struc-
ture separately. These masks are obtained from the morphological dilation of
the output labels of the different atlases registered in the previous step. After
each anatomical structure has its own independent ROI mask, the volumes are
registered again but using a non–rigid B–spline transformation model. The new
transformed label volumes for each structure constitute the individual votes that
will be used for the label fusion step. The information regarding the hierarchical
anatomical pipeline was previously described in [10]

2.3 Label Fusion

After the multi–atlas registration there is a label estimation for each of the at-
lases in the training set. The spatial information contained in each of the output
estimations can be fused to obtain a more accurate output segmentation. Al-
though there are many label fusion methods available, setting a majority voting
threshold has proven to be an effective straightforward solution [7]. In this
approach we selected five different thresholds for the allowed configurations in
the VISCERAL Anatomy 1 Benchmark. The thresholds are implemented on a
per–voxel basis and were optimized in the training set.

2 Elastix: http://elastix.isi.uu.nl, 2014.[Online; accesed 27–April–2014].



Fig. 1. Hierarchic anatomical registrations. The registrations of the bigger structures
are used as a initialization for the smaller structures, which are harder to segment.
Most of the registrations of structures like liver, lungs and urinary bladder will be
reused in the method which makes it faster and more robust for the segmentation of
structures like gallbladder and trachea.

3 Experimental Setup

3.1 Dataset

Seven volumes were provided for both unenhanced and contrast–enhanced com-
puted tomography (ceCT) in the VISCERAL Anatomy1 benchmark. For each
scan there were up to 15 anatomical structures manually annotated by radiolo-
gists. These structures include organs like liver, lungs and kidneys, and bones or
muscles like the first lumbar vertebra. The complete dataset structure list and
detailed description of the medical images is presented in [8].

The VISCERAL Anatomy1 benchmark allowed participants to select the
tasks and structures in which they wish to participate. The proposed method
was trained only with the 7 ceCT scans of the trunk for the first benchmark.
Ten structures fully included in the field–of–view of these volumes were selected.
The liver, right and left kidneys, right and left lungs, urinary bladder, spleen,
trachea, first lumbar vertebra and gallbladder were segmented in ceCT scans
with the submitted approach in Anatomy1 benchmark.



3.2 Evaluation

The participants received a virtual cloud–computing 8–core CPU instance with
16 GB RAM. Both the executable and required libraries were installed by the
participants in the provided virtual machines (VM). The organizers took over
the VMs and ran the executables for the volumes in the testset for a limited
time period. Once the evaluation phase had finished, the results were published
in the VISCERAL project website (Anatomy1 Benchmark Results 3). The goal
of this framework is to generate an objective and un–biased evaluation of the
different algorithms with the same testset and computing capabilities for all the
participants.

The testset from the Anatomy1 benchmark included 12 ceCT volumes of the
trunk. The results from the proposed method are presented and compared to
those of other organ segmentation approaches submitted in the benchmark. For
the Anatomy1 benchmark, five other methods were submitted that segmented
anatomical structures in ceCT scans. The methods proposed by Gass et al.,
Huang et al., Kechichian et al., Spanier et al. and Wang et al. segmented at
least one anatomical structure in ceCT.

The DICE coefficient, adjusted rand index, interclass correlation and aver-
age distance error were computed and published for each anatomical structure
contained in the testset.

Table 1. Best average DICE coefficient in ceCT testset of the VISCERAL Anatomy1

benchmark.The proposed hierarchical multi–atlas based method (JM Jimenez del Toro
et al. in grey) submitted output segmentations for ten anatomical structures. High-
lighted in white are the best overlap obtained for 4 structures: right and left kidney,
liver, gallbladder. The left lung and right lungs obtained also high overlap among the
submitted methods. SJ Spanier et al., HJ Huang et al., W Wang et al., Kechichian et
al. and GG Gass et al. (Benchmark Anatomy1 Results, http://www.visceral.eu/closed-
benchmarks/benchmark-1/benchmark-1-results/, as of 29 June 2014).

3 http://www.visceral.eu/closed-benchmarks/benchmark-1/benchmark-1-results/, as
of 29 June 2014



4 Results

The results for the 10 anatomical structures had a total average DICE coefficient
of 0.815 in ceCT. The DICE coefficients and average distance error tables for
the ceCT testset are shown in table 1 and table 2 respectively. The ranking of
the different methods participating in each of anatomical structure are presented
in table 3. The hierarchical multi–atlas based segmentation approach obtained
the best overlap in four clinically important anatomical structures: liver, right
and left kidneys and gallbladder. Almost all the other segmented structures
were in the top–three ranking among the submitted methods. The method also
computed the smallest total average distance error with 1.11 average for the
10 structures. Seven of the submitted structures were in top position for this
evaluation metric in VISCERAL Anatomy1.

Table 2. Minimum average distance error in ceCT testset of VISCERAL Anatomy1

benchmark. Highlighted in white are the lowest averaged distance errors obtained with
the proposed algorithm (JM Jimenez del Toro et al. in grey). Six of the ten submitted
structures (right and left kidney, liver, left lung, gallbladder and trachea) got the lowest
distance error with a very low error also for right lung. SJ Spanier et al., HJ Huang et
al., W Wang et al., Kechichian et al. and GG Gass et al. (Benchmark Anatomy1 Results,
http://www.visceral.eu/closed-benchmarks/benchmark-1/benchmark-1-results/, as of
29 June 2014)

5 Discussion and Conclusions

The main contributions of the hierarchical multi–atlas based segmentation ap-
proach are:

– A robust automatic segmentation approach for multiple anatomical struc-
tures. The method was benchmarked against different segmentation ap-
proaches for single or multiple anatomical structures. It obtained the best



Table 3. Segmentation ranking in ceCT testset of VISCERAL Benchmark 1 Anatomy.
According to the DICE overlap this is the ranking for the ten submitted structures.
The other methods that had output segmentations for these structures are mentioned
in the far–left tab: SJ Spanier et al., HJ Huang et al., W Wang et al., Kechichian et
al. and GG Gass et al. (Benchmark Anatomy1 Results, http://www.visceral.eu/closed-
benchmarks/benchmark-1/benchmark-1-results/, as of 29 June 2014)

overlap and smallest average distance error for most of the structures it
segmented in the publicly available VISCERAL testset for ceCT scans.

– A hierarchy for anatomical structure segmentation was defined based on the
organ size and tissue contrast. This hierarchy can be extended for more
anatomical structures and implemented also with other medical imaging
modalities such as MR.

– An efficient exploitation of a small training set based on the inherent anatom-
ical variability of anatomical structureswa achieved. This allows enough flex-
ibility to be quickly adapted for new images coming from scanners with
different parameter tuning.

Although the overlap coefficient are consistent for most of the evaluated struc-
tures, the smaller and harder to segment structures (e.g. gallbladder) still needs
to be improved to be used in a real clinical scenario. It is also not possible to
define where and how significant the main errors in the output segmentations
are. This information is kept by the benchmark organizers and the provided
feedback is an overall interpretation of the results.

For future work the method will be extended to include all of the anatomical
structures in the VISCERAL dataset. An evaluation of the method for the other
modalities (MR and contrast–enhanced MR) is also foreseen with a much bigger
testset.
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